Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2749-2764.doi: 10.3724/SP.J.1006.2022.14225

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress

WU Jia-Yi(), YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan*(), CUI Cui*()   

  1. College of Agronomy and Biotechnology, Southwestern University, Chongqing 400715, China
  • Received:2021-12-01 Accepted:2022-02-25 Online:2022-11-12 Published:2022-03-31
  • Contact: ZHOU Qing-Yuan,CUI Cui E-mail:2940116934@qq.com;qingyuan@swu.edu.cn;cuicui@swu.edu.cn
  • Supported by:
    The China Agriculture Research System of MOF and MARA(CARS-12);The Technological Innovation and the Application Development in Chongqing(cstc2019jscx-msxmX0383)

Abstract:

Due to excessive soil acidification, aluminum in soil has become one of the main factors limiting crop growth and yield. In this study, a high generation of recombinant inbred line (RIL) population constructed from Brassica napus L. varieties Zhongshuang 11 (ZS11) and 10D130 treated with 2400 µmol L-1 aluminum solution was used as experimental materials. To explore the photosynthetic capacity and chlorophyll fluorescence related traits of rapeseed seedling stage under aluminum toxicity stress, we calculated their relative values (treatment/control) and mapped their QTLs, and screened suitable candidate genes according to the confidence interval of QTLs. The results showed that there was significantly correlation between photosynthetic capacity and chlorophyll fluorescence parameters, but there was no significant correlation between photosynthetic capacity and the chlorophyll fluorescence parameters. Relative Pn, relative Gs, relative Ci, relative ΦPSII, relative Fv/Fo, relative Fv′/Fm′, relative qP, relative ETR, relative NPQ, and relative dry weight were investigated and QTLs mapping were analyzed. A total of 16 QTLs related to aluminum stress and photosynthesis were detected. The locus was located on chromosomes A03, A05, A06, A08, A09, A10, C02, and C09, respectively. LOD value was 2.05-3.18, and the phenotypic variation explained was 8.1%-12.3%. The confidence intervals of QTLs for relative Gs and relative Fv'/Fm', relative ΦPSII and relative ETR were found completely overlap at 106.038-109.129 cM of chromosome A03, 145.355-167.417 cM of chromosome A06, respectively. 47 candidate genes that may be related to aluminum stress and photosynthesis were screened, involving organic acid secretion, metal ion transport, hormone regulation, initiation of antioxidant protection, chloroplast self-regulation, and phosphorus uptake regulation. This study lays the foundation for the function research of aluminum resistance and related photosynthetic genes and the breeding of aluminum tolerant and high photosynthetic efficiency rapeseed.

Key words: aluminum stress, photosynthetic traits, QTLs, candidate genes screening, Brassica napus L.

Fig. 1

Effects of aluminium stress on net photosynthetic rate in rapeseed CK: control; 800, 1600, 2400, 3200, and 4000 indicate that the aluminum concentration is 800, 1600, 2400, 3200, and 4000 μmol L-1, respectively. Different lowercase letters above the bars in the same variety mean significant difference among treatments at the 0.05 probability level. ZS11: Zhongshuang 11."

Table 1

Phenotype variation of 11 traits in parents and recombinant inbred lines"

性状
Trait
亲本 Parents RIL群体 RIL population 遗传率
Heritability (%)
ZS11 10D130 均值
Mean
范围
Range
极差
Range value
标准差
SD
变异系数
CV (%)
RPn 1.048 0.751 0.617** 0.285-1.589 1.304 0.249 40.357 95.4
RGs 1.040 0.985 0.472** 0.184-1.521 1.337 0.213 45.127 93.2
RCi 0.957 0.945 0.957** 0.827-1.106 0.279 0.054 5.643 81.8
RTr 1.860 0.989 0.537** 0.215-2.324 2.109 0.275 51.210 84.0
RΦPS 0.997 0.920 0.910** 0.531-1.322 0.791 0.114 12.527 90.7
Rfv 0.857 1.062 0.937** 0.681-1.114 0.433 0.069 7.364 82.4
Rfv° 1.006 0.971 0.943** 0.793-1.114 0.321 0.051 5.408 80.0
RqP 0.994 0.952 0.969** 0.706-1.293 0.587 0.081 8.359 87.0
RETR 0.997 0.920 0.909** 0.682-1.168 0.486 0.078 8.581 81.8
RNPQ 1.012 0.952 1.733** 0.952-3.512 2.560 0.498 28.736 89.2
RDW 0.869 1.439 0.551** 0.828-1.720 1.525 0.270 49.002 97.3

Fig. 2

Frequency distribution of phenotypic traits in recombinant inbred lines under aluminum stress Abbreviations are the same as those given in Table 1."

