Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (1): 108-120.doi: 10.3724/SP.J.1006.2022.04276

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea

XIE Qin-Qin(), ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan*()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2020-12-16 Accepted:2021-04-14 Online:2022-01-12 Published:2021-06-09
  • Contact: ZHU Li-Quan E-mail:xieqq1995@163.com;zhuliquan@swu.edu.cn
  • About author:First author contact:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31572127);Fundamental Research Funds for the Central Universities(XDJK2020D024)

Abstract:

Self-incompatibility (SI) refers to the characteristic that the pistil of a plant can recognize its own pollen and allogeneic pollen so as to inhibit the germination of its own pollen. PUB (Plant U-Box) proteins play an important role in plant stress resistance and signal transduction. In this study, through the analysis of stigma transcriptome data of Brassica oleracea self-pollination at 0-60 minute(s), a PUB protein coding gene BoPUB9 was screened and up-regulated by self-pollination. The BoPUB9 cDNA sequence was 1368 bp, gDNA of 1720 bp in length, containing one arm repeat domain and one U-box domain. The relative expression levels showed that BoPUB9 gene was expressed in different tissues of Brassica oleracea, and the relative expression level was the highest in sepals, followed by petals, stamens and stigmas, and relatively lower in pollen buds, which was consistent with the results of GUS staining. The relative expression level of BoPUB9 gene was up-regulated rapidly in self-pollination 0-30 minute(s), the expression level after 15 min was more than 20 times that after cross-pollination, and the difference was the biggest after 30 min, the expression level after self-pollination was more than 40 times that after cross-pollination. Subcellular localization revealed that BoPUB9 protein was expressed in both nucleus and cytoplasm, and BoPUB9 protein was successfully induced in E. coli, and the relative molecular weight of 51 kD was consistent with the predicted results. The results of yeast two-hybrid and poll-down indicated that the intracellular domain of SRK interacted with PUB9 protein. It was speculated that BoPUB9 might be a novel gene involved in the process of self-incompatibility in Brassica oleracea, which providing a new content for further research and utilization of self-incompatibility in Brassica oleracea.

Key words: Brassica oleracea, gene cloning, self-incompatibility, the relative expression level, yeast two-hybrid

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Functions
BoPUB9-AD F: GTACCAGATTACGCTCATATGATGGCAAAGACCGGATTTTTC 酵母双杂交引物
R: ATGCCCACCCGGGTGGAATTCGGCTGTGTGAGTAAGATTCATA Yeast two-hybrid primers
SRKj-BK F: GTACCAGATTACGCTCATATGTCAGATCGTGAGGTTTTCAATTC 酵母双杂交引物
R: ATGCCCACCCGGGTGGAATTCGCCTTGTTATCGTTCCATGACTA Yeast two-hybrid primers
BoPUB9-PAN F: AAGTCCGGAGCTAGCTCTAGAATGGCAAAGACCGGATTTTTC 基因亚细胞定位
R: GCCCTTGCTCACCATGGATCCGGCTGTGTGAGTAAGATTCATA Subcellular location
BoPUB9-PGEX F: GATCTGGTTCCGCGTGGATCCATGGCAAAGACCGGATTTTTC 基因的原核表达
R: GATGCGGCCGCTCGAGTCGACGGCTGTGTGAGTAAGATTCATA Prokaryotic expression
BoPUB9-GUS F: CAAGCTTGGCTGCAGGTCGACGTCTTCTTAACGACATGGCTTG 基因的启动子活性分析
R: GGTGGACTCCTCTTAGAATTCCTCCGTCGGATCCACCG Promoter activity analysis
dActin F: GGCTGATGGTGAAGATATTCA 内参引物
R: CAAGCACAATACCAGTAGTAC Internal reference primers
qRT-PCR F: TGGCTTCTGGTCAGACATACGA 荧光定量PCR引物
R: GTGACAGCTTTCTTGGACTCG qRT-PCR primers

