Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 599-612.doi: 10.3724/SP.J.1006.2021.04152

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Key genes mining of DNA methylation involved in regulating drought stress response in potato

LI Peng-Cheng1,2(), BI Zhen-Zhen1,2(), SUN Chao1,2, QIN Tian-Yuan1,2, LIANG Wen-Jun1,2, WANG Yi-Hao1,2, XU De-Rong1,2, LIU Yu-Hui1,2, ZHANG Jun-Lian1,2, BAI Jiang-Ping1,2,*()   

  1. 1Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-07-11 Accepted:2020-10-14 Online:2021-04-12 Published:2020-11-06
  • Contact: BAI Jiang-Ping E-mail:526040572@qq.com;bizhen925@sina.com;baijp@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31660432);National Natural Science Foundation of China(31960442);China Agriculture Research System(CARS-09-P14);Gansu Potato Industry System(GARS-03-P1);Gansu Agricultural University Special Talent Research Project(2017RCZX-01);Gansu Science and Technology Fund(18JR3RA170)

Abstract:

When plants are subjected to water stress, they will make a rapid response to drought stress through DNA methylation. In order to study how DNA methylation affects the transcriptional expression of genes under drought stress in potato, comparative transcriptomic analysis was carried out on two potato varieties with different drought resistances, which were planted under mannitol simulated drought and 5-azadC treatments. The differentially expressed genes (DEGs) were identified by Fold-change > 2 and corrected P < 0.01. Then DEGs were subjected to GO enrichment analysis. The results showed that these DEGs were enriched in the oxidative stress and carbohydrate metabolism, suggesting these GO term-related genes were also regulated by DNA demethylation, responded to drought stress in different drought-tolerant potatoes. The common 1345 DEGs both responding to drought stress and DNA demethylation were functionally enriched by KEGG pathway. The results showed that plant MAPK signal pathway, plant hormone signal transduction pathway, plant glutathione metabolism pathway, glycolysis and glutathione metabolism pathway and inositol phosphate metabolism pathway were related to plant drought resistance. It was suggested that the sensitivity of these pathway-related genes responding to drought stress were regulated by DNA methylation in Atlantic and Qingshu 9. The cis-acting elements and methylated CpG islands were analyzed in the 1500 bp promoter region of DEGs. The results showed that the methylation level of ABRE and CAAT-box acting elements in the promoter region of GST gene involved in plant glutathione metabolism were reduced through DNA demethylation under drought stress. Then the expression was activated in response to drought stress. Therefore, DEGs under drought and DNA demethylation treatments could be analyzed using comparative transcriptomic, and then the genes related to DNA methylation involved in regulating drought stress response in potato could be found. These results provide a new idea for further studying the epigenetic mechanism of drought stress response in potato.

Key words: potato, drought stress, DNA methylation, transcriptome, glutathione S transferase

Table 1

Primers of real-time quantitative PCR"

