Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 613-625.doi: 10.3724/SP.J.1006.2021.04144
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HU Dong-Xiu(), LIU Hao(), HONG Yan-Bin, LIANG Xuan-Qiang, CHEN Xiao-Ping*()
[1] | Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 2013,25:2383-2399. |
[2] |
Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004,303:2022-2025.
doi: 10.1126/science.1088060 pmid: 12893888 |
[3] |
Dong Z, Han M H, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA, 2008,105:9970-9975.
pmid: 18632569 |
[4] |
Yu B, Yang Z Y, Li J J, Minakhina S, Yang M C, Padgett R W, Steward R, Chen X M. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005,307:932-935.
doi: 10.1126/science.1107130 pmid: 15705854 |
[5] |
Park W, Li J J, Song R T, Messing J, Chen X M. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002,12:1484-1495.
pmid: 12225663 |
[6] |
Xie M, Zhang S X, Yu B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci, 2015,72:87-99.
doi: 10.1007/s00018-014-1728-7 pmid: 25209320 |
[7] | 邢利娟, 刘悦萍, 王磊, 徐妙云. miRNA参与植物胚和胚乳发育调控的研究进展. 生物技术进展, 2020,10(2):109-116. |
Xing L J, Liu Y P, Wang L, Xu M Y. Research progress of miRNA involved in regulation of plant embryo and endosperm development. Curr Biotechnol, 2020,10(2):109-116 (in Chinese with English abstract). | |
[8] | 秦耀旭, 张关元, 刘司奇, 刘洋, 许志茹. 植物重金属胁迫相关miRNA的研究进展. 分子植物育种, 2019,17:2855-2861. |
Qin Y X, Zhang G Y, Liu S Q, Liu Y, Xu Z R. Research progress of miRNA related to heavy metal stress in plants. Mol Plant Breed, 2019,17:2855-2861 (in Chinese with English abstract). | |
[9] | 郁佳雯, 韩荣鹏, 仇婷, 李宗芸, 潘沈元, 董婷婷. microRNA在植物生长发育中的研究进展. 分子植物育种, 2020,18:1496-1504. |
Yu J W, Han R P, Qiu T, Li Z Y, Pan S Y, Dong T T. Research progress on microRNA in plant growth and development. Mol Plant Breed, 2020,18:1496-1504 (in Chinese with English abstract). | |
[10] | Long R C, Li M N, Li X, Gao Y L, Zhang T J, Sun Y, Kang J M, Wang T H, Cong L L, Yang Q C. A novel miRNA sponge form efficiently inhibits the activity of miR393 and enhances the salt tolerance and ABA insensitivity in Arabidopsis thaliana. Plant Mol Biol Rep, 2017,35:409-415. |
[11] | 李科学, 曲德杰, 黄慧梅, 曹金山, 樊仔慧, 李国纪, 王幼宁. miRNA调控大豆根系结瘤及共生固氮的分子机制研究进展. 植物生理学报, 2019,55:1587-1594. |
Li K X, Qu D J, Huang H M, Cao J S, Fan Z H, Li G J, Wang Y N. Research progress on miRNA-mediated molecular mechanisms of nodulation and symbiotic nitrogen fixation in soybean. J Plant Physiol, 2019,55:1587-1594 (in Chinese with English abstract). | |
[12] |
Wang T Y, Ping X K, Cao Y R, Jian H J, Gao Y M, Wang J, Tan Y C, Xu X F, Lu K, Li J N, Liu L Z. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 2019,19:336.
doi: 10.1186/s12870-019-1936-2 pmid: 31370790 |
[13] |
Jiao X M, Wang H C, Yan J J, Kong X Y, Liu Y W, Chu J F, Chen X Y, Fang R X, Yan Y S. Promotion of BR biosynthesis by miR444 is required for ammonium-triggered inhibition of root growth. Plant Physiol, 2020,182:1454-1466.