Table 2

Software and online websites for bioinformatics analysis"

软件或在线网站
Software and online websites
功能
Functions
Bio-soft (http://www.bio-soft.net/sms/index.html)和DNAMAN 8.0 软件 推导基因编码的氨基酸序列
Bio-soft (http://www.bio-soft.net/sms/index.html) and DNAMAN 8.0 software Derive the amino acid sequence encoded by the gene
ExPASy-ProtParam tool (http://www.expasy.org/) 分析蛋白质理化性质
Analysis of physical and chemical properties of protein
Signalp (http://www.cbs.dtu.dk/services/SignalP/) 预测蛋白质的信号肽
Signal peptides for predicting proteins
TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/) 预测蛋白质的跨膜结构域
Prediction of transmembrane domains of proteins
Netphos (http://www.cbs.dtu.dk/services/NetPhos/) 预测磷酸化位点
Predicted phosphorylation site
NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/) 预测N-糖基化位点
Prediction of N-glycosylation sites
ProtScale (https://web.expasy.org/protscale/) 预测疏水性/亲水性
Prediction of hydrophobicity/hydrophilicity
SMART(http://smart.embl-heidelberg.de/) 蛋白质的高级结构域
Advanced domain of protein
PROSITE (http://prosite.expasy.org/) 蛋白质的功能位点
Functional sites of proteins
PlantCARE (http://bioinformatics.psb.ugentbe/webtools/plantcare/) 分析启动子的顺式作用元件
Analysis of cis-acting elements of promoter
MEGA7软件和NCBI (http://www.ncbi.nlm.nih.gov/) 构建进化树
MEGA7 software and NCBI (http://www.ncbi.nlm.nih.gov/) Construct an evolutionary tree
BRAD (http://brassicadb.org/brad/index.php) 分析基因启动子序列
Analysis of gene promoter sequence

Fig. 1

Relative expression patterns of BoPUB9 after self- pollination and cross-pollination based on transcriptome data SP: self-pollination; CP: cross-pollination."

Fig. 1

Relative expression patterns of BoPUB9 after self- pollination and cross-pollination based on transcriptome data SP: self-pollination; CP: cross-pollination."

Fig. 2

Products of cDNA and gDNA PCR amplification of BoPUB9 genes in Brassica oleracea M: marker."

Fig. 2

Products of cDNA and gDNA PCR amplification of BoPUB9 genes in Brassica oleracea M: marker."

Fig. 3

BoPUB9 cDNA and its amino acid sequence The solid frame is the U-box domain, and the dashed frame is the repeating domain of the arm."

Fig. 3

BoPUB9 cDNA and its amino acid sequence The solid frame is the U-box domain, and the dashed frame is the repeating domain of the arm."

Fig. 4

Phylogenetic tree of BoPUB9 and PUB9 protein from other species"

Fig. 4

Phylogenetic tree of BoPUB9 and PUB9 protein from other species"

Fig. 5

Alignment of BoPUB9 of Brassica oleracea with homologous proteins of other species Black: the amino acid identity is 100%; Pink: the amino acid identity is 75%; Blue: the amino acid identity is 50%. The underlined solid line denotes the U-box terminal domain, and the underlined dotted line denotes the repeating domain of the arm, indicating that the protein is highly conserved in this segment."

Fig. 5

Alignment of BoPUB9 of Brassica oleracea with homologous proteins of other species Black: the amino acid identity is 100%; Pink: the amino acid identity is 75%; Blue: the amino acid identity is 50%. The underlined solid line denotes the U-box terminal domain, and the underlined dotted line denotes the repeating domain of the arm, indicating that the protein is highly conserved in this segment."

Fig. 6

Relative expression patterns of BoPUB9 genes after pollination (A) and in tissues (B) SP: self-pollination; CP: cross-pollination."