基因
Gene
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
Actin AGGAGCATCCTGTCCTCCTAA CACCATCACCAGAGTCCAACA
PGSC0003DMG400001333 CTCAATTGCACCTACTAAGCAC GTGATATTCTTGCATGCAGAGG
PGSC0003DMG400005108 GTTGTGTTCTTGGTTTTAGGCT GTGGCATATTCATGGGCATAAG
PGSC0003DMG400005112 TCGAATTCTTGTCAACCTGGTA CCTGGTGGATCATAATTGCAAG
PGSC0003DMG400005116 CACAATGAAGCTCGTAGACAAG CACATACTCTACCTGCTTGACA
PGSC0003DMG400017231 CACGAATTCCAAGAAAAGCAGT CCCCAAATCTTCAAACACAACT
PGSC0003DMG400023921 CAACAAATGTGCTAGTGGGAAA TGTTTCCTGAAGGAGCATAGTT
PGSC0003DMG400002176 GCAGTCAAGTCAAGAAATATCTACC TGAACACGTACAAGTAAGTGGA
PGSC0003DMG400004977 GATTGATGATGTGAAGAGTGCC TGTCATAATGAAGGCCTTGAGT
PGSC0003DMG400011012 AATTTTTGTGTGTGGAGGGATG TATTCATTTGAGAGTAGCCGCA
PGSC0003DMG400016722 AACTAACAGGAACCACACTG GTTGTGTCCCATTTTAGGGA
PGSC0003DMG400020253 GCTGGAAGGTTCATGAAAGATG GGAATGGATATTCTCAATGGCG
PGSC0003DMG400024232 GAGCAGGATTTAGCCGTTTTAG AGGTGCAATTACTCCGTAGAAA
PGSC0003DMG400006270 ATGCAATTGCTGGTGCTTATAG AGCCTGATAGCAAGTAACAGTT
PGSC0003DMG400030038 ATGAAGTTTAGGGGTGACTCAG TACACAAACTTCCCGTATGTGA
PGSC0003DMG400030624 TGCTGAAAGTTCATATCCTGGT GAAGTGTCTTGATGCATAGCAG
PGSC0003DMG403001316 GATGCTGTGAATCACCCAAATT GATGGTGAACGTATACAACACG
PGSC0003DMG401000287 CTTCATTTGACTGGCCTCATTC TCATCAAAAGCACAACCAAGAG
PGSC0003DMG401023603 TTAACTGATGAACCGACTTGGA CAATTGTGAGACCAATCGAGAC
PGSC0003DMG400013765 TAAGTGCCAGAAGATTGGTCAT TACATCTCTTGCTCCTCAATCG
PGSC0003DMG400019274 CTGGGCTTTATAGGTATCGTGT ATATGAAGTTGAATTGAGGCGC
PGSC0003DMG400020139 AGCAACAAAAGACCTTCATCAC CATGCTCACTTTAACGTAGCTC
PGSC0003DMG400026261 GGATTTGAATTCGAGACGTCTG TCGTTGTAGAAATCATCGCAAC

Table 2

Basic summary of sequence and sequencing reads mapping to the reference genome"

样品ID
Sample ID
总reads数
Total reads
总碱基数
Total bases (G)
GC含量
GC content (%)
Q20 (%) Q30 (%) 比对率
Mapped reads (%)
AtC_0h 132,318,050 19.85 44.33 99.93 96.45 82.13
AtA_2h 149,098,932 22.36 44.33 99.95 96.58 89.28
AtA_6h 157,099,124 23.56 44.50 99.94 96.40 84.40
AtA_12h 137,418,600 20.61 44.67 99.94 96.42 91.26
AtA_24h 146,797,368 22.02 45.67 99.95 96.59 91.93
AtM_2h 137,686,150 20.65 46.83 99.95 96.76 94.64
AtM_6h 147,166,226 22.07 45.67 99.91 96.45 79.18
AtM_12h 132,018,290 19.80 44.17 99.91 96.20 78.02
AtM_24h 143,830,794 21.57 44.83 99.94 96.43 87.10
QsC_0h 137,904,066 20.69 44.67 99.90 96.41 82.46
QsA_2h 133,480,780 20.02 45.67 99.93 96.68 92.56
QsA_6h 143,833,564 21.58 45.00 99.94 96.47 92.32
QsA_12h 150,781,586 22.62 44.67 99.93 96.41 84.35
QsA_24h 134,038,164 20.11 44.17 99.92 96.42 75.56
QsM_2h 145,819,266 21.87 44.83 99.92 96.43 81.50
QsM_6h 136,496,172 20.47 44.33 99.92 96.30 89.37
QsM_12h 130,599,502 19.59 44.50 99.93 96.40 85.07
QsM_24h 150,207,156 22.53 44.33 99.94 96.42 90.72

Table 3

Number of DEGs among different varieties under drought and DNA demethylation"

