Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 613-625.doi: 10.3724/SP.J.1006.2021.04144

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and expression analysis of microRNA during peanut (Arachis hypogaea L.) pod development

HU Dong-Xiu(), LIU Hao(), HONG Yan-Bin, LIANG Xuan-Qiang, CHEN Xiao-Ping*()   

  1. Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Center of National Center of Oilseed Crops Improvement / Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
  • Received:2020-07-02 Accepted:2020-10-14 Online:2021-04-12 Published:2020-11-18
  • Contact: CHEN Xiao-Ping E-mail:HuDX1017@163.com;liuhao@gdaas.cn;chenxiaoping@gdaas.cn
  • Supported by:
    Guangdong Provincial Major Research and Development Project(2020B020219003);National Natural Science Foundation of China(31771841);Guangdong Basic and Applied Basic Research Foundation(2020A1515010021)

Abstract:

“Aerial flower and subterranean fruit” is a distinct feature in peanut (Arachis hypogaea L.). To dissect this character at post-transcription level, small RNA sequencing was performed to identify microRNAs in peanut pod shell and seed during eleven developmental stages. Sequencing analysis identified 212 known microRNAs, including 197 conserved and 15 specific microRNA. In addition, 112 novel microRNAs from 62 novel microRNA precursors were identified. Among the known and new microRNAs, 67 microRNAs and their target genes showed differentially expressed patterns during peanut pod development. Expression trend analysis revealed stage-specific and tissue-specific expression of microRNA and their target genes during pod shell and seed development, implying that microRNAs probably played a role in peanut pod development. To validate expression profiles from small RNA sequencing, quantitative real-time RT-PCR were performed using 28 microRNAs and 30 target genes, revealing consistent expression profiles with sequencing results. The data regarding microRNA and their target genes generated in this study would contribute to understanding the molecular mechanism of plant fruit development under darkness and to crop improvement.

Key words: peanut, pod development, small RNA sequencing, microRNA, target gene

Fig. 1

Phenotype characteristics of pod development in peanut A: summary of experimental samples; B: phenotype characteristics of peanut pod (shell and seed) development. P0: aerial peg; P1: subterranean peg; P2-P5: pod expansion stage; P6-P9: seed filling stage; P9-P10: mature stage."

Fig. 2

Results of small RNAs sequencing analysis in peanut pod A: length distribution and frequency of total and unique small RNAs; B: summary statistics of small RNAs; C: the categories of peanut small RNAs. P0: aerial peg; P1: subterranean peg; P2-P5: pod expansion stage; P6-P9: seed filling stage; P9-P10: mature stage."

Fig. 3

Pipeline of microRNA data analysis"

Fig. 4

Secondary structure of new Pre-microRNAs in peanut"

Table S1

Novel and known microRNAs identified in peanut pod (shell and seed) development"