Fig. 6

Relative expression patterns of BoPUB9 genes after pollination (A) and in tissues (B) SP: self-pollination; CP: cross-pollination."

Table 3

Cis-elements in the upstream regulation region of BoPUB9"

相关功能预测
Putative associated function
启动子顺式作用元件
Cis-elements in the promoter region
脱落酸应答 Abscisic acid (ABA) response ABRE元件 ABRE
赤霉素应答 Gibberellin (GA) response GARE基序, P-box元件 GARE-motif, P-box
生长素应答 Auxin (IAA) response TGA元件 TGA-element
乙烯应答 Ethylene-response ERELEE4元件 ERELEE4
水杨酸反应 Salicylic acid (SA) response TCA元件 TCA-element
茉莉酸响应 MeJA-response CGTCA基序, TGACG基序 CGTCA-motif, TGACG-motif
花粉特异性顺式作用元件 Pollen-specific cis-acting element POLLENLELAT52元件 POLLENLELAT52
光响应 Light response G-Box元件, GT1基序, TCT基序
G-Box, GT1-motif, TCT-motif
低温响应 Low-temperature response LTR元件 LTR
干旱诱导 Drought induced response MBS元件 MBS
压力与防御相关反应元件 Stress and defense related response elements WBOXATNPR1元件 WBOXATNPR1

Table 3

Cis-elements in the upstream regulation region of BoPUB9"

相关功能预测
Putative associated function
启动子顺式作用元件
Cis-elements in the promoter region
脱落酸应答 Abscisic acid (ABA) response ABRE元件 ABRE
赤霉素应答 Gibberellin (GA) response GARE基序, P-box元件 GARE-motif, P-box
生长素应答 Auxin (IAA) response TGA元件 TGA-element
乙烯应答 Ethylene-response ERELEE4元件 ERELEE4
水杨酸反应 Salicylic acid (SA) response TCA元件 TCA-element
茉莉酸响应 MeJA-response CGTCA基序, TGACG基序 CGTCA-motif, TGACG-motif
花粉特异性顺式作用元件 Pollen-specific cis-acting element POLLENLELAT52元件 POLLENLELAT52
光响应 Light response G-Box元件, GT1基序, TCT基序
G-Box, GT1-motif, TCT-motif
低温响应 Low-temperature response LTR元件 LTR
干旱诱导 Drought induced response MBS元件 MBS
压力与防御相关反应元件 Stress and defense related response elements WBOXATNPR1元件 WBOXATNPR1

Fig. 7

Screening of BoPUB9-GUS transgenic plants with hygromycin"

Fig. 7

Screening of BoPUB9-GUS transgenic plants with hygromycin"

Fig. 8

GUS staining detection a: pods; c: leaves; e: flowers; g: buds; b, d, f, h: control (CK); Bar: 25 μm."

Fig. 8

GUS staining detection a: pods; c: leaves; e: flowers; g: buds; b, d, f, h: control (CK); Bar: 25 μm."

Fig. 9

Subcellular localization of BoPUB9-GFP fusion protein Bar: 10 μm."

Fig. 9

Subcellular localization of BoPUB9-GFP fusion protein Bar: 10 μm."

Fig. 10

Prokaryotic expression profile of BoPUB9 protein Lane 1: pGEX-4T-1; Lane 2: induced and purified pGEX-4T-1- BoPUB9; Lane 3: induced non-purified pGEX-4T-1-BoPUB9; Lane 4: non-induced pGEX-4T-1-BoPUB9. M: molecular weight standard of protein."

Fig. 10

Prokaryotic expression profile of BoPUB9 protein Lane 1: pGEX-4T-1; Lane 2: induced and purified pGEX-4T-1- BoPUB9; Lane 3: induced non-purified pGEX-4T-1-BoPUB9; Lane 4: non-induced pGEX-4T-1-BoPUB9. M: molecular weight standard of protein."