处理
Treatment
比较组合
Comparison
差异基因数
Number of DEGs
上调差异基因数
Up-regulated DEGs
下调差异基因数
Down-regulated DEGs
对照Control A vs. Q_0h 1030 515 515
干旱Drought A vs. Q_2h 568 384 184
A vs. Q_6h 994 560 434
A vs. Q_12h 519 321 198
A vs. Q_24h 1251 471 780
DNA去甲基化
Demethylation
A vs. Q_2h 1603 1033 570
A vs. Q_6h 1142 501 641
A vs. Q_12h 1153 576 577
A vs. Q_24h 981 465 516

Fig. 1

Expression profile of regulated genes under drought stress and DNA demethylation in potato A and B are UpSet diagrams, showing the overlap of sets and the number of DEG obtained by comparison of AvsQ at each time point under drought and DNA demethylation, respectively. C is the venn diagram."

Fig. 2

GO functional enrichment analysis of differential expressed genes"

Fig. 3

Hierarchical cluster analysis of common differential genes under two treatments"

Fig. 3

Hierarchical cluster analysis of common differential genes under two treatments"

Fig. 4

KEGG functional enrichment analysis of common differential genes under two treatments"

Fig. 4

KEGG functional enrichment analysis of common differential genes under two treatments"

Table 4

Functional annotation of drought-related co-enrichment KEGG pathway genes"