编号
ID
序列
Sequence
长度
Length(nt)
编号
ID
序列
Sequence
长度
Length(nt)
New microRNAs
ahy-miR-s1-3p UGUAGAAUUUCUGCUCCUUGG 21 ahy-miR-s33-3p UGUUCAUAGCGGUGCUUGCUG 21
ahy-miR-s1-5p UAGGAUGGCAGAUAUUCUUUUCA 23 ahy-miR-s33-5p CAGUGUGGCCGGACUGGAUCAUC 23
ahy-miR-s2-3p UCCCUUUGGAUGUCGUCGUGC 21 ahy-miR-s34-3p AUUGCCUACUGAUUGCAUCCCACA 24
ahy-miR-s2-5p ACUUCUGACAGACGUAGGGAAG 22 ahy-miR-s34-5p AGGGAUGCUAUCCACAGUCGAUAG 24
ahy-miR-s3-3p UUCAUGACAGAGUGCUGGCUC 21 ahy-miR-s35-3p UAACGAGUCGAGCUCGAGCUAGCU 24
ahy-miR-s3-5p AAGGUCUCUGUCUCUGUGGU 20 ahy-miR-s35-5p UUUAGGCUCAAGCUUGGCUCACCA 24
ahy-miR-s4-3p AACCAAAUGAUGAACCAUUCU 21 ahy-miR-s36-3p UCAGUGUUGCCAGGCGCCUGGG 22
ahy-miR-s4-5p AAUGUUGAAGAAUUAGGUUGC 21 ahy-miR-s36-5p CAACGUCUGCCACCACUGAUG 21
ahy-miR-s5-5p CAACAGCACCCUCCACCUGAG 21 ahy-miR-s37-3p UUGCGUUGGAGAUGUUGUCCAAUG 24
ahy-miR-s6-5p AGCGAUUGUUUCUCUUGAUGCAGU 24 ahy-miR-s37-5p AUUGGACAACAUCUCCAACGUAAC 24
ahy-miR-s7-3p GAUGAAUGCAGCUCCCUAUAA 21 ahy-miR-s38-3p UUAAAGUCUGGCCUGACCUAGCCU 24
ahy-miR-s7-5p AUGGGGCUGGAGUUUGGCUC 20 ahy-miR-s38-5p GCUACAGGCCAGGCUUAGACC 21
ahy-miR-s8-3p AGGGGUGAUCUGCCUAGUC 19 ahy-miR-s39-3p UGAAGGAAGUAGUGGCGACCC 21
ahy-miR-s8-5p UGAGGCACGCACUCCAGAUGA 21 ahy-miR-s40-3p UUGAGGACUUGAUAUAUGUCG 21
ahy-miR-s9-3p CGUGCGCGGUCUUGCACUGCU 21 ahy-miR-s41-3p GUUAGUAAUUCGAACCACCCUGGU 24
ahy-miR-s9-5p CAAGUCGUGCACGGCUGGCCU 21 ahy-miR-s41-5p CACCCUGGUUCGAAUUACGCUUAA 24
ahy-miR-s10-5p UUGGAAAUGUAUGGCGAGCCU 21 ahy-miR-s42-3p AGAUAUACUUGUUACGCUUG 20
ahy-miR-s11-3p UUUGAGAUUGGAUAAUUGCCU 21 ahy-miR-s42-5p CGGCAGUGAUGAGGCUCUAACAUG 24
ahy-miR-s12-3p UUGGAAAAGGUCGGUAGAAAG 21 ahy-miR-s43-3p UGGUAAGAGUUUGAUUAAGUA 21
ahy-miR-s12-5p UUCACCGACUCUGUUCAGACU 21 ahy-miR-s43-5p CUUAAUCAAACUCUUAUCAUC 21
ahy-miR-s13-5p UUCAGAGGCUUGUUUUAUCUC 21 ahy-miR-s44-3p UACUGAAAUCAGAUCAUCCGAUUA 24
ahy-miR-s14-3p GCAAACAGGUUCGGUGAAAAC 21 ahy-miR-s44-5p AUCGGAUGGUCCGAUUUGUGUACC 24
ahy-miR-s14-5p UUUACCAGAUCCUGUUUGUUC 21 ahy-miR-s45-3p UCUAACCGAACCGAACCGAAC 21
ahy-miR-s15-3p UUGUCUCUAAGUGGUGGUUCCA 22 ahy-miR-s45-5p UCGGUUCGGUUUUCGGUUCUGACC 24
ahy-miR-s15-5p GAACUGUUCUUCUUAGUUGCGCCU 24 ahy-miR-s46-3p UGAAGAUUGUUGGGUAGUGUU 21
ahy-miR-s16-3p CAGCUGUUUGCGGACAAGUCUGGC 24 ahy-miR-s46-5p AACAUGGUGAAAGGUUUUCAUU 22
ahy-miR-s16-5p AGACUGUGCGCCGAUAUGCCCGUG 24 ahy-miR-s47-3p UUGAUAUGGUGUAUUCUGCAGCCU 24
ahy-miR-s17-5p UUUGGCAGCUCAAUCACUUGG 21 ahy-miR-s47-5p GUUGUUCAGGUGUAUUAUAUCAGA 24
ahy-miR-s18-3p CACUUCUUAUGCUUGUUGGAG 21 ahy-miR-s48-3p AUUUUUAAUCGAUUGUUUUGUGAU 24
ahy-miR-s18-5p CGCAUGGAUGGAGAAUCUCGCU 22 ahy-miR-s48-5p GACCAAUCGAUUGAUUUUUG 20