Fig. 11

Protein-protein interactions DDO/X: SD/-Leu/-Trp/X-α-Gal; DDO: SD/-Leu/-Trp; QDO: SD/-Ade/-His/-Leu/-Trp."

Fig. 11

Protein-protein interactions DDO/X: SD/-Leu/-Trp/X-α-Gal; DDO: SD/-Leu/-Trp; QDO: SD/-Ade/-His/-Leu/-Trp."

Fig. 12

Detection of fusion protein purification and in vitro interaction Lane 1: BoPUB9-His; Lane 2: BoSRKj-GST; Lane 3: BoPUB9- His×GST; Lane 4: BoPUB9-His×BoSRKj-GST. M: marker."

Fig. 12

Detection of fusion protein purification and in vitro interaction Lane 1: BoPUB9-His; Lane 2: BoSRKj-GST; Lane 3: BoPUB9- His×GST; Lane 4: BoPUB9-His×BoSRKj-GST. M: marker."

[1] Tantikanjana T, Nasrallah M E, Nasrallah J B. Complex networks of self-incompatibility signaling in the Brassicaceae. Curr Opin Plant Biol, 2010, 13:520-526.
[2] 刘素玲, 赵国建, 吴欣, 张百行, 高岭巍, 丁美玲, 陈威. 植物自交不亲和机制研究进展. 中国农业科技导报, 2016, 18(4):31-37.
Liu S L, Zhao G J, Wu X, Zhang B X, Gao L W, Ding M L, Chen W. Research progress on the mechanism of plant self- incompatibility. J Agric Sci Technol, 2016, 18(4):31-37 (in Chinese with English abstract).
[3] Doucet J, Lee H K, Goring D R. Pollen acceptance or rejection: a tale of two pathways. Trends Plant Sci, 2016, 21:1058-1067.
[4] 朱利泉, 周燕, 甘蓝自交不亲和性信号传导元件与传导过程. 作物学报, 2015, 41:1-14.
Zhu L Q, Zhou Y. Protein elements and signal transduction process of self-incompatibility in Brassica oleracea. Acta Agron Sin, 2015, 41:1-14.
[5] Nasrallah J B, Nasrallah M E. Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. Plant Cell, 2014, 26:3838-3841.
[6] Indriolo E, Goring D R. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility. Front Plant Sci, 2014, 5:181.
[7] Nasrallah J B, Liu P, Sherman-Broyles S, Schmidt R, Nasrallah M E. Epigenetic mechanisms for breakdown of self-incompatibility in interspecific hybrids. Genetics, 2007, 175:1965-1973.
[8] Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15:885-898.
[9] Wiborg J, O’Shea C, Skriver K. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem J, 2008, 413:447-457.
[10] Tu D, Li W, Ye Y, Brunger A T. Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Proc Natl Acad Sci USA, 2007, 104:15599-15606.
[11] Wang N, Liu Y, Cong Y, Wang T, Zhong X, Yang S, Li Y, Gai J. Genome-wide identification of soybean U-Box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57:1189-1209.
[12] Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain asembly. Cell, 1999, 96:635-644.
Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain asembly. Cell, 1999, 96:635-644.
[13] Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants. Trends Plant Sci, 2001, 6:354-358.
Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants. Trends Plant Sci, 2001, 6:354-358.
[14] Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot, 2009, 60:1109-1121.
Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot, 2009, 60:1109-1121.
[15] Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel K H, Schafer P. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol, 2011, 156:726-740.
Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel K H, Schafer P. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol, 2011, 156:726-740.
[16] Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne T P, He P, Shan L. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 2011, 332:1439-1442.
Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne T P, He P, Shan L. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 2011, 332:1439-1442.
[17] Chen Y C, Wong C L, Muzzi F, Vlaardingerbroek I, Kidd B N, Schenk P M. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Sci Rep, 2014, 4:5584.
Chen Y C, Wong C L, Muzzi F, Vlaardingerbroek I, Kidd B N, Schenk P M. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Sci Rep, 2014, 4:5584.
[18] Stone S L, Arnoldo M, Goring D R. A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science, 1999, 286:1729-1731.
