Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 626-637.doi: 10.3724/SP.J.1006.2021.04145
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Shu-Yu(), HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin*(), SONG Lai-Qiang
[1] |
王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421.
doi: 10.7505/j.issn.1007-9084.2014.03.020 |
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract). | |
[2] | 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302. |
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract). | |
[3] | 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41:485-489. |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019,41:485-489 (in Chinese with English abstract). | |
[4] | 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2013,13(1):1-8. |
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2013,13(1):1-8 (in Chinese with English abstract). | |
[5] | 王必庆, 王国槐. 油菜早熟性研究进展. 作物研究, 2009,23:336-338. |
Wang B Q, Wang G H. The advance research of the precocious rape. Crop Res, 2009,23:336-338 (in Chinese with English abstract). | |
[6] | 官春云, 靳芙蓉, 董国云, 官梅, 谭太龙. 冬油菜早熟品种生长发育特性研究. 中国工程科学, 2012,14(11):4-12. |
Guan C Y, Jin F R, Dong G Y, Guan M, Tan T L. Exploring the growth and development properties of early variety of winter rapeseed. Strategic Study CAE, 2012,14(11):4-12 (in Chinese with English abstract). | |
[7] |
Fang J, Zhang F T, Wang H R, Wang W, Zhao F, Lie Z J, Sun C H, Chen F M, Xu F, Chang S Q, Wu L, Bu Q Y, Wang P R, Xie J K, Chen F, Huang X H, Zhan Y J, Zhu X G, Han B, Deng X J, Chu C C. Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci USA, 2019,116:18717-18722.
doi: 10.1073/pnas.1815030116 pmid: 31451662 |
[8] |
Jung C, Muller A E. Flowering time control and applications in plant breeding. Trends Plant Sci, 2009,14:563-573.
doi: 10.1016/j.tplants.2009.07.005 pmid: 19716745 |
[9] |
Xu L P, Hu K N, Zhang Z Q, Guan C Y, Chen S, Hua W, Li J N, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed ( Brassica napus L.). DNA Res, 2015,23:43-52.
doi: 10.1093/dnares/dsv035 pmid: 26659471 |
[10] |
Zhou Q H, Han D P, Mason A S, Zhou C, Zheng W, Li Y Z, Wu C J, Fu D H, Huang Y J. Earliness traits in rapeseed ( Brassica napus): SNP loci and candidate genes identified by genome-wide association analysis. DNA Res, 2018,25:229-244.
doi: 10.1093/dnares/dsx052 pmid: 29236947 |
[11] |
Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X X, Edwards D, Meng J L, Prangnel R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E. Genetic and physical mapping of flowering time loci in canola ( Brassica napus L.). Theor Appl Genet, 2013,126:119-132.
doi: 10.1007/s00122-012-1966-8 |
[12] |
Wei D, Mei J, Fu Y, Joseph O D, Li J, Qian W. Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed, 2014,34:1797-1804.
doi: 10.1007/s11032-014-0139-7 |
[13] |
Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet, 1995,90:727-732.
doi: 10.1007/BF00222140 pmid: 24174034 |
[14] |
Long Y, Shi J Q, Qiu D, Li R Y, Meng J L. Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics, 2007,177:2433-2444.
doi: 10.1534/genetics.107.080705 pmid: 18073439 |
[15] |
Mei D S, Wang H Z, Hu Q, Li Y D, Xu Y S, Li Y C. QTL analysis on plant height and flowering time in Brassica napus. Plant Breed, 2009,128:458-465.
doi: 10.1111/pbr.2009.128.issue-5 |
[16] | Wang N, Chen B Y, Xu K, Gao G Z, Li F, Qiao J W, Yan G X, Li J, Li H, Wu X M. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci, 2016,24:338. |
[17] | 蔡长春, 傅廷栋, 陈宝元, 涂金星. 甘蓝型油菜遗传图谱的构建及开花期的QTL分析. 中国油料作物学报, 2007,29:1-8. |
Cai C C, Fu T D, Chen B Y, Tu J X. Construction of a genetic linkagemap and its use for QTL analysis of flowering time in Brassica napus L. Chin J Oil Crop Sci, 2007,29:1-8 (in Chinese with English abstract). | |
[18] |
Liu H D, Du D Z, Guo S, Xiao L, Zhao Z, Zhao Z G, Xing X R, Tang G Y, Xu L, Fu Z, Yao Y M, Duncan R W. QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape ( Brassica napus L.). Mol Breed, 2016,36:1-14.
