Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2451-2462.doi: 10.3724/SP.J.1006.2022.13052
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Ting1,2(), WANG Ya-Peng1,2, DONG Yuan1,2, GUO Rui-Shi1, LI Dong-Mei1, TANG Ya-Ling1, ZHANG Xing-Hua1,2, XUE Ji-Quan1,2, XU Shu-Tu1,2,*()
[1] | Troyer A F. Development of Hybrid Corn and the Seed Corn Industry. Handbook of Maize. New York: Springer, 2009. pp 87-114. |
[2] |
Zhang R Y, Xu G, Li J S, Yan J B, Li H H, Yang X H. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor Appl Genet, 2018, 131: 1207-1221.
doi: 10.1007/s00122-018-3072-z |
[3] |
Sprague G F, Tatum L A. General vs specific combining ability in single crosse of corn. J Am Soc Agron, 1942, 34: 923-932.
doi: 10.2134/agronj1942.00021962003400100008x |
[4] |
Reif J C, Gumpert F M, Fischer S, Melchinger A E. Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics, 2007, 176: 1931-1934.
pmid: 17507673 |
[5] |
Chen J X, Zhou H, Xie W B, Xia D, Gao G J, Zhang Q L, Wang G W, Lian X M, Xiao J H, He Y Q. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnol J, 2019, 17: 2211-2222.
doi: 10.1111/pbi.13134 |
[6] | Geng X L, Sun G F, Qu Y J, Sarfraz Z, Jia Y H, He S P, Pan Z E, Sun J L, Iqbal M S, Wang Q L. Genome-wide dissection of hybridization for fiber quality-and yield-related traits in upland cotton. Plant J, 2020, 104: 1285. |
[7] | Zhou Z Q, Zhang C S, Lu X H, Wang L W, Hao Z F, Li M S, Zhang D G, Yong H J, Zhu H Y, Weng J F. Dissecting the genetic basis underlying combining ability of plant height related traits in maize. Front Plant Sci, 2018, 9: 1117. |
[8] | Lu X, Zhou Z Q, Yuan Z H, Zhang C S, Hao Z F, Wang Z H, Li M S, Zhang D G, Yong H J, Han J N, Li X H, Weng J F. Genetic dissection of the general combining ability of yield-related traits in maize. Front Plant Sci, 2020, 11: 788. |
[9] |
Liu X G, Hu X J, Li K, Liu Z F, Wu Y J, Feng G, Huang C L, Wang H W. Identifying quantitative trait loci for the general combining ability of yield-relevant traits in maize. Breed Sci, 2021, 71: 217-228.
doi: 10.1270/jsbbs.20008 |
[10] | 刘文童, 监立强, 郭晋杰, 赵永锋, 黄亚群, 陈景堂, 祝丽英. 玉米穗部性状及其一般配合力的关联分析. 植物遗传资源学报, 2020, 21: 706-715. |
Liu W T, Jian L Q, Guo J J, Zhao Y F, Huang Y Q, Chen J T, Zhu L Y. Association analysis of ear-related traits and their general combining ability in maize. J Plant Genet Resour, 2020, 21: 706-715. (in Chinese with English abstract) | |
[11] |
Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193: 303-316.
doi: 10.1007/s10681-013-0901-7 |
[12] |
Peng B, Li Y X, Wang Y, Liu C, Liu Z Z, Tan W W, Zhang Y, Wang D, Shi Y S, Sun B C. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet, 2011, 122: 1305-1320.
doi: 10.1007/s00122-011-1532-9 pmid: 21286680 |
[13] |
Liu M, Tan X L, Yang Y, Liu P, Zhang X X, Zhang Y C, Wang L, Hu Y, Ma L L, Li Z L. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J, 2020, 18: 207-221.
doi: 10.1111/pbi.13188 |
[14] | Lan T R, He K H, Chang L G, Cui T T, Zhao Z X, Xue J Q, Liu J C. QTL mapping and genetic analysis for maize kernel size and weight in multi-environments. Euphytica, 2018, 214: 119. |
[15] | Li T, Qu J Z, Tian X K, Lao Y H, Wei N N, Wang Y H, Hao Y C, Zhang X H, Xue J Q, Xu S T. Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping. Front Genet, 2020, 11: 747. |
[16] | 倪先林, 张涛, 蒋开锋, 杨莉, 杨乾华, 曹应江, 文春阳, 郑家奎. 杂交稻特殊配合力与杂种优势、亲本间遗传距离的相关性. 遗传, 2009, 31: 849-854. |
Ni X L, Zhang T, Jiang K F, Yang L, Yang Q H, Cao Y J, Wen C Y, Zheng J K. Correlations between specific combining ability, heterosis and genetic distance in hybrid rice. Hereditas, 2009, 31: 849-854. (in Chinese with English abstract) | |
[17] |
Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis 1. Crop Sci, 1985, 25: 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x |
[18] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
pmid: 7433111 |
[19] |
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, Depristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T. The variant call format and VCFtools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522 |
[20] |
Ayres D L, Darling A, Zwickl D J, Beerli P, Holder M T, Lewis P O, Huelsenbeck J P, Ronquist F, Swofford D L, Cummings M P. BEAGLE: an application programming interface and high- performance computing library for statistical phylogenetics. Syst Biol, 2012, 61: 170-173.