Stone S L, Arnoldo M, Goring D R. A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science, 1999, 286:1729-1731.
[19] Indriolo E, Tharmapalan P, Wright S I, Goring D R. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection. Plant Cell, 2012, 24:4607-4620.
Indriolo E, Tharmapalan P, Wright S I, Goring D R. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection. Plant Cell, 2012, 24:4607-4620.
[20] Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant, 2016, 9:21-33.
Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant, 2016, 9:21-33.
[21] Trujillo M, Ichimura K, Casais C, Shirasu K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol, 2008, 18:1396-1401.
Trujillo M, Ichimura K, Casais C, Shirasu K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol, 2008, 18:1396-1401.
[22] Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J, 1994, 5:421-427.
Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J, 1994, 5:421-427.
[23] Su S, Dai H, Wang X, Wang C, Zeng W, Huang J, Duan Q. Ethylene negatively mediates self-incompatibility response in Brassica rapa. Biochem Biophys Res Commun, 2020, 525:600-606.
Su S, Dai H, Wang X, Wang C, Zeng W, Huang J, Duan Q. Ethylene negatively mediates self-incompatibility response in Brassica rapa. Biochem Biophys Res Commun, 2020, 525:600-606.
[24] Liu J, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang G L. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog, 2015, 11:e1004629.
Liu J, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang G L. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog, 2015, 11:e1004629.
[25] Antignani V, Klocko A L, Bak G, Chandrasekaran S D, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4K beta1/beta2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. Plant Cell, 2015, 27:243-261.
Antignani V, Klocko A L, Bak G, Chandrasekaran S D, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4K beta1/beta2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. Plant Cell, 2015, 27:243-261.
[26] Amador V, Monte E, Garcia-Martinez J L, Prat S. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell, 2001, 106:343-354.
Amador V, Monte E, Garcia-Martinez J L, Prat S. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell, 2001, 106:343-354.
[27] Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16:2795-2808.
Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16:2795-2808.
[28] Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J, 2009, 59:39-51.
Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J, 2009, 59:39-51.
[29] Kim M, Cho H S, Kim D M, Lee J H, Pai H S. CHRK1, a chitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. Biochim Biophys Acta, 2003, 1651:50-59.
Kim M, Cho H S, Kim D M, Lee J H, Pai H S. CHRK1, a chitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. Biochim Biophys Acta, 2003, 1651:50-59.
[30] Mbengue M, Camut S, Fernanda D, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Herve C, Cullimore J, Lefebvre B. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell, 2010, 22:3474-3488.
Mbengue M, Camut S, Fernanda D, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Herve C, Cullimore J, Lefebvre B. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell, 2010, 22:3474-3488.
[31] Scandola S, Samuel M A. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Curr Biol, 2019, 29:506-512, e504.
Scandola S, Samuel M A. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Curr Biol, 2019, 29:506-512, e504.
[32] Lian X, Zeng J, Zhang H, Converse R, Wang Y, Bai X, Zhu L. PUB7, a pollen expression gene induced by self-pollination, negatively regulates pollen germination. Acta Biochim Biophys Sin(Shanghai), 2019, 51:548-551.
Lian X, Zeng J, Zhang H, Converse R, Wang Y, Bai X, Zhu L. PUB7, a pollen expression gene induced by self-pollination, negatively regulates pollen germination. Acta Biochim Biophys Sin(Shanghai), 2019, 51:548-551.