KEGG通路ID
KEGG ID
基因ID
Gene ID
对应拟南芥基因ID
Gene in A. thaliana
基因功能
Gene function
KO04016 PGSC0003DMG400000193 AT3G61510 1-氨基环丙烷-1-羧酸合酶2
1-aminocyclopropane-1-carboxylate synthase 2
KO04016 PGSC0003DMG400006639 AT3G25250 类丝氨酸/苏氨酸蛋白激酶 OXI1
serine/threonine-protein kinase OXI1-like
KO04016 PGSC0003DMG400001333 AT5G39670 Ca2+结合蛋白
Ca2+ binding protein
KO04016 PGSC0003DMG400001529 AT3G12500 酸性27-kD内切酶
Acidic 27-kD endochitinase
KO04016 PGSC0003DMG400005108 AT3G19690 致病相关蛋白1
pathogenesis-related protein 1-like
KO04016 PGSC0003DMG400005112 AT4G33720 碱性PR-1蛋白
Basic PR-1 protein
KO04016 PGSC0003DMG400005116 AT2G14580 PR1蛋白
PR1 protein
KO04016 PGSC0003DMG400017231 AT3G23240 转录因子TSRF1
Transcription factor TSRF1
KO04016 PGSC0003DMG400001204 AT5G49480 Ca2+结合蛋白1
Ca2+-binding protein 1
KO04016 PGSC0003DMG400005110 AT3G19690 PR1蛋白
PR1 protein
KO04016 PGSC0003DMG400023921 AT2G14610 细胞质小热休克蛋白I类
Cytoplasmic small heat shock protein class I
KO00480 PGSC0003DMG400031091 AT1G17180 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400024232 AT1G23820 亚精胺合成酶1
Spermidine synthase 1
KO00480 PGSC0003DMG400011012 AT2G29490 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400016722 AT3G03190 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400004977 AT5G41210 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400002169 AT3G09270 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400002176 AT3G09270 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400020253 AT3G27060 核糖核苷二磷酸还原酶小链
Ribonucleoside-diphosphate reductase small chain
KO00010 PGSC0003DMG400009472 AT1G22170 磷酸甘油酸变位酶
Phosphoglycerate mutase
KO00010 PGSC0003DMG400006270 AT4G33070 丙酮酸脱羧酶
Pyruvate decarboxylase
KO00010 PGSC0003DMG400030038 AT1G09870 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
KO00010 PGSC0003DMG400030624 AT4G37840 己糖激酶
Hexokinase
KO00010 PGSC0003DMG400018084 AT3G47800 醛糖-1-表异构酶
Aldose-1-epimerase
KO00010 PGSC0003DMG403001316 AT5G15140 非细胞自主蛋白途径2
Non-cell-autonomous protein pathway 2
KO00010 PGSC0003DMG400012308 AT5G57330 醛糖1-表异构酶
Aldose 1-epimerase
KEGG通路ID
KEGG ID
基因ID
Gene ID
对应拟南芥基因ID
Gene in A. thaliana
基因功能
Gene function
KO00010 PGSC0003DMG400004800 AT4G17260 L-乳酸脱氢酶B
L-lactate dehydrogenase B
KO00562 PGSC0003DMG400022715 AT2G26870 磷酸酯酶家族蛋白
Phosphoesterase family protein
KO00562 PGSC0003DMG401000287 AT4G26260 肌醇加氧酶
Myo-inositol oxygenase
KO00562 PGSC0003DMG400004872 AT1G14520 肌醇加氧酶
Myo-inositol oxygenase
KO00562 PGSC0003DMG400030038 AT1G09870 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
KO00562 PGSC0003DMG401023603 AT3G02870 肌醇单磷酸酶1
Inositol monophosphatase 1
KO04075 PGSC0003DMG400019274 AT5G54510 吲哚-3-乙酸酰胺合成酶GH3.6
Indole-3-acetic acid-amido synthetase GH3.6
KO04075 PGSC0003DMG400005108 AT3G19690 致病相关蛋白1
pathogenesis-related protein 1-like
KO04075 PGSC0003DMG400005112 AT4G33720 碱性PR-1蛋白
Basic PR-1 protein
KO04075 PGSC0003DMG400021210 AT5G45110 NIM1 1
KO04075 PGSC0003DMG400020139 AT5G43700 生长素诱导蛋白22B
Auxin-induced protein 22B
KO04075 PGSC0003DMG400005116 AT2G14580 PR1蛋白
PR1 protein
KO04075 PGSC0003DMG400017231 AT3G23240 转录因子TSRF1
Transcription factor TSRF1
KO04075 PGSC0003DMG400005110 AT3G19690 PR1蛋白
PR1 protein
KO04075 PGSC0003DMG400021676 AT4G03400 吲哚-3-乙酸酰胺合成酶GH3.5
Indole-3-acetic acid-amido synthetase GH3.5
KO04075 PGSC0003DMG400025856 AT2G14960 生长素和乙烯响应性GH3
Auxin and ethylene responsive GH3
KO04075 PGSC0003DMG400023921 AT2G14610 细胞质小热休克蛋白I类
Cytoplasmic small heat shock protein class I
KO04075 PGSC0003DMG400026261 AT5G47220 ATERF-2/ATERF2/ERF2
KO04075 PGSC0003DMG400024978 AT2G14960 吲哚-3-乙酸酰胺合成酶GH3.3
Indole-3-acetic acid-amido synthetase GH3.3
KO04075 PGSC0003DMG400013765 AT4G32280 ATP结合蛋白
ATP binding protein

Table 4

Functional annotation of drought-related co-enrichment KEGG pathway genes"