Table 2

Correlation analysis of 11 traits in recombinant inbred lines"

测定指标Trait RPn RGs RCi RTr RΦPS Rfv Rfv' RqP RETR RNPQ
RGs 0.274**
RCi 0.036 0.118
RTr 0.272** 0.584** 0.272**
RΦPS -0.078 0.021 -0.034 0.031
Rfv -0.047 0.130 0.081 0.204* 0.188*
Rfv° -0.034 -0.061 -0.188* 0.001 0.427** 0.060
RqP -0.032 0.056 0.071 0.003 0.404** 0.201* 0.085
RETR -0.007 0.000 0.001 0.061 0.698** 0.268** 0.540** 0.484**
RNPQ -0.003 0.100 0.161 -0.030 -0.304** 0.012 -0.516** -0.095 -0.388**
RDW 0.197* 0.038 -0.077 0.087 0.075 -0.030 -0.093 0.125 0.052 0.011

Table 3

QTLs for 10 traits from recombinant inbred lines"

性状
Trait
QTL 标记区间
Marker interval
LOD 表观贡献率
PVE (%)
加性效应
Additive effect
置信区间
Confidence interval (cM)
RPn qRPn-A10 AX-177828527-AX182175987 3.18 12.3 -0.0904037 9.474-39.386
RGs qRgs-A03-1 AX-95635223-AX-177830413 2.20 8.7 -0.0655227 96.668-100.169
qRgs-A03-2 AX-177913067-AX-95507652 2.11 8.3 -0.0643332 106.038-109.129
RCi qRCi-C02 AX-86224097-AX-179307085 2.05 8.1 -0.0157819 0.468-3.458
RΦPS qRΦPS-A06 AX-95503227-AX-177632560 2.84 11.0 0.0472636 145.355-167.417
Rfv qRfv-C09 AX-95506407-AX-177910786 2.37 9.3 -0.0296313 38.45-86.514
Rfv° qRfv'-A03 AX-95638185-AX-182141998 2.41 9.4 -0.0158728 103.15-118.351
qRfv'-A09-1 AX-177835940-AX177912292 2.36 9.2 -0.0166685 87.81-96.271
qRfv'-A09-2 AX-95506944-AX-182127697 2.19 8.6 0.0154628 15.138-15.609
RqP qRqP-A03 AX-95509347-AX-177828121 2.62 10.2 -0.0252692 198.519-228.654
RETR qRETR-A06 AX-95503227-AX-177632560 2.96 11.4 0.0314658 145.355-167.417
qRETR-A08 AX-95505568-AX-179307653 2.19 8.6 0.0234311 31.074-45.768
RNPQ qRNPQ-A09-1 AX-182127697-AX-177632723 2.65 10.3 -0.1639910 15.138-36.592
qRNPQ-A09-2 AX-177912943-AX-182155511 2.55 9.9 -0.1615910 0-9.664
RDW qRDW-A03 AX-95502575-AX-182145123 2.37 9.3 -0.0737873 54.689-75.861
qRDW-A05 AX-95665384-AX-95666447 2.78 10.8 -0.0638520 59.152-61.883

Table 4

Candidate genes related to Aluminium stress and photosynthesis"