ahy-miR-s19-5p UCUUGAAAGCUGAGCAUUGGC 21 ahy-miR-s49-3p CCAACGUUGGAGCAAAAGUUAGA 23
ahy-miR-s20-3p ACCGGACUUGCGCCCCAGUCGUA 23 ahy-miR-s49-5p AACUUUUUGGCUAACGUUGGCGCC 24
ahy-miR-s20-5p UCACAGGCAGCAUAUCAGGUUG 22 ahy-miR-s50-3p UCCAAGAUGUGGCAUAUCAGUUG 23
ahy-miR-s21-5p ACGAAACUGUGUGAAGUAAGGCCU 24 ahy-miR-s50-5p UUUCAUAUGCCGUUCAGAGAGU 22
ahy-miR-s22-3p UUAAAUCAGUCUGUGGUACCC 21 ahy-miR-s51-3p UUCUCGGAUUAAUCAGGCUCAGCC 24
ahy-miR-s22-5p CCGCGGAUUGAUUUUUACCAGA 22 ahy-miR-s51-5p CUGCCUGUUUAGUUCGCGGACU 22
ahy-miR-s23-3p UUGAUUGAGUGACUGUAUAGCU 22 ahy-miR-s52-5p UCAGUGUUUGCUCGCCUCUUC 21
ahy-miR-s23-5p CUAUGAGUUACUCAAUCAAAC 21 ahy-miR-s53-3p CUGGAGGCCUUUGAAGGAGAC 21
ahy-miR-s24-3p UGGCUUGGUCUGACGUGACUCAGC 24 ahy-miR-s53-5p UCCCUCAAAGGCUUCCAGUA 20
ahy-miR-s24-5p AUGAGUCGAGUCGUGAGCCAAGCU 24 ahy-miR-s54-3p AACCGACACGUGAGCUCAUGGCCA 24
ahy-miR-s25-3p UUUUCCUCUUAAUGGAUCCUCUGU 24 ahy-miR-s54-5p UUAGCUAUCGGAUGUGUCGAGUCU 24
ahy-miR-s25-5p AGAGAGGAUCCUUAUCUGGGAACU 24 ahy-miR-s55-3p UUUGAAACAGAAUCAGUUGGGAUC 24
ahy-miR-s26-3p UCCUUGGACCUUGGGUGUGAU 21 ahy-miR-s55-5p UUGGUGACUGAUUUGUGAAUCAAA 24
ahy-miR-s26-5p AGGACCCAACUCUCUUGAAGGAGA 24 ahy-miR-s56-3p UUCUGCGCGGUCGCGUCGCUGACG 24
ahy-miR-s27-3p UGAGGGGGUUGAGGGUGCUGGGGU 24 ahy-miR-s56-5p UGAGCCAUGAGACCGCGUCACUGC 24
ahy-miR-s27-5p UUCAGGAUCUCUAUUACUGGC 21 ahy-miR-s57-5p UUGAGUACCGUCGGAUUUAUCAUC 24
ahy-miR-s28-3p GUUACUGAUUUACUGGUUCACG 22 ahy-miR-s58-3p ACUUUAGUGGCUGUUCGCUCACUU 24
ahy-miR-s28-5p AGAACCGGACCGGUCAAUAAACCA 24 ahy-miR-s58-5p AUAGAGAGUAGGCCAGUAGAAGCC 24
ahy-miR-s29-3p UUCUCCCUUGGUAGUGGCGAAGC 23 ahy-miR-s59-3p UUGUUGUGGCGCCAACGUUUGCCU 24
ahy-miR-s29-5p CAUCGCCAACUCCAAGGAAG 20 ahy-miR-s59-5p CAAACGUUGGCGCAAGCUUUUGCU 24
ahy-miR-s30-3p GGAAGAUUGUUGGUUAGUGUU 21 ahy-miR-s60-3p AGGAGCUCUGCUGUGUCUUGAUGG 24
ahy-miR-s30-5p GACUAAUGACAUUCAACCUC 20 ahy-miR-s60-5p UUCCACGGCAUGACUCUCUAAACC 24
ahy-miR-s31-3p AAUUUAGACAAUUCAUCCGAU 21 ahy-miR-s61-3p ACAGUGAGGUUUGUAAGAAAAAGC 24
ahy-miR-s31-5p AAAUCGGAUGAAUUGUCUAAAUUC 24 ahy-miR-s61-5p UUUUUCUGUUUAAUUUUGUCU 21
ahy-miR-s32-3p AAUAAAACAAGUUUUGACUGU 21 ahy-miR-s62-3p UCAAACGAGGAAAGGCUUAUGG 22
ahy-miR-s32-5p AGCUCAAAUUUGCCUUAUUUA 21 ahy-miR-s62-5p AUCUAGCAGCACCUUAGGAUGGCA 24
Known and Conserved microRNAs
ahy-miR156b-5p UUGACAGAAGAUAGAGAGCAC 21 ahy-miR168d UCGCUUGGUGCAGGUCGGGAC 21
ahy-miR156b-3p GCUCUCUAAGCUUCUGUCAUC 21 ahy-miR169f CAGCCAAGGAUGACUUGCCGG 21
ahy-miR156c UUGACAGAAGAGAGAGAGCAC 21 ahy-miR169h UGAGCCAAGGAUGGCUUGCCG 21
ahy-miR156d UGACAGAAGAAAGUGAGCAC 20 ahy-miR169l CAGCCAAGAAUGACUUGCCGG 21
ahy-miR156e UGACAGAAGAGAGUGAGCACA 21 ahy-miR169p UGAGCCAAGGAUGACUUGCCG 21