KEGG通路ID
KEGG ID
基因ID
Gene ID
对应拟南芥基因ID
Gene in A. thaliana
基因功能
Gene function
KO04016 PGSC0003DMG400000193 AT3G61510 1-氨基环丙烷-1-羧酸合酶2
1-aminocyclopropane-1-carboxylate synthase 2
KO04016 PGSC0003DMG400006639 AT3G25250 类丝氨酸/苏氨酸蛋白激酶 OXI1
serine/threonine-protein kinase OXI1-like
KO04016 PGSC0003DMG400001333 AT5G39670 Ca2+结合蛋白
Ca2+ binding protein
KO04016 PGSC0003DMG400001529 AT3G12500 酸性27-kD内切酶
Acidic 27-kD endochitinase
KO04016 PGSC0003DMG400005108 AT3G19690 致病相关蛋白1
pathogenesis-related protein 1-like
KO04016 PGSC0003DMG400005112 AT4G33720 碱性PR-1蛋白
Basic PR-1 protein
KO04016 PGSC0003DMG400005116 AT2G14580 PR1蛋白
PR1 protein
KO04016 PGSC0003DMG400017231 AT3G23240 转录因子TSRF1
Transcription factor TSRF1
KO04016 PGSC0003DMG400001204 AT5G49480 Ca2+结合蛋白1
Ca2+-binding protein 1
KO04016 PGSC0003DMG400005110 AT3G19690 PR1蛋白
PR1 protein
KO04016 PGSC0003DMG400023921 AT2G14610 细胞质小热休克蛋白I类
Cytoplasmic small heat shock protein class I
KO00480 PGSC0003DMG400031091 AT1G17180 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400024232 AT1G23820 亚精胺合成酶1
Spermidine synthase 1
KO00480 PGSC0003DMG400011012 AT2G29490 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400016722 AT3G03190 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400004977 AT5G41210 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400002169 AT3G09270 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400002176 AT3G09270 谷胱甘肽S转移酶
Glutathione S-transferase
KO00480 PGSC0003DMG400020253 AT3G27060 核糖核苷二磷酸还原酶小链
Ribonucleoside-diphosphate reductase small chain
KO00010 PGSC0003DMG400009472 AT1G22170 磷酸甘油酸变位酶
Phosphoglycerate mutase
KO00010 PGSC0003DMG400006270 AT4G33070 丙酮酸脱羧酶
Pyruvate decarboxylase
KO00010 PGSC0003DMG400030038 AT1G09870 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
KO00010 PGSC0003DMG400030624 AT4G37840 己糖激酶
Hexokinase
KO00010 PGSC0003DMG400018084 AT3G47800 醛糖-1-表异构酶
Aldose-1-epimerase
KO00010 PGSC0003DMG403001316 AT5G15140 非细胞自主蛋白途径2
Non-cell-autonomous protein pathway 2
KO00010 PGSC0003DMG400012308 AT5G57330 醛糖1-表异构酶
Aldose 1-epimerase
KEGG通路ID
KEGG ID
基因ID
Gene ID
对应拟南芥基因ID
Gene in A. thaliana
基因功能
Gene function
KO00010 PGSC0003DMG400004800 AT4G17260 L-乳酸脱氢酶B
L-lactate dehydrogenase B
KO00562 PGSC0003DMG400022715 AT2G26870 磷酸酯酶家族蛋白
Phosphoesterase family protein
KO00562 PGSC0003DMG401000287 AT4G26260 肌醇加氧酶
Myo-inositol oxygenase
KO00562 PGSC0003DMG400004872 AT1G14520 肌醇加氧酶
Myo-inositol oxygenase
KO00562 PGSC0003DMG400030038 AT1G09870 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
KO00562 PGSC0003DMG401023603 AT3G02870 肌醇单磷酸酶1
Inositol monophosphatase 1
KO04075 PGSC0003DMG400019274 AT5G54510 吲哚-3-乙酸酰胺合成酶GH3.6
Indole-3-acetic acid-amido synthetase GH3.6
KO04075 PGSC0003DMG400005108 AT3G19690 致病相关蛋白1
pathogenesis-related protein 1-like
KO04075 PGSC0003DMG400005112 AT4G33720 碱性PR-1蛋白
Basic PR-1 protein
KO04075 PGSC0003DMG400021210 AT5G45110 NIM1 1
KO04075 PGSC0003DMG400020139 AT5G43700 生长素诱导蛋白22B
Auxin-induced protein 22B
KO04075 PGSC0003DMG400005116 AT2G14580 PR1蛋白
PR1 protein
KO04075 PGSC0003DMG400017231 AT3G23240 转录因子TSRF1
Transcription factor TSRF1
KO04075 PGSC0003DMG400005110 AT3G19690 PR1蛋白
PR1 protein
KO04075 PGSC0003DMG400021676 AT4G03400 吲哚-3-乙酸酰胺合成酶GH3.5
Indole-3-acetic acid-amido synthetase GH3.5
KO04075 PGSC0003DMG400025856 AT2G14960 生长素和乙烯响应性GH3
Auxin and ethylene responsive GH3
KO04075 PGSC0003DMG400023921 AT2G14610 细胞质小热休克蛋白I类
Cytoplasmic small heat shock protein class I
KO04075 PGSC0003DMG400026261 AT5G47220 ATERF-2/ATERF2/ERF2
KO04075 PGSC0003DMG400024978 AT2G14960 吲哚-3-乙酸酰胺合成酶GH3.3
Indole-3-acetic acid-amido synthetase GH3.3
KO04075 PGSC0003DMG400013765 AT4G32280 ATP结合蛋白
ATP binding protein