[33] Shi S, Gao Q, Zuo T, Lei Z, Pu Q, Wang Y, Liu G, He X, Ren X, Zhu L. Identification and characterization of BoPUB3: a novel interaction protein with S-locus receptor kinase in Brassica oleracea L. Acta Biochim Biophys Sin(Shanghai), 2019, 51:723-733.
Shi S, Gao Q, Zuo T, Lei Z, Pu Q, Wang Y, Liu G, He X, Ren X, Zhu L. Identification and characterization of BoPUB3: a novel interaction protein with S-locus receptor kinase in Brassica oleracea L. Acta Biochim Biophys Sin(Shanghai), 2019, 51:723-733.
[34] Hu D, Xie Q, Liu Q, Zuo T, Zhang H, Zhang Y, Lian X, Zhu L. Genome-wide distribution, expression and function analysis of the U-Box gene family in Brassica oleracea L. Genes(Basel), 2019, 10:1000.
Hu D, Xie Q, Liu Q, Zuo T, Zhang H, Zhang Y, Lian X, Zhu L. Genome-wide distribution, expression and function analysis of the U-Box gene family in Brassica oleracea L. Genes(Basel), 2019, 10:1000.
[35] Samuel M A, Mudgil Y, Salt J N, Delmas F, Ramachandran S, Chilelli A, Goring D R. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol, 2008, 147:2084-2095.
Samuel M A, Mudgil Y, Salt J N, Delmas F, Ramachandran S, Chilelli A, Goring D R. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol, 2008, 147:2084-2095.
[36] Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15:885-898.
Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15:885-898.
[37] Shi S, Gao Q, Zeng J, Liu X, Pu Q, Liu G, Zhang H, Yang X, Zhu L. N-terminal domains of ARC1 are essential for interaction with the N-terminal region of Exo70A1 in transducing self-incompatibility of Brassica oleracea. Acta Biochim Biophys Sin(Shanghai), 2016, 48:777-787.
Shi S, Gao Q, Zeng J, Liu X, Pu Q, Liu G, Zhang H, Yang X, Zhu L. N-terminal domains of ARC1 are essential for interaction with the N-terminal region of Exo70A1 in transducing self-incompatibility of Brassica oleracea. Acta Biochim Biophys Sin(Shanghai), 2016, 48:777-787.
[38] Jiang J, Jiang J, Qiu L, Miao Y, Yao L, Cao J. Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis.Genome, 2013, 56:39-48.
Jiang J, Jiang J, Qiu L, Miao Y, Yao L, Cao J. Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis.Genome, 2013, 56:39-48.
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[3] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[4] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[5] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[6] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[7] NIU Na, LIU Zhen, HUANG Peng-Xiang, ZHU Jin-Yong, LI Zhi-Tao, MA Wen-Jing, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of potato GAUT gene family [J]. Acta Agronomica Sinica, 2021, 47(12): 2348-2361.
[8] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[9] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[10] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[11] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[12] WANG Yan-Hua, JIAN Hong-Jiu, QIU Xiao, LI Jia-Na. Regulatory mechanism of the seed coat color gene BrTT1 in Brassica rapa L. [J]. Acta Agronomica Sinica, 2020, 46(11): 1678-1689.
[13] KE Dan-Xia,PENG Kun-Peng. Screening of NFR1α-interactive proteins in soybean using yeast two hybrid system [J]. Acta Agronomica Sinica, 2020, 46(01): 31-39.
[14] WANG Yu-Kui,ZHANG He-Cui,BAI Xiao-Jing,LIAN Xiao-Ping,SHI Song-Mei,LIU Qian-Ying,ZUO Tong-Hong,ZHU Li-Quan. Characteristics and expression analysis of BoPINs family genes in Brassica oleracea [J]. Acta Agronomica Sinica, 2019, 45(8): 1270-1278.
[15] Fang YUE,Lei WANG,Yan-Gui CHEN,Xiao-Xia XIN,Qin-Fei LI,Jia-Qin MEI,Zhi-Yong XIONG,Wei QIAN. A new method of synthesizing Brassica napus by crossing B. oleracea with the allohexaploid derived from hybrid between B. napus and B. rapa [J]. Acta Agronomica Sinica, 2019, 45(2): 188-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!