性状
Trait
物理区间
Physical
interval
甘蓝型油菜
基因编号
Gene ID in
B. napus
拟南芥
基因登录号
Gene
accession
基因注释
Gene annotation
RPn 1006640-1008278 BnaA10g01990D AT1G03550 分泌载体膜家族蛋白
Secretory carrier membrane protein (SCAMP) family protein
1017170-1017425 BnaA10g02020D AT1G03600 PSB27
1159799-1160267 BnaA10g02210D AT1G03850 谷氧还家族蛋白
Glutaredoxin family protein
1416448-1417208 BnaA10g02700D AT1G04560 AWPM-19家族蛋白
AWPM-19-like family protein
1420412-1425818 BnaA10g02720D AT1G04580 醛氧化酶 4
Aldehyde oxidase 4 (AO4)
270316-271150 BnaA10g00540D AT1G01360 脱落酸受体调节成分1
Regulatory component of ABA receptor 1 (RCAR1)
2297229-2298311 BnaA10g04360D AT1G06680 光系统II亚基 P-1
Photosystem II subunit P-1
2428863-2433922 BnaA10g04550D AT1G07110 果糖-2,6-二磷酸酯酶
Fructose-2,6-bisphosphatase (F2KP)
4967798-4968762 BnaA10g06520D AT5G53160 脱落酸受体调节成分3
Regulatory components of ABA receptor 3 (RCAR3)
5777349-5778320 BnaA10g07350D AT5G54270 捕光色素叶绿素a/b结合蛋白 3
Light-harvesting chlorophyll a/b-binding protein 3 (LHCB3)
RGs 11450896-11455054 BnaA03g23880D AT4G09020 异淀粉酶3
Isoamylase 3 (ISA3)
11592964-11594227 BnaA03g24110D AT4G09670 氧化还原酶家族蛋白
Oxidoreductase family protein
11703183-11704457 BnaA03g24350D AT4G10340 捕光色素叶绿素a/b结合蛋白5
Light harvesting chloroplyll a/b-binding protein 5 (LHCB5)
性状
Trait
物理区间
Physical
interval
甘蓝型油菜
基因编号
Gene ID in
B. napus
拟南芥
基因登录号
Gene
accession
基因注释
Gene annotation
12051498-12054303 BnaA03g24930D AT4G12020 WRKY19
RCi 1050779-1052616 BnaC02g02350D AT5G05340 过氧化物酶超家族蛋白
Peroxidase superfamily protein
1312700-1315286 BnaC02g02870D AT5G03860 苹果酸合酶
Malate synthase (MLS)
1338228-1339653 BnaC02g02940D AT2G18960 H(+)-ATP酶
H(+)-ATPase 1 (HA1)
RΦPS 23332213-23333764 BnaA06g35540D AT5G47180 植物 VAMP (囊泡相关膜蛋白)家族蛋白
Plant VAMP (vesicle-associated membrane protein) family protein
23354413-23359357 BnaA06g35590D AT5G47110 叶绿素a/b结合家族蛋白
Chlorophyll a/b binding family protein
24314147-24316076 BnaA06g37230D AT4G38970 果糖二磷酸醛缩酶2
Fructose-bisphosphate aldolase 2 (FBA2)
24206087-24209026 BnaA06g37120D AT5G42480 叶绿体的积累和复制6
Accumulation and replication of chloroplasts 6 (ARC6)
Rfv 44394910-44396026 BnaC09g43010D AT3G58810 金属耐受蛋白A2
Metal tolerance protein A2 (MTPA2)
44536233-44537627 BnaC09g43140D AT5G14040 磷酸盐转运蛋白3
Phosphate transporter 3
46193139-46193697 BnaC09g46220D AT3G21490 重金属转运/解毒超家族蛋白
Heavy metal transport/detoxification superfamily protein
48190280-48191717 BnaC09g50250D AT5G05000 叶绿体外膜蛋白转运机器的构件蛋白34
Translocon at the outer envelope membrane of chloroplasts 34 (TOC34)
Rfv° 13146862-13148728 BnaA03g26740D AT4G00910 铝活化的苹果酸盐转运家族蛋白
Aluminium activated malate transporter family protein
4120082-4121722 BnaA09g08390D AT3G32980 过氧化物酶超家族蛋白
Peroxidase superfamily protein
4519220-4519695 BnaA09g09080D AT2G34430 捕光叶绿素蛋白复合物II亚基
Light-harvesting chlorophyll-protein complex II subunit B1 (LHB1B1)
RqP 23778823-23781902 BnaA03g46370D AT4G23980 生长素应答因子9
Auxin response factor 9 (ARF9)
27082166-27084124 BnaA03g52000D AT4G32320 抗坏血酸过氧化物酶6
Ascorbate peroxidase 6 (APX6)
27439846-27442123 BnaA03g52600D AT5G51470 生长素应答GH3家族蛋白
Auxin-responsive GH3 family protein
27829209-27831558 BnaA03g53180D AT4G35090 过氧化氢酶2
Catalase 2 (CAT2)
RETR 23332213-23333764 BnaA06g35540D AT5G47180 植物 VAMP (囊泡相关膜蛋白)家族蛋白
Plant VAMP (vesicle-associated membrane protein) family protein
23354413-23359357 BnaA06g35590D AT5G47110 叶绿素a/b结合家族蛋白
Chlorophyll a/b binding family protein
24206087-24209026 BnaA06g37120D AT5G42480 叶绿体的积累和复制 6
Accumulation and replication of chloroplasts 6 (ARC6)
24314147-24316076 BnaA06g37230D AT4G38970 果糖二磷酸醛缩酶2
Fructose-bisphosphate aldolase 2 (FBA2)
性状
Trait
物理区间
Physical
interval
甘蓝型油菜
基因编号
Gene ID in
B. napus
拟南芥
基因登录号
Gene
accession
基因注释
Gene annotation
11764739-11766413 BnaA08g13620D AT4G28610 磷饥饿响应1
Phosphate starvation response 1 (PHR1)
RNPQ 525671-526016 BnaA09g00850D AT2G02930 谷胱甘肽S-转移酶 F3
Glutathione S-transferase F3 (GSTF3)
530729-531954 BnaA09g00880D AT4G02530 叶绿体类囊体腔蛋白
Chloroplast thylakoid lumen protein
607437-608064 BnaA09g01080D AT4G02770 光系统I亚基D-1
Photosystem I subunit D-1 (PSAD-1)
392076-395981 BnaA09g00710D AT4G02280 蔗糖合酶3
Sucrose synthase 3 (SUS3)
775432-776934 BnaA09g01470D AT4G03280 光合电子转移C
Photosynthetic electron transfer C (PETC)
RDW 7333238-7334039 BnaA03g15830D AT2G34430 捕光叶绿素蛋白复合物II亚基
Light-harvesting chlorophyll-protein complex II subunit B1 (LHB1B1)
5050885-5053547 BnaA03g11260D AT5G55700 β-淀粉酶4
Beta-amylase 4 (BAM4)
5090429-5091422 BnaA03g11320D AT5G55560 蛋白激酶超家族蛋白
Protein kinase superfamily protein
6332750-6334339 BnaA03g13820D AT2G30250 WRKY DNA结合蛋白25
WRKY DNA-binding protein 25 (WRKY25)
7108373-7109471 BnaA03g15320D AT2G03610 F-box家族蛋白
F-box family protein