ahy-miR156f UGACAGAAGAGAAUGAGCAC 20 ahy-miR169r UAGCCAAGGAUGACUUGCCU 20
ahy-miR156g UGACAGAAGAGAGGGAGCAC 20 ahy-miR169s AAGCCAAGGAUGACUUGCCGG 21
ahy-miR156h UGACAGAAGAAAGAGAGCAC 20 ahy-miR171a GGAUAUUGGUACGGUUCAAUC 21
ahy-miR156i ACAGAAGAUAGAGAGCACAG 20 ahy-miR171b UUGAGCCGUGCCAAUAUCACG 21
ahy-miR156j UGACAGAAGAGGGUGAGCAC 20 ahy-miR171c UAUUGGUGCGGUUCAAUGAGA 21
ahy-miR156k UGUGCUCACUCUCUUCUGUCA 21 ahy-miR171d UUGAGCCGUGCCAAUAUCACU 21
ahy-miR156l UGUCAGAAGAGAGUGAGCAC 20 ahy-miR171e UGAGCCGUGCCAAUAUCACAU 21
ahy-miR156m CGACAGAAGAGAGUGAGCAC 20 ahy-miR171f UGAUUGAGCCGUGCCAAUAUC 21
ahy-miR156n UGACAGAGGAGAGUGAGCAC 20 ahy-miR171g CGAUGUUGGUGAGGUUCAAUC 21
ahy-miR156o UGACAGAAGAGAGCGAGCAC 20 ahy-miR171h UGAUUGAGCCGCGUCAAUAUC 21
ahy-miR156q UGACAGAAGAGAGUGAGCACU 21 ahy-miR171i CGAGCCGAAUCAAUAUCACUC 21
ahy-miR156s CUGACAGAAGAUAGAGAGCAC 21 ahy-miR171j UAUUGGCCUGGUUCACUCAGA 21
ahy-miR157b GCUCUCUAAGCUUCUGUCAUCA 22 ahy-miR171k UUGAGCCGCGCCAAUAUCACA 21
ahy-miR157d UGACAGAAGAUAGAGAGCAC 20 ahy-miR171l UUGAGCCGCGCCAAUAUCACU 21
ahy-miR159a UUUGGAUUGAAGGGAGCUCUG 21 ahy-miR171n UUGAGCCGUGCCAAUAUCACA 21
ahy-miR159b UUUGGAUUGAAGGGAGCUCUU 21 ahy-miR171p UUGAGCCGCGUCAAUAUCUUA 21
ahy-miR159c UUUGGAUUGAAGGGAGCUCCU 21 ahy-miR171t UUGAGCCGCGUCAAUAUCUCA 21
ahy-miR159d AGCUGCUUAGCUAUGGAUCCC 21 ahy-miR172a AGAAUCUUGAUGAUGCUGCAU 21
ahy-miR159e UUUGGAUUGAAAGGAGCUCUU 21 ahy-miR172b GGAGCAUCAUCAAGAUUCACA 21
ahy-miR159f CUUGGAUUGAAGGGAGCUCUA 21 ahy-miR172c GUAGCAUCAUCAAGAUUCACA 21
ahy-miR159g UUGGAUUGAAGGGAGCUCCA 20 ahy-miR172d AGAAUCUUGAUGAUGCUGCAG 21
ahy-miR159h CUUGGAUUGAAGGGAGCUCU 20 ahy-miR172k UGAAUCUUGAUGAUGCUGCAU 21
ahy-miR159i UUUGGACUGAAGGGAGCUCUA 21 ahy-miR390a-5p AAGCUCAGGAGGGAUAGCGCC 21
ahy-miR159j AUUGGAGUGAAGGGAGCUCCA 21 ahy-miR390b CGCUAUCCAUCCUGAGUUUCA 21
ahy-miR159k UUUGGUUUGAAGGGAGCUCUA 21 ahy-miR390c CGCUAUCCAUCCUGAGUUUC 20
ahy-miR159l AUUGGAUUGAAGGGAGCUCCU 21 ahy-miR390d AAGCUCAGGAGGGAUAGCACC 21
ahy-miR159m AUUGGAUUGAAGGGAGCUCCA 21 ahy-miR390e AAGCUCAGGAGGGAUAGCGUC 21
ahy-miR159n CUUGGAUUGAAGGGAGCUCCC 21 ahy-miR390f GAGCUCAGGAGGGAUAGCGCC 21
ahy-miR159 UUUGGAUUGAAGGGAGCUCUA 21 ahy-miR390g CGCUAUCCAUCCUGAGUUCCA 21
ahy-miR319a UUGGACUGAAGGGAGCUCCC 20 ahy-miR393a UCCAAAGGGAUCGCAUUGAUCC 22
ahy-miR319b UUGGACUGAAGGGAGCUCCCU 21 ahy-miR393b UCCAAAGGGAUCGCAUUGAUCU 22
ahy-miR319c UUUGGACUGAAGGGAGCUCCU 21 ahy-miR393c UCCAAAGGGAUCGCAUUGAUC 21
ahy-miR319d UUGGACUGAAGGGAGCUCCU 20 ahy-miR393d AUCAUGCUAUCCCUUUGGAUU 21
ahy-miR319e CUUGGACUGAAGGGAGCUCCC 21 ahy-miR393e AUCAUGCUAUCUCUUUGGAUU 21