Fig. 5

Analysis of glutathione S-transferase gene promoter"

Fig. 5

Analysis of glutathione S-transferase gene promoter"

Fig. 6

qRT-PCR validation of differentially expressed genes under drought and 5-azadC treatment"

Fig. 6

qRT-PCR validation of differentially expressed genes under drought and 5-azadC treatment"

Fig. 7

Regulatory pattern of DNA demethylation of potato GST (PGSC0003DMG400004977) gene under drought stress"

Fig. 7

Regulatory pattern of DNA demethylation of potato GST (PGSC0003DMG400004977) gene under drought stress"

[1] 余林辉, 蔡晓腾, 徐萍, 向成斌. 植物抗旱节水: 从实验室到田间. 中国科学: 生命科学, 2017,47:145-154.
Yu L H, Cai X T, Xu P, Xiang C B. Drought resistant and water-saving plants: from laboratory to field. Sci Sin (Vitae), 2017,47:145-154 (in Chinese with English abstract).
[2] Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci, 2015,72:673-689.
[3] 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征. 植物生态学报, 2016,40:1189-1207.
Liu Y B, Li X R, Li M M, Liu D, Zhang W L. Leaf (or assimilation branch) epidermal micromorphology of desert plant in arid and semi-arid areas of China. Chin J Plant Ecol, 2016,40:1189-1207 (in Chinese with English abstract).
[4] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答. 中国稻米, 2016,22(6):52-60.
Zhu J K, Ni J P. Abiotic stress signaling and responses in plants. China Rice, 2016,22(6):52-60 (in Chinese with English abstract).
[5] 余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 王蒂, 张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价. 作物学报, 2018,44:63-74.
Yu B, Yang H Y, Wang L, Liu Y H, Bai J P, Wang D, Zhang J L. Genetic diversity analysis and comprehensive assessment of phenotypic traits in introduced potato germplasm resources in arid and semi-arid area. Acta Agron Sin, 2018,44:63-74 (in Chinese with English abstract).
[6] Banerjee A, Roychoudhury A. Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene, 2017,11:199-204.
[7] Pikaard C S, Mittelsten S O. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol, 2014,6:a019315.
[8] Vanyushin B F, Ashapkin V V. DNA methylation in higher plants: past, present and future. Biochim Biophys Acta, 2011,1809:360-368.
doi: 10.1016/j.bbagrm.2011.04.006 pmid: 21549230
[9] Gallusci P, Hodgman C, Teyssier E, Seymour G B. DNA methylation and chromatin regulation during fleshy fruit development and ripening. Front Plant Sci, 2016,7:807.
pmid: 27379113
[10] 赵云雷, 叶武威, 王俊娟, 樊保香, 宋丽艳. DNA甲基化与植物抗逆性研究进展. 西北植物学报, 2009,29:1479-1489.
Zhao Y L, Ye W W, Wang J J, Fan B X, Song L Y. Review of DNA methylation and plant stress-tolerance. Acta Bot Boreali- Occident Sin, 2009,29:1479-1489 (in Chinese with English abstract).
[11] Fei Y, Xue Y, Du P, Yang S, Deng X. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat(Triticum aestivum L). Protoplasma, 2017,254:987-996.
[12] McLoughlin F, Arisz S A, Dekker H L, Kramer G, de Koster C G, Haring M A, Munnik T, Testerink C. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J, 2013,450:573-581.
[13] Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye C Y, Tang S, Wang Y, Yang L, Wang J. Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet, 2014,15:S9.
[14] Abid G, Mingeot D, Muhovski Y, Mergeai G, Aouida M, Abdelkarim S, Aroua I, El Ayed M, M’hamdi M, Sassi K. Analysis of DNA methylation patterns associated with drought stress response in faba bean ( Vicia faba L.) using methylation-sensitive amplification polymorphism (MSAP). Environ Exp Bot, 2017,142:34-44.
[15] 李鹏程, 毕真真, 梁文君, 孙超, 张俊莲, 白江平. DNA甲基化参与调控马铃薯干旱胁迫响应. 作物学报, 2019,45:1595-1603