Fig. 3

Putative QTLs of 10 traits in the genetic linkage map Abbreviations are the same as those given in Table 1."

[1] Brunner I, Sperisen C. Aluminum exclusion and Aluminum tolerance in woody plants. Front Plant Sci, 2013, 4: 1-12.
[2] Kopittke P M, Moore K L, Lombi E, Gianoncelli A, Ferguson B J, Blamey F P C, Menzies N W, Nicholson T M, McKenna B A, Wang P, Gresshoff P M, Kourousias G, Webb R I, Green K, Tollenaere A. Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol, 2015, 167: 1402-1411.
doi: 10.1104/pp.114.253229 pmid: 25670815
[3] Jones D L, Ryan P R. Aluminum Toxicity: Encyclopedia of Applied Plant Sciences, 2nd edn. Wellesbourne: Elsevier Ltd, 2017. pp 211-218.
[4] Pontigo S, Godoy K, Jimenez H, Gutierrez-Moraga A, Mora M D, Cartes P. Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Front Plant Sci, 2017, 8: 642.
doi: 10.3389/fpls.2017.00642 pmid: 28487719
[5] Teng W C, Kang Y C, Hou W J, Hu H Z, Luo W J, Wei J, Wang L H, Zhang B Y. Phosphorus application reduces aluminum toxicity in two Eucalyptus clones by increasing its accumulation in roots and decreasing its content in leaves. PLoS One, 2018, 13: e0190900.
doi: 10.1371/journal.pone.0190900
[6] Dai C Y, Qiu L S, Guo L P, Jing S S, Chen X Y, Cui X M, Yang Y. Salicylic acid alleviates aluminum-induced inhibition of biomass by enhancing photosynthesis and carbohydrate metabolism in Panax notoginseng. Plant Soil, 2019, 445: 183-198.
doi: 10.1007/s11104-019-04293-6
[7] Zhao X Q, Chen Q H, Wang Y M, Shen Z G, Shen W B, Xu X M. Hydrogen-rich water induces aluminum tolerance in maize seedlings by enhancing antioxidant capacities and nutrient homeostasis. Ecotox Environ Safe, 2017, 144: 369-379.
doi: 10.1016/j.ecoenv.2017.06.045
[8] Hasni I, Yaakoubi H, Hamdani S, Tajmir-Riahi H A, Carpentier R. Mechanism of interaction of Al3+ with the proteins composition of photosystem II. PLoS One, 2015, 10: e0120876.
doi: 10.1371/journal.pone.0120876
[9] Guo P, Qi Y P, Cai Y T, Yang T Y, Yang L T, Huang Z R, Chen L S. Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance. Tree Physiol, 2018, 38: 1548-1565.
doi: 10.1093/treephys/tpy035
[10] Wojcik-Jagla M, Rapacz M, Tyrka M, Koscielniak J, Crissy K, Zmuda K. Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theor Appl Genet, 2013, 126: 3021-3034.
doi: 10.1007/s00122-013-2190-x
[11] Liu X H, Fan Y, Mak M, Babla M, Holford P, Wang F F. QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genomics, 2017, 18: 9.
doi: 10.1186/s12864-016-3380-0
[12] Foroozanfar M, Exbrayat S, Gentzbittel L, Bertoni G, Maury P, Naghavie M R, Peyghambari A, Badri M, Ben C, Debelle F, Sarrafi A. Genetic variability and identification of quantitative trait loci affecting plant growth and chlorophyll fluorescence parameters in the model legume Medicago truncatula under control and salt stress conditions. Funct Plant Biol, 2014, 41: 983-1001.
doi: 10.1071/FP13370 pmid: 32481051
[13] Yang D L, Jing R L, Chang X P, Li W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat. J Integr Plant Biol, 2007, 49: 646-654.
doi: 10.1111/j.1744-7909.2007.00443.x
[14] Gu J F, Yin X Y, Struik P C, Stomph T J, Wang H Q. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot, 2012, 63: 455-469.
doi: 10.1093/jxb/err292
[15] Fracheboud Y, Jompuk C, Ribaut, J M, Stamp P, Leipner J. Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol, 2004, 56: 241-253.
pmid: 15604741