doi: 10.1007/s11032-015-0425-z |
[19] |
Nelson M N, Rajasekaran R, Smith A, Chen S, Beeck C P, Siddique K H, Cowling W A. Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L. PLoS One, 2014,9:e102611.
doi: 10.1371/journal.pone.0102611 pmid: 25061822 |
[20] |
Schiessl S, Iniguez L F, Qian W, Snowdon R J. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics, 2015,16:737.
pmid: 26419915 |
[21] |
Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed ( Brassica napus L.): identification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113:597-609.
doi: 10.1007/s00122-006-0324-0 |
[22] |
Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, Graham J K, Meng J L. The evolution of Brassica napus flowering locus paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol, 2009,9:271.
doi: 10.1186/1471-2148-9-271 pmid: 19939256 |
[23] |
Xie W B, Feng Q, Yu H H, Huang X H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010,107:10578-10583.
pmid: 20498060 |
[24] |
Landry B S, Hubert N Etoh T, Harada J J, Lincoln S E. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991,34:543-552.
doi: 10.1139/g91-084 |
[25] |
Shi J Q, Zhan J P, Yang Y H, YE J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed ( Brassica napus L.). Sci Rep, 2015,5:14481.
doi: 10.1038/srep14481 pmid: 26434411 |
[26] |
Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013,8:e83052.
doi: 10.1371/journal.pone.0083052 pmid: 24386142 |
[27] | 俎峰, 赵凯琴, 张云云, 田正书, 刘亚俊, 奚俊玉, 束正齐, 符明联. 甘蓝型油菜的花期与生育期QTL定位. 南方农业学报, 2019,50:500-505. |
Zu F, Zhao K Q, Zhang Y Y, Tian Z S, Liu Y J, Xi J Y, Shu Z Q, Fu M L. QTL mapping of flowering time and maturity time in Brassica napus L. J Southern Agric, 2019,50:500-505 (in Chinese with English abstract). | |
[28] | 张尧锋, 余华胜, 曾孝元, 林宝刚, 华水金, 张冬青, 傅鹰. 早熟甘蓝型油菜研究进展及其应用. 植物遗传资源学报, 2019,20:258-266. |
Zhang Y F, Yu H S, Zeng X Y, Lin B G, Hua S J, Zhang D Q, Fu Y. Progress and application of early maturity in rapeseed ( Brassica napus L.). J Plant Genet Resour, 2019,20:258-266 (in Chinese with English abstract). | |
[29] | 徐亮, 星晓蓉, 赵志, 姚艳梅. 特早熟春油菜品种青7号的选育. 中国种业, 2011,31:66-67. |
Xu L, Xing X R, Zhao Z, Yao Y M. Breeding of special precocious spring rape variety Qingza No. 7. China Seed Ind, 2011,31:66-67 (in Chinese with English abstract). | |
[30] | 柳海东, 赵绪涛, 杜德志. 利用QTL-seq技术定位甘蓝型春油菜早花位点cq DTFC8及其近等基因系构建. 植物生理学报, 2020,56:219-234. |
Liu H D, Zhao X T, Du D Z. Mapping of the cqDTFC8 of early flowering site using QTL-seq technique and construction of its near-isogenic lines in Brassica napus L. Plant Physiol J, 2020,56:219-234 (in Chinese with English abstract). | |
[31] | 潘云龙, 柳海东. 甘蓝型春油菜早花位点cqDTFA7a 加密及其近等基因系构建. 分子植物育种, 2019,17:7047-7057. |
Pan Y L, Liu H D. Encryption for an early flowering time locus cqDTFA7a and construction of NILs in spring Brassica napus L. Mol Plant Breed, 2019,17:7047-7057 (in Chinese with English abstract). | |
[32] | Boss P K, Bastow R M, Mylne J S, Caroline D. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 2004,16:18-31. |
[33] |
Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci, 2011,68:2013-2037.