pmid: 31871071 |
[14] |
Guo G H, Liu X Y, Sun F L, Cao J, Huo N, Wuda B, Xin M M, Hu Z R, Du J K, Xia R, Rossi V, Peng H R, Ni Z F, Sun Q X, Yao Y Y. Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell, 2018,30:796-814.
pmid: 29567662 |
[15] |
José Ripoll J, Bailey L J, Mai Q A, Wu S L, Hon C T, Chapman E J, Ditta G S, Estelle M. Yanofsky M F. microRNA regulation of fruit growth. Nat Plants, 2015,1:15036.
doi: 10.1038/nplants.2015.36 pmid: 27247036 |
[16] |
Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet, 2010,6:e1001031.
doi: 10.1371/journal.pgen.1001031 pmid: 20661442 |
[17] |
Lu Y Z, Feng Z, Meng Y L, Bian L Y, Xie H, Mysore K S, Liang J S. SLENDER RICE1 and Oryza sativa INDETERMINATE DOMAIN2 regulating osmiR396 are involved in stem elongation. Plant Physiol, 2020,182:2213-2227.
pmid: 31953375 |
[18] |
Zhang J P, Yu Y, Feng Y Z, Zhou Y F, Zhang F, Yang Y W, Lei M Q, Zhang Y C, Chen Y Q. MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiol, 2017,175:1175-1185.
doi: 10.1104/pp.17.01169 pmid: 28904074 |
[19] |
Zhao C, Li T, Zhao Y, Zhang B, Li A, Zhao S, Hou L, Xia H, Fan S, Qiu J, Li P, Zhang Y, Guo B, Wang X. Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds. BMC Plant Biol, 2020,20:215.
pmid: 32404101 |
[20] |
Ma X L, Zhang X G, Zhao K K, Li F P, Li K, Ning L L, He J L, Xin Z Y, Yin D M. Small RNA and degradome deep sequencing reveals the roles of microRNAs in seed expansion in peanut ( Arachis hypogaea L.). Front Plant Sci, 2018,9:349.
doi: 10.3389/fpls.2018.00349 pmid: 29662498 |
[21] |
Chen H, Yang Q, Chen K, Zhao S S, Zhang C, Pan R L, Cai T C, Deng Y, Wang X J, Chen Y T, Chu W T, Xie W P, Zhuang W J. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut ( Arachis hypogaea L.). BMC Genomics, 2019,20:392.
pmid: 31113378 |
[22] |
Gao C, Wang P F, Zhao S Z, Zhao C Z, Xia H, Hou L, Ju Z, Zhang Y, Li C S, Wang X J. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics, 2017,18:220.
pmid: 28253861 |
[23] | Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020,S1674-2052:30187-30188. |
[24] |
Zhao Y T, Wang M, Fu S X, Yang W C, Qi C K, Wang X J, X J. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production-and development-correlated expression and new small RNA classes. Plant Physiol, 2012,158:813-823.
doi: 10.1104/pp.111.187666 pmid: 22138974 |
[25] |
Nodine M D, Bartel D P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev, 2010,24:2678-2692.
pmid: 21123653 |
[26] |
Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003,425:257-263.
pmid: 12931144 |
[27] |
Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225 |
[28] |
Pignocchi C, Kiddle G, Hernández I, Foster S J, Asensi A, Taybi T, Barnes J, Foyer C H. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol, 2006,141:423-435.
doi: 10.1104/pp.106.078469 pmid: 16603663 |
[29] |
Potters G, Horemans N, Caubergs R J, Asard H. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol, 2000,124:17-20.
pmid: 10982417 |
[30] |
Yang J H, Han S J, Yoon E K, Lee W S. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res, 2006,34:1892-1899.
doi: 10.1093/nar/gkl118 pmid: 16598073 |
[31] |
Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell, 2004,14:787-799.
doi: 10.1016/j.molcel.2004.05.027 pmid: 15200956 |
[1] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[2] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[3] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[4] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[5] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[6] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[7] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[8] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[9] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[10] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[11] | HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840. |
[12] | ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490. |
[13] | DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592. |
[14] | HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108. |
[15] | XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137. |
|