[16] 王瑞莉, 王刘艳, 叶桑, 郜欢欢, 雷维, 吴家怡, 袁芳, 孟丽姣, 唐章林, 李加纳, 周清元, 崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL 定位. 作物学报, 2020, 46: 832-843.
doi: 10.3724/SP.J.1006.2020.94154
Wang R L, Wang L Y, Ye S, Gao H H, Lei W, Wu J Y, Yuan F, Meng L J, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress. Acta Agron Sin, 2020, 46: 832-843 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94154
[17] 王刘艳, 王瑞莉, 叶桑, 郜欢欢, 雷维, 陈柳依, 吴家怡, 孟丽姣, 袁芳, 唐章林, 李加纳, 周清元, 崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选. 中国农业科学, 2020, 53: 1510-1523.
Wang L Y, Wang R L, Ye S, Gao H H, Lei W, Chen L Y, Wu J Y, Meng L J, Yuan F, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping and candidate genes screening of related traits in Brassica napus L. during the germination under tribenuron-methyl stress. Sci Agric Sin, 2020, 53: 1510-1523 (in Chinese with English abstract)
[18] Xu G D, Wu Y H, Liu D, Wang Y P, Zhang Y, Liu P. Effects of organic acids on uptake of nutritional elements and Al forms in Brassica napus L. under Al stress as analyzed by 27Al-NMR. Braz J Bot, 2016, 39: 1-8.
doi: 10.1007/s40415-015-0198-y
[19] Wang H, Jin M K, Xu L L, Xi H, Wang B H, Du S T, Liu H J, Wen Y Z. Effects of ketoprofen on rice seedlings: insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis. Environ Pollut, 2020, 263: 114533.
doi: 10.1016/j.envpol.2020.114533
[20] 王传堂, 唐月异, 焦坤, 王菲菲, 苏江顺, 于树涛, 高华援, 付春, 白冬梅, 张青云. 春花生耐播种出苗期低温评价. 山东农业科学, 2021, 53(2): 20-23.
Wang C T, Tang Y Y, Jiao K, Wang F F, Su J S, Yu S T, Gao H Y, Fu C, Bai D M, Zhang Q Y. Evaluation on low temperature tolerance of spring peanut genotypes during sowing to emergence periods. Shandong Agric Sci, 2021, 53(2): 20-23 (in Chinese with English abstract)
[21] 刘列钊, 李加纳. 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014, 47: 24-32.
Liu L Z, Li J N. QTL Mapping of oleic acid, linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map. Sci Agric Sin, 2014, 47: 24-32 (in Chinese with English abstract)
[22] 叶桑, 崔翠, 郜欢欢, 雷维, 王刘艳, 王瑞莉, 陈柳依, 曲存民, 唐章林, 李加纳, 周清元. 基于SNP遗传图谱对甘蓝型油菜部分脂肪酸组成性状的QTL定位. 中国农业科学, 2019, 52: 3733-3747.
Ye S, Cui C, Gao H H, Lei W, Wang L Y, Wang R L, Chen L Y, Qu C M, Tang Z L, Li J N, Zhou Q Y. QTL identification for fatty acid content in Brassica napus using the high density SNP genetic map. Sci Agric Sin, 2019, 52: 3733-3747. (in Chinese with English abstract)
[23] McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89-99.
pmid: 9291963
[24] Tsai Y C, Chen K C, Cheng T S, Lee C, Lin S H, Tung C W. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biol, 2019, 19: 403.
doi: 10.1186/s12870-019-1983-8
[25] Bruex A, Kainkaryam R M, Wieckowski Y, Kang Y H, Bernhardt C, Xia Y, Zheng X H, Wang J Y, Lee M M, Benfey P, Woolf P J, Schiefelbein J. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet, 2012, 8: e1002446.
doi: 10.1371/journal.pgen.1002446
[26] Hanada K, Sawada Y, Kuromori T, Klausnitzer R, Saito K, Toyoda T, Shinozaki K, Li W H, Hirai M Y. Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Mol Biol Evol, 2011, 28: 377-382.
doi: 10.1093/molbev/msq204
[27] Yao L Y, Cheng X, Gu Z Y, Huang W, Li S, Wang L B, Wang Y F, Xu P, Ma H, Ge X C. The AWPM-19 family protein OsPM1 mediates abscisic acid influx and drought response in rice. Plant Cell, 2018, 30: 1258-1276.
doi: 10.1105/tpc.17.00770
[28] Srivastava S, Brychkova G, Yarmolinsky D, Soltabayeva A, Samani T, Sagi M. Aldehyde oxidase 4 plays a critical role in delaying silique senescence by catalyzing aldehyde detoxification. Plant Physiol, 2017, 173: 1977-1997.