doi: 10.1007/s00018-011-0673-y |
[34] |
Galvao V C, Horrer D, Kuttner F, Schmid M. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 2012,139:4072-4082.
pmid: 22992955 |
[35] |
Fornara F, Montaigu A, Coupland G. Snap shot: control of flowering in Arabidopsis. Cell, 2010,141:550-550.
doi: 10.1016/j.cell.2010.04.024 pmid: 20434991 |
[36] |
Kobayashi Y, Weigel D. Move on up, It’s time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007,21:2371-2384.
pmid: 17908925 |
[37] |
Levy Y Y, Mesnage S, Mylne J S. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science, 2002,297:243-246.
doi: 10.1126/science.1072147 pmid: 12114624 |
[38] |
Meng J. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L.). BMC Plant Biol, 2012,12:238.
doi: 10.1186/1471-2229-12-238 pmid: 23241244 |
[39] |
Wang N, Qian W, Suppanz I, Wei L J, Mao B Z, Long Y, Meng J L, Muller A E, Jung C. Flowering time variation in oilseed rape ( Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J Exp Bot, 2011,8:1-18.
doi: 10.1093/jxb/8.1.1 |
[40] | Zhao J J, Kulkarni V, Liu N, Carpio D P D, Bucher J, Bonnema G. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rape. J Exp Bot, 2010,6:1817-1825. |
[41] |
Robert L S, Robson F, Sharpe A, Lydiate D, Coupland G. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol, 1998,37:763-772.
doi: 10.1023/a:1006064514311 pmid: 9678571 |
[42] |
Chen L, Dong F, Cai J, Xin Q, Fang C C, Liu L, Wan L L, Yang G S, Hong D F. A2.833-kb insertion in BnFLC.A2 and its homeologous exchange with Bn-FLC.C2 during breeding selection generated early-flowering rapeseed. Mol Plant, 2018,11:222-225.
doi: 10.1016/j.molp.2017.09.020 pmid: 29024744 |
[43] |
Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B. Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L.). BMC Plant Biol, 2012,12:238.
doi: 10.1186/1471-2229-12-238 pmid: 23241244 |
[44] |
Gendall A R, Levy Y Y, Wilson A, Dean C. The Vernalization 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001,107:525-535.
doi: 10.1016/s0092-8674(01)00573-6 pmid: 11719192 |
[45] |
Mara C D, Huang T B, Irish V F. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell, 2010,22:690-702.
doi: 10.1105/tpc.109.065946 pmid: 20305124 |
[46] |
陈苇, 李劲峰, 张国建, 罗延青, 赵凯琴, 周丕才, 瞿观, 俎峰, 董云松, 王敬乔. 特大粒甘蓝型油菜籽粒和角果发育形态特征. 中国油料作物学报, 2013,35:658-664.
doi: 10.7505/j.issn.1007-9084.2013.06.007 |
Chen W, Li J F, Zhang G J, Luo Y Q, Zhao K Q, Zhou P C, Qu G, Zu F, Dong Y S, Wang J Q. Morphology and silique development of extra-large seed line DL01 of Brassica napus. Chin J Oil Crop Sci, 2013,35:658-664 (in Chinese with English abstract). | |
[47] |
Hu Y X, Xie Q, Chua N H. The Arabidopsis auxin-inducible gene argos controls lateral organ size. Plant Cell, 2003,15:1951-1961.
pmid: 12953103 |
[48] | 张美, 张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展. 生物资源, 2017,39:155-161. |
Zhang M, Zhang H. Research progress of late embryogenesis abundant (LEA) protein involved in plant tolerance to abiotic stresses. Biotic Resour, 2017,39:155-161 (in Chinese with English abstract). |
[1] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[2] | ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471. |
[3] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[4] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[5] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[6] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[7] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[8] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[9] | GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172. |
[10] | LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110. |
[11] | WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843. |
[12] | Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353. |
[13] | WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677. |
[14] | LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800. |
[15] | JIAN Hong-Ju, HUO Qiang, GAO Yu-Min, LI Yang-Yang, XIE Ling, WEI Li-Juan, LIU Lie-Zhao, LU Kun, LI Jia-Na. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1557-1565. |
|