ahy-miR319f UUGGACUGAAGGGGCCUCUU 20 ahy-miR393k UUCCAAAGGGAUCGCAUUGAUC 22
ahy-miR319g UUGGACUGAAGGGAGCUCCCA 21 ahy-miR394 UUGGCAUUCUGUCCACCUCC 20
ahy-miR319h UUGGACUGAAGGGUGCUCCCU 21 ahy-miR394c UUGGCAUUCUGUCCACCUCCAU 22
ahy-miR319i UUGGACUGAAGGGGAGCUCCUUC 23 ahy-miR396a UUCCACAGCUUUCUUGAACUA 21
ahy-miR319j CUUGGACUGAAGGGAGCUCCU 21 ahy-miR396b UUCCACAGCUUUCUUGAACUG 21
ahy-miR319k UUGGGCUGAAGGGAGCUCCC 20 ahy-miR396c UUCCACAGCUUUCUUGAACUU 21
ahy-miR319l UUGGACUGAAGGGAGCUCCUUC 22 ahy-miR396d UUCCACGGCUUUCUUGAACUU 21
ahy-miR160a GCGUAUGAGGAGCCAAGCAUA 21 ahy-miR396e UUCCACAGCUUUCUUGAACUGU 22
ahy-miR160b UGCCUGGCUCCCUGGAUGCCA 21 ahy-miR396f UUCCACGGCUUUCUUGAACUG 21
ahy-miR160c UGCCUGGCUCCCUGUAUGCCA 21 ahy-miR396g UCUUCCACAGCUUUCUUGAAC 21
ahy-miR160d UGCCUGGCUCCCUGCAUGCCA 21 ahy-miR396h UUCCACAGCUUUCUUGAACAG 21
ahy-miR160f UGCCUGGCUCCCUGUAUGCCG 21 ahy-miR396i GUUCAAUAAAGCUGUGGGAAG 21
ahy-miR160i CGCCUGGCUCCCUGUAUGCCA 21 ahy-miR396j GUUCAAUAAAGCUGUGGGAAA 21
ahy-MIR160-5p UGCCUGGCUCCCUGAAUGCCA 21 ahy-miR396k GCUCAAGAAAGCUGUGGGAGA 21
ahy-MIR160-3p GCAUGAAGGGAGUCACGCAGG 21 ahy-miR396l AAGAAAGCUGUGGGAGAAUAUGGC 24
ahy-miR162a UCGAUAAACCUCUGCAUCCAG 21 ahy-miR397a UCAUUGAGUGCAGCGUUGAUG 21
ahy-miR162b GGAGGCAGCGGUUCAUCGAUC 21 ahy-miR397b UCAUUGAGUGCAGCGUUGAUGU 22
ahy-miR162c UCGAUAAACCUCUGCAUCCGG 21 ahy-miR397c CCAUUGAGUGCAGCGUUGAUG 21
ahy-miR162d UCGAUAAGCCUCUGCAUCCAG 21 ahy-miR398a UGUGUUCUCAGGUCGCCCCUG 21
ahy-miR162e UGGAGGCAGCGGUUCAUCGAUC 22 ahy-miR398b UGUGUUCUCAGGUCACCCCUU 21
ahy-miR164a UGGAGAAGCAGGGCACGUGCA 21 ahy-miR398c UGUGUUCUCAGGUCGCCCCCG 21
ahy-miR164b UGGAGAAGCAGGGUACGUGCA 21 ahy-miR398d UGUGUUCUCAGGUCACCCCUG 21
ahy-miR164c UGGAGAAGCAGGGCACGUGCG 21 ahy-miR399a CGCCAAAGGAGAGUUGCCCUG 21
ahy-miR164d UGGAGAAGCAGGGCACGUGCU 21 ahy-miR399b UGCCAAAGGAGAGUUGCCCUA 21
ahy-miR164e UGGAGAAGCAGGGCACGUGAA 21 ahy-miR399c UGCCAAAGGAGAUUUGCCCUG 21
ahy-miR164h UGGAGAAGCAGGGCACGUGUG 21 ahy-miR399d UGCCAAAGGAGAGCUGCCCUG 21
ahy-miR166a-5p GGAAUGUUGUCUGGCUCGAGG 21 ahy-miR399e GGGCUUCUCUUUCUUGGCAGG 21
ahy-miR166a-3p UCGGACCAGGCUUCAUUCCCC 21 ahy-miR399f UGCCAAAGGAGAUUUGCCCGG 21
ahy-miR166b UCGGACCAGGCUUCAUUCCCCC 22 ahy-miR399g CGGGGCAAAUCUCCUUUGGCA 21
ahy-miR166c UCGGACCAGGCUUCAUUCCCGU 22 ahy-miR399j UGCCAAAGGAGAGUUGCCCUG 21
ahy-miR166d UCGGACCAGGCUUCAUUCCCU 21 ahy-miR399r UGCCAAAGAAGAUUUGCCCCG 21
ahy-miR166e CUCGGACCAGGCUUCAUUCCC 21 ahy-miR408-3p AUGCACUGCCUCUUCCCUGGC 21
ahy-miR166f UCGGACCAGGCUUCAUCCCCC 21 ahy-miR408a UGCACUGCCUCUUCCCUGGCU 21
ahy-miR166g UCGGACCAGGCUUCAUUCCC 20 ahy-miR408b ACUGGGAACAGGCAGAGCAUGA 22