doi: 10.1104/pp.16.01939 pmid: 28188272
[29] Li D K, Zhang L, Li X Y, Kong X G, Wang X Y, Li Y, Liu Z B, Wang J M, Li X F, Yang Y. AtRAE1 is involved in degradation of ABA receptor RCAR1 and negatively regulates ABA signalling in Arabidopsis. Plant Cell Environ, 2009, 41: 231-244.
doi: 10.1111/pce.13086
[30] Lim C W, Luan S, Lee S C. A prominent role for RCAR3- mediated ABA signaling in response to Pseudomonas syringae pv.tomato DC3000 infection in Arabidopsis. Plant Cell Physiol, 2014, 55: 1691-1703.
doi: 10.1093/pcp/pcu100
[31] Villadsen D, Rung J H, Draborg H, Nielsen T H. Structure and heterologous expression of a gene encoding fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochim Biophys Acta Gene Struct Express, 2000, 1492: 406-413.
doi: 10.1016/S0167-4781(00)00134-2
[32] Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schneider A, Jahns P, Salamini F, Leister D. Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant J, 2004, 37: 839-852.
pmid: 14996217
[33] Cheng X X, Liu J Y, Zhang H, Li F D, Zhang S Y, Xu M, Ruan K, Wang Y H, Fu A G. Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85. Photosynth Res, 2018, 136: 139-146.
doi: 10.1007/s11120-017-0450-3
[34] Pietrzykowska M, Suorsa M, Semchonok D A, Tikkanen M, Boekema E J, Aro E M, Jansson S. The light-harvesting chlorophyll a/b binding proteins lhcb1 and lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell, 2014, 26: 3646-3660.
doi: 10.1105/tpc.114.127373
[35] Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol, 2008, 148: 1201-1211.
doi: 10.1104/pp.108.126375 pmid: 18775970
[36] Makki R M. Molecular networking of regulated transcription factors under salt stress in wild barley (H. spontaneum). Biosci Biotechnol Res Asia, 2020, 17: 543-557.
doi: 10.13005/bbra/2858
[37] Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R. Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein lhcb5. J Phys Chem B, 2013, 117: 11337-11348.
doi: 10.1021/jp402977y
[38] Nagler M, Nukarinen E, Weckwerth W, Nagele T. Integrative molecular profiling indicates a central role of transitory starch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of Arabidopsis thaliana. BMC Plant Biol, 2015, 15: 284.
doi: 10.1186/s12870-015-0668-1
[39] Lazzarotto F, Turchetto-Zolet A C, Margis-Pinheiro M. Revisiting the non-animal peroxidase superfamily. Trends Plant Sci, 2015, 20: 807-813.
doi: S1360-1385(15)00206-X pmid: 26463217
[40] Ando E, Kinoshita T. Fluence rate dependence of red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells. Plant Signal Behav, 2019, 14: e1561107.
[41] Cornah J E, Germain V, Ward J L, Beale M H, Smith S M. Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase. J Biol Chem, 2004, 279: 42916-42923.
doi: 10.1074/jbc.M407380200
[42] Chen X X, Ding Y L, Yang Y Q, Song C P, Wang B S, Yang S H, Guo Y, Gong Z Z. Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol, 2021, 63: 53-78.
doi: 10.1111/jipb.13061
[43] Doll J, Muth M, Riester L, Nebel S, Bresson J, Lee H C, Zentgraf U. Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox- dependent manner. Front Plant Sci, 2020, 10: 1734.
doi: 10.3389/fpls.2019.01734
[44] Kipreos E T, Pagano M. The F-box protein family. Genome Biol, 2002, 1: 3002.1.
[45] Ytterberg A J, Peltier J B, van Wijk K J. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol, 2006, 140: 984-997.
pmid: 16461379