doi: 10.1093/sysbio/syr100 |
[21] |
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet, 2012, 44: 821-824.
doi: 10.1038/ng.2310 |
[22] | Huang X H, Yang S H, Gong J Y, Zhao Y, Feng Q, Gong H, Li W J, Zhan Q L, Cheng B Y, Xia J H. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun, 2015, 6: 6258. |
[23] |
Gao X Y, Starmer J, Martin E R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol, 2008, 32: 361-369.
doi: 10.1002/gepi.20310 |
[24] |
Liu H J, Wang Q, Chen M J, Ding Y H, Yang X R, Liu J, Li X H, Zhou C C, Tian Q L, Lu Y Q. Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnol J, 2020, 18: 185-194.
doi: 10.1111/pbi.13186 |
[25] |
渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构. 作物学报, 2022, 48: 304-319.
doi: 10.3724/SP.J.1006.2022.13002 |
Qu J X, Feng W H, Zhang X H, Xu S T, Xue J Q. Dissecting the genetic architecture of maize kernel size based on genome-wide association study. Acta Agron Sin, 2022, 48: 304-319. (in Chinese with English abstract) | |
[26] |
Chen J, Zeng B, Zhang M, Xie S J, Wang G K, Hauck A, Lai J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014, 166: 252-264.
doi: 10.1104/pp.114.240689 |
[27] |
Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115-2122.
doi: 10.1093/molbev/msx148 pmid: 28460117 |
[28] |
Yu G C, Wang L G, Han Y Y, He Q Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284-287.
doi: 10.1089/omi.2011.0118 |
[29] |
Chettoor A M, Yi G, Gomez E, Hueros G, Meeley R B, Becraft P W. A putative plant organelle RNA recognition protein gene is essential for maize kernel development. J Integr Plant Biol, 2015, 57: 236-246.
doi: 10.1111/jipb.12234 |
[30] | Qu Z, Li L Z, Luo J Y, Wang P, Yu S B, Mou T M, Zheng X F, Hu Z L. QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS One, 2012, 7: e28463. |
[31] |
Qi H H, Huang J, Zheng Q, Huang Y Q, Shao R X, Zhu L Y, Zhang Z X, Qiu F Z, Zhou G C, Zheng Y L. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet, 2013, 126: 369-377.
doi: 10.1007/s00122-012-1985-5 |
[32] |
王博新, 王亚辉, 陈朋飞, 冯志前, 郝引川, 张仁和, 张兴华, 薛吉全. 源于陕A群、陕B群玉米自交系在不同密度条件下配合力分析. 作物学报, 2017, 43: 1328-1336.
doi: 10.3724/SP.J.1006.2017.01328 |
Wang B X, Wang Y H, Chen P F, Feng Z Q, Hao Y C, Zhang R H, Zhang X H, Xue J Q. Combining ability of maize inbred lines from Shaan A group and Shaan B group under different density conditions. Acta Agron Sin, 2017, 43: 1328-1336. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01328 |
|
[33] |
Jiang Y, Schmidt R H, Zhao Y, Reif J C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet, 2017, 49: 1741-1746.
doi: 10.1038/ng.3974 pmid: 29038596 |
[34] |
Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193: 303-316.
doi: 10.1007/s10681-013-0901-7 |
[35] |
Raihan M S, Liu J, Huang J, Guo H, Pan Q C, Yan J B. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng 58 × SK maize population. Theor Appl Genet, 2016, 129: 1465-1477.
doi: 10.1007/s00122-016-2717-z |
[36] |
Liu Y, Wang L W, Sun C L, Zhang Z X, Zheng Y L, Qiu F Z. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet, 2014, 127: 1019-1037.
doi: 10.1007/s00122-014-2276-0 |
[37] |
Dinges J R, Colleoni C, James M G, Myers A M. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell, 2003, 15: 666-680.
pmid: 12615940 |
[38] | Zheng Y X, Yuan F, Huang Y Q, Zhao Y F, Jia X Y, Zhu L Y, Guo J J. Genome-wide association studies of grain quality traits in maize. Sci Rep, 2021, 11: 9797. |
[39] |
Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol, 2017, 175: 774-785.
doi: 10.1104/pp.17.00708 |
[40] |
Zhang K, Wang F, Liu B Y, Xu C Z, He Q X, Cheng W, Zhao X Y, Ding Z H, Zhang W, Zhang K W. ZmSKS13, a cupredoxin domain-containing protein, is required for maize kernel development via modulation of redox homeostasis. New Phytol, 2021, 229: 2163-2178.
doi: 10.1111/nph.16988 pmid: 33034042 |
[1] | DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167. |
[2] | ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376. |
[3] | GUO Yao, CHAI Qiang, YIN Wen, FAN Hong. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize [J]. Acta Agronomica Sinica, 2022, 48(8): 1871-1883. |
[4] | WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937. |
[5] | WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006. |
[6] | XIA Xiu-Zhong, ZHANG Zong-Qiong, YANG Xing-Hai, ZHUANG Jie, ZENG Yu, DENG Guo-Fu, SONG Guo-Xian, HUANG Yu-Xiao, NONG Bao-Xuang, LI Dan-Ting. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China [J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015. |
[7] | PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124. |
[8] | YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850. |
[9] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[10] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[11] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[12] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[13] | WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278. |
[14] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[15] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
|