ahy-miR166h-3p UCUCGGACCAGGCUUCAUUCC 21 ahy-miR408c UGCACUGCCUCUUCCCUGGCUG 22
ahy-miR166i UCGGACCAGGCUUCAUUCUC 20 ahy-miR482c UUUCCAAUUCCACCCAUUCCUA 22
ahy-miR166j-3p UCGGACCAGGCUUCAUUCCCG 21 ahy-miR482d-3p UCUUCCCUACACCUCCCAUACC 22
ahy-miR166j-5p GGAAUGUUGUUUGGCUCGAGG 21 ahy-miR482d-5p UAUGGGGGGAUUGGGAAGGAAU 22
ahy-miR166k UCGAACCAGGCUUCAUUCCCC 21 ahy-miR482e UAUGGGGGGAUUGGGAAGGAA 21
ahy-miR166l UCCGGACCAGGCUUCAUUCCC 21 ahy-miR530 UGCAUUUGCACCUGCACUUUA 21
ahy-miR166m-5p GGAAUGUUGGCUGGCUCGAGG 21 ahy-miR828 UCUUGCUCAAAUGAGUAUUCCA 22
ahy-miR166m-3p UCGGACCAGGCUUCAUUCCUC 21 ahy-miR858 UCUCGUUGUCUGUUCGACCUU 21
ahy-miR166n UCGGACCAGGCUUCAAUCCCU 21 ahy-miR894 CGUUUCACGUCGGGUUCACC 20
ahy-miR166o UCGGACCAGGCUUCAUUCCUU 21 ahy-miR1310 AGGCAUCGGGGGCGCAACGCCC 22
ahy-miR166p UCGGACCAGGCUUCAUUCCUA 21 ahy-miR1507 CCUCGUUCCAUACAUCAUCUAG 22
ahy-miR166q UCGGACCAGGCUUCAUUCCCUU 22 ahy-miR1511 AACCAGGCUCUGAUACCAUG 20
ahy-miR166r UCGGAUCAGGCUUCAUUCCUC 21 ahy-miR1515 UCAUUUUUGCGUGCAAUGAUCC 22
ahy-miR166u UCUCGGACCAGGCUUCAUUC 20 ahy-miR2111 UAAUCUGCAUCCUGAGGUUUA 21
ahy-miR167a AGAUCAUCUGGCAGUUUCACC 21 ahy-miR2118a UUGCCGAUUCCACCCAUUCCUA 22
ahy-miR167b UGAAGCUGCCAGCAUGAUCUA 21 ahy-miR2118b UUACCGAUUCCACCCAUUCCUA 22
ahy-miR167c UGAAGCUGCCAGCAUGAUCUGG 22 ahy-miR3711 AGGCCCUCCUUCUAGCGCCA 20
ahy-miR167d UGAAGCUGCCAGCAUGAUCUGA 22 ahy-miR4995 AGGCAGUGGCUUGGUUAAGGG 21
ahy-miR167e UGAAGCUGCCAGCAUGAUCUC 21 ahy-miR5139 AAACCUGGCUCUGAUACCA 19
ahy-miR167f UGAAGCUGCCAGCAUGAUCUG 21 ahy-miR5141a UUAUCUGUCAGUCGCGUCGGGUCU 24
ahy-miR167j UGAAGCUGCCAGCAUGAUCUUA 22 ahy-miR5141b AGACCCGACGCGACUGACAGAUAA 24
ahy-miR167-5p UGAAGCUGCCAGCAUGAUCUU 21 ahy-miR5538 ACUGAACUCAAUCACUUGCUGC 22
ahy-miR167-3p AGAUCAUGUGGCAGUUUCACC 21 ahy-miR6173a AGCCGUAAACGAUGGAUACU 20
ahy-miR168a UCGCUUGGUGCAGGUCGGGAA 21 ahy-miR6173b AGUAUCCAUCGUUUACGGCU 20
ahy-miR168b UCGCUUGGUGCAGGUCGAGAA 21 ahy-miR6478 CCGACCUUAGCUCAGUUGGUG 21
ahy-miR168c CCCGCCUUGCAUCAACUGAAU 21
Known and Peanut-Specific
ahy-miR3508 UAGAGGGUCCCCAUGUUCUCA 21 ahy-miR3514-3p UCACCGUUAAUACAGAAUCCUU 22
ahy-miR3509-5p AUACUUGAGAGCCGUUAGAUGA 22 ahy-miR3515 AAUGUAGAAAAUGAACGGUAU 21
ahy-miR3510 UUAUACCAUCUUGCGAGACUGA 22 ahy-miR3516 GCUGGGUGAUAUUGACAGAAG 21
ahy-miR3511-3p UGUUACUAUGGCAUCUGGUAA 21 ahy-miR3517 CUGACCACUGUGAUCCCGGAA 21
ahy-miR3511-5p GCCAGGGCCAUGAAUGCAGA 20 ahy-miR3518 UGACCUUUGGGGAUAUUCGUG 21
ahy-miR3512 CGCAAAUGAUGACAAAUAGA 20 ahy-miR3519 UCAAUCAAUGACAGCAUUUCA 21
ahy-miR3513-5p UUAAUUUCUGAGUUUGUCAUC 21 ahy-miR3520-3p AAGGGAGACGUUUGAAUUAUC 21
ahy-miR3513-3p UUGAUAAGAUAGAAAUUGUAU 21