Li P C, Bi Z Z, Liang W J, Sun C, Zhang J L, Bai J P. DNA methylation involved in regulating drought stress response of potato. Acta Agron Sin, 2019,45:1595-1603 (in Chinese with English abstract).
[16] Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney R K, Bhatia S, Jain M. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep, 2016,6:19228.
pmid: 26759178
[17] Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J. Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice ( Oryza rufipogon Griff.). PLoS One, 2016,11:e0146242.
[18] Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res, 2019,47:W191-W198.
[19] Li L C, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics, 2002,18:1427-1431.
[20] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002,30:325-327.
[21] 李艳, 钱伟强. 植物中DNA甲基化及去甲基化研究进展. 生命科学, 2017,29:302-309.
Li Y, Qian W Q. Mechanisms of DNA methylation and demethylation in plants. Chin Bull Life Sci, 2017,29:302-309 (in Chinese with English abstract).
[22] Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci, 2014,5:151.
[23] 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展. 中国农业科技导报, 2019,21(2):19-25.
Wang K Y, Chen F Q, Huang W X. Research advance on drought stress response mechanism in plants. J Agric Sci Technol, 2019,21(2):19-25 (in Chinese with English abstract).
[24] Molina C, Rotter B, Horres R, Udupa S M, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics, 2008,9:553.
[25] Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L S. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA, 2014,111:851-856.
[26] Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol, 2016,16:86.
doi: 10.1186/s12870-016-0771-y
[27] Jain M, Khurana J P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J, 2009,276:3148-3162.
doi: 10.1111/j.1742-4658.2009.07033.x pmid: 19490115
[28] 陈坤明, 宫海军, 王锁民. 植物谷胱甘肽代谢与环境胁迫. 西北植物学报, 2004,24:1119-1130.
Chen K M, Gong H J, Wang S M. Glutathione metabolism and environmental stresses in plants. Acta Bot Boreali-Occident Sin, 2004,24:1119-1130 (in Chinese with English abstract).
[29] Li Z, Yu J, Peng Y, Huang B. Metabolic pathways regulated by abscisic acid, salicylic acid and gamma-aminobutyric acid in association with improved drought tolerance in creeping bentgrass ( Agrostis stolonifera). Physiol Plant, 2017,159:42-58.
[30] Xu J, Xing X J, Tian Y S, Peng R H, Xue Y, Zhao W, Yao Q H. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One, 2015,10:e0136960.
doi: 10.1371/journal.pone.0136960 pmid: 26327625
[31] 孟大伟, 王悦, 李沛璇, 赵宇威, 周瑶, 韩玉, 郎晨婧, 金太成, 杨丽萍. 干旱诱导AtGSTF14基因DNA去甲基化. 分子植物育种, 2020,18:6108-6113.
Meng D W, Wang Y, Li P X, Zhao Y W, Zhou Y, Han Y, Lang C J, Jin T C, Yang L P. Drought-introduced DNA demethylation of AtGSTF14 gene. Mol Plant Breed, 2020,18:6108-6113 (in Chinese with English abstract).
[1] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[4] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[5] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[6] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[7] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[8] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[9] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[10] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[11] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[12] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[13] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[14] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[15] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!