[46] Francisco P, Li J, Smith S M. The gene encoding the catalytically inactive beta-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs. J Plant Physiol, 2010, 167: 890-895.
doi: 10.1016/j.jplph.2010.01.006
[47] Ascencio-Ibanez J T, Sozzani R, Lee T J, Chu T M, Wolfinger R D, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol, 2008, 148: 436-454.
doi: 10.1104/pp.108.121038 pmid: 18650403
[48] Lu W, Tang X L, Wu C A. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 2012, 503: 65-74.
doi: 10.1016/j.gene.2012.04.042
[49] Hey D, Rothbart M, Herbst J, Wang P, Muller J, Wittmann D, Gruhl K, Grimm B. LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol, 2017, 174: 1037-1050.
doi: 10.1104/pp.17.00505
[50] Zhang M, Chen C, Froehlich J E, TerBush A D, Osteryoung K W. Roles of Arabidopsis PARC6 in coordination of the chloroplast division complex and negative regulation of FtsZ assembly. Plant Physiol, 2016, 170: 250-262.
doi: 10.1104/pp.15.01460 pmid: 26527658
[51] Barragan-Rosillo A C, Peralta-Alvarez C A, Ojeda-Rivera J O, Arzate-Mejia R G, Recillas-Targa F, Herrera-Estrella L. Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis. Proc Natl Acad Sci USA, 2021, 118: e2107558118.
[52] Ma B Q, Yuan Y Y, Gao M, Qi T H, Li M J, Ma F W. Genome-wide identification, molecular evolution, and expression divergence of aluminum-activated malate transporters in apples. Int J Mol Sci, 2018, 19: 2807.
doi: 10.3390/ijms19092807
[53] Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J, 2003, 33: 633-650.
pmid: 12609038
[54] Rademacher E H, Lokerse A S, Schlereth A, Llavata-Peris C, Bayer M, Kientz M, Rios A F, Borst J W, Lukowitz W, Jurgens G, Weijers D. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell, 2012, 22: 211-222.
doi: 10.1016/j.devcel.2011.10.026 pmid: 22264733
[55] Chen C M, Twito S, Miller G. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds. Plant Signal Behav, 2014, 9: 12.
[56] Takase T, Nakazawa M, Ishikawa A, Manabe K, Matsui M. DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol, 2003, 44: 1071-1080.
doi: 10.1093/pcp/pcg130
[57] Kan C C, Zhang Y, Wang H L, Shen Y B, Xia X L, Guo H W, Li Z H. Transcription factor NAC075 delays leaf senescence by deterring reactive oxygen species accumulation in Arabidopsis. Front Plant Sci, 2021, 12: 691607.
doi: 10.3389/fpls.2021.691607
[58] Jia F J, Wan X M, Zhu W, Sun D, Zheng C C, Liu P, Huang J G. Overexpression of mitochondrial phosphate transporter 3 severely hampers plant development through regulating mitochondrial function in Arabidopsis. PLoS One, 2015, 10: e0129717.
[59] Arrivault S, Senger T, Kramer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J, 2006, 46: 861-879.
doi: 10.1111/j.1365-313X.2006.02746.x
[60] Li J M, Zhang M H, Sun J, Mao X, Wang J G, Liu H L, Zheng H L, Li X W, Zhao H W, Zou D T. Heavy metal stress-associated proteins in rice and Arabidopsis: genome-wide identification, phylogenetics, duplication, and expression profiles analysis. Front Genet, 2020, 11: 477.
doi: 10.3389/fgene.2020.00477
[61] Hirohashi T, Nakai M. Molecular cloning and characterization of maize Toc34, a regulatory component of the protein import machinery of chloroplast. Biochim Biophys Acta, 2000, 1491: 309-314.
pmid: 10760596
[62] Lee S H, Li C W, Koh K W, Chuang H Y, Chen Y R, Lin C S, Chan M T. MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress. J Exp Bot, 2014, 65: 5049-5062.
doi: 10.1093/jxb/eru270
[63] Liu J, Last R L. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments. Proc Natl Acad Sci USA, 2017, 114: E8110-E8117.