Fig. 5

Expression profile analysis of microRNAs in peanut pod (shell and seed) development P0: aerial peg; P1: subterranean peg; P2-P5: pod expansion stage; P6-P9: seed filling stage; P9-P10: mature stage."

Fig. 6

Trend analysis of microRNAs during peanut pod (shell and seed) development P0: aerial peg; P1: subterranean peg; P2-P5: pod expansion stage; P6-P9: seed filling stage; P9-P10: mature stage."

Fig. 7

Expression profile analysis of target genes in peanut pod (shell and seed) development P0: aerial peg; P1: subterranean peg; P2-P5: pod expansion stage; P6-P9: seed filling stage; P9-P10: mature stage."

Fig. 8

Expression trend analysis of target genes during peanut pod (shell and seed) development P0: aerial peg; P1: subterranean peg: P2- P5: pod expansion stage; P6- P9: seed flling stage; P9-P10: mature stage. "

Fig. 9

RT-qPCR validation of transcriptome data P0: aerial peg; P1: subterranean peg; P2-P5: pod expansion stage; P6-P9: seed filling stage; P9-P10: mature stage."

[1] Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 2013,25:2383-2399.
[2] Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004,303:2022-2025.
doi: 10.1126/science.1088060 pmid: 12893888
[3] Dong Z, Han M H, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA, 2008,105:9970-9975.
pmid: 18632569
[4] Yu B, Yang Z Y, Li J J, Minakhina S, Yang M C, Padgett R W, Steward R, Chen X M. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005,307:932-935.
doi: 10.1126/science.1107130 pmid: 15705854
[5] Park W, Li J J, Song R T, Messing J, Chen X M. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002,12:1484-1495.
pmid: 12225663
[6] Xie M, Zhang S X, Yu B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci, 2015,72:87-99.
doi: 10.1007/s00018-014-1728-7 pmid: 25209320
[7] 邢利娟, 刘悦萍, 王磊, 徐妙云. miRNA参与植物胚和胚乳发育调控的研究进展. 生物技术进展, 2020,10(2):109-116.
Xing L J, Liu Y P, Wang L, Xu M Y. Research progress of miRNA involved in regulation of plant embryo and endosperm development. Curr Biotechnol, 2020,10(2):109-116 (in Chinese with English abstract).
[8] 秦耀旭, 张关元, 刘司奇, 刘洋, 许志茹. 植物重金属胁迫相关miRNA的研究进展. 分子植物育种, 2019,17:2855-2861.
Qin Y X, Zhang G Y, Liu S Q, Liu Y, Xu Z R. Research progress of miRNA related to heavy metal stress in plants. Mol Plant Breed, 2019,17:2855-2861 (in Chinese with English abstract).
[9] 郁佳雯, 韩荣鹏, 仇婷, 李宗芸, 潘沈元, 董婷婷. microRNA在植物生长发育中的研究进展. 分子植物育种, 2020,18:1496-1504.
Yu J W, Han R P, Qiu T, Li Z Y, Pan S Y, Dong T T. Research progress on microRNA in plant growth and development. Mol Plant Breed, 2020,18:1496-1504 (in Chinese with English abstract).
[10] Long R C, Li M N, Li X, Gao Y L, Zhang T J, Sun Y, Kang J M, Wang T H, Cong L L, Yang Q C. A novel miRNA sponge form efficiently inhibits the activity of miR393 and enhances the salt tolerance and ABA insensitivity in Arabidopsis thaliana. Plant Mol Biol Rep, 2017,35:409-415.
[11] 李科学, 曲德杰, 黄慧梅, 曹金山, 樊仔慧, 李国纪, 王幼宁. miRNA调控大豆根系结瘤及共生固氮的分子机制研究进展. 植物生理学报, 2019,55:1587-1594.
Li K X, Qu D J, Huang H M, Cao J S, Fan Z H, Li G J, Wang Y N. Research progress on miRNA-mediated molecular mechanisms of nodulation and symbiotic nitrogen fixation in soybean. J Plant Physiol, 2019,55:1587-1594 (in Chinese with English abstract).
[12] Wang T Y, Ping X K, Cao Y R, Jian H J, Gao Y M, Wang J, Tan Y C, Xu X F, Lu K, Li J N, Liu L Z. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 2019,19:336.
doi: 10.1186/s12870-019-1936-2 pmid: 31370790
[13] Jiao X M, Wang H C, Yan J J, Kong X Y, Liu Y W, Chu J F, Chen X Y, Fang R X, Yan Y S. Promotion of BR biosynthesis by miR444 is required for ammonium-triggered inhibition of root growth. Plant Physiol, 2020,182:1454-1466.
pmid: 31871071
[14] Guo G H, Liu X Y, Sun F L, Cao J, Huo N, Wuda B, Xin M M, Hu Z R, Du J K, Xia R, Rossi V, Peng H R, Ni Z F, Sun Q X, Yao Y Y. Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell, 2018,30:796-814.
pmid: 29567662
[15] José Ripoll J, Bailey L J, Mai Q A, Wu S L, Hon C T, Chapman E J, Ditta G S, Estelle M. Yanofsky M F. microRNA regulation of fruit growth. Nat Plants, 2015,1:15036.
doi: 10.1038/nplants.2015.36 pmid: 27247036
[16] Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet, 2010,6:e1001031.
doi: 10.1371/journal.pgen.1001031 pmid: 20661442
[17] Lu Y Z, Feng Z, Meng Y L, Bian L Y, Xie H, Mysore K S, Liang J S. SLENDER RICE1 and Oryza sativa INDETERMINATE DOMAIN2 regulating osmiR396 are involved in stem elongation. Plant Physiol, 2020,182:2213-2227.
pmid: 31953375
[18] Zhang J P, Yu Y, Feng Y Z, Zhou Y F, Zhang F, Yang Y W, Lei M Q, Zhang Y C, Chen Y Q. MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiol, 2017,175:1175-1185.
doi: 10.1104/pp.17.01169 pmid: 28904074
[19] Zhao C, Li T, Zhao Y, Zhang B, Li A, Zhao S, Hou L, Xia H, Fan S, Qiu J, Li P, Zhang Y, Guo B, Wang X. Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds. BMC Plant Biol, 2020,20:215.
pmid: 32404101
[20] Ma X L, Zhang X G, Zhao K K, Li F P, Li K, Ning L L, He J L, Xin Z Y, Yin D M. Small RNA and degradome deep sequencing reveals the roles of microRNAs in seed expansion in peanut ( Arachis hypogaea L.). Front Plant Sci, 2018,9:349.
doi: 10.3389/fpls.2018.00349 pmid: 29662498
[21] Chen H, Yang Q, Chen K, Zhao S S, Zhang C, Pan R L, Cai T C, Deng Y, Wang X J, Chen Y T, Chu W T, Xie W P, Zhuang W J. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut ( Arachis hypogaea L.). BMC Genomics, 2019,20:392.
pmid: 31113378
[22] Gao C, Wang P F, Zhao S Z, Zhao C Z, Xia H, Hou L, Ju Z, Zhang Y, Li C S, Wang X J. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics, 2017,18:220.
pmid: 28253861
[23] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020,S1674-2052:30187-30188.
[24] Zhao Y T, Wang M, Fu S X, Yang W C, Qi C K, Wang X J, X J. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production-and development-correlated expression and new small RNA classes. Plant Physiol, 2012,158:813-823.
doi: 10.1104/pp.111.187666 pmid: 22138974
[25] Nodine M D, Bartel D P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev, 2010,24:2678-2692.
pmid: 21123653
[26] Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003,425:257-263.
pmid: 12931144
[27] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225
[28] Pignocchi C, Kiddle G, Hernández I, Foster S J, Asensi A, Taybi T, Barnes J, Foyer C H. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol, 2006,141:423-435.
doi: 10.1104/pp.106.078469 pmid: 16603663
[29] Potters G, Horemans N, Caubergs R J, Asard H. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol, 2000,124:17-20.
pmid: 10982417
[30] Yang J H, Han S J, Yoon E K, Lee W S. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res, 2006,34:1892-1899.
doi: 10.1093/nar/gkl118 pmid: 16598073
[31] Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell, 2004,14:787-799.
doi: 10.1016/j.molcel.2004.05.027 pmid: 15200956
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[4] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[5] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[6] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[7] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[8] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[9] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[10] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[11] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[12] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[13] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[14] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[15] XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!