[64] Kress E, Jahns P. The dynamics of energy dissipation and xanthophyll conversion in Arabidopsis indicate an indirect photoprotective role of zeaxanthin in slowly inducible and relaxing components of non-photochemical quenching of excitation energy. Front Plant Sci, 2017, 8: 2094.
doi: 10.3389/fpls.2017.02094
[65] Angeles-Nunez J G, Tiessen A. Regulation of AtSUS2 and AtSUS3 by glucose and the transcription factor LEC2 in different tissues and at different stages of Arabidopsis seed development. Plant Mol Biol, 2012, 78: 377-392.
doi: 10.1007/s11103-011-9871-0 pmid: 22228409
[66] 王方琳, 柴成武, 赵鹏, 唐卫东, 付贵全, 孙涛, 胥宝一. 3种荒漠植物光合及叶绿素荧光对干旱胁迫的响应及抗旱性评价. 西北植物学报, 2021, 41: 1755-1765.
Wang F L, Chai C W, Zhao P, Tang W D, Fu G Q, Sun T, Xu B Y. Photosynthetic and chlorophyll fluorescence responses of three desert species to drought stress and evaluation of drought resistance. Acta Bot Boreali-Occident Sin, 2021, 41: 1755-1765 (in Chinese with English abstract)
[67] 杨丹青, 何晓丽, 李佳, 厉书豪, 杜志杰, 张昆, 钟凤林. 外源镍与氮素互作对番茄幼苗生长及光合特性的影响. 江苏农业学报, 2021, 37: 936-943.
Yang D Q, He X L, Li J, Li S H, Du Z J, Zhang K, Zhong F L. Effects of interaction between exogenous nickel and nitrogen on growth and photosynthetic characteristics of tomato seedlings. Jiangsu Agric Sci, 2021, 37: 936-943 (in Chinese with English abstract)
[68] Li J H, Cang Z M, Jiao F, Bai X J, Zhang D, Zha R C. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J Saud Soc Agric Sci, 2017, 16: 82-88.
[69] 兰进好, 李新海, 高树仁, 张宝石, 张世煌. 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005, 31: 1253-1259.
Lan J H, Li X H, Gao S R, Zhang B S, Zhang S H. QTL analysis of yield components in maize under different environments. Acta Agron Sin, 2005, 31: 1253-1259 (in Chinese with English abstract)
[70] 万何平. 甘蓝型油菜苗期耐盐相关性状的全基因组关联分析. 华中农业大学博士学位论文, 湖北武汉, 2017.
Wan H P. Genome-Wide Association Study of Salt Tolerance-related Traits at the Seedling Stage in Rapeseed (Brassica napus L.). PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract)
[71] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析. 作物学报, 2021, 47: 462-471.
doi: 10.3724/SP.J.1006.2021.04034
Meng J Y, Liang G W, He Y J, Qian W. QTL mapping of salt and drought tolerance related traits in Brassica napus L. Acta Agron Sin, 2021, 47: 462-471. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04034
[72] Doll J, Muth M, Riester L, Nebel S, Bresson J, Lee H C, Zentgraf U. Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox- dependent manner. Front Plant Sci, 2020, 10: 1734.
doi: 10.3389/fpls.2019.01734
[73] 贺亚军, 吴道明, 游婧璨, 钱伟. 油菜耐盐相关性状的全基因组关联分析及其候选基因预测. 中国农业科学, 2017, 50: 1189-1201.
He Y J, Wu D M, You J C, Qian W. Genome-wide association analysis of salt tolerance related traits in Brassica napus. Sci Agric Sin, 2017, 50: 1189-1201. (in Chinese with English abstract)
[74] Rahaman M, Mamidi S Rahman M. Genome-wide association study of heat stress tolerance traits in spring-type Brassica napus L. under controlled conditions. Crop J, 2018, 6: 115-125.
doi: 10.1016/j.cj.2017.08.003
[75] Awasthi J P, Saha B, Panigrahi J, Yanase E, Koyama H, Panda S K. Redox balance, metabolic fingerprint and physiological characterization in contrasting northeast Indian rice for aluminum stress tolerance. Sci Rep, 2019, 9: 8681.
doi: 10.1038/s41598-019-45158-3
[76] 赵雄伟. 铅胁迫下玉米不同组织铅含量的QTL定位与候选基因挖掘. 四川农业大学硕士学位论文, 四川成都, 2014.
Zhao X W. QTL Mapping and Candidate Genes Identification for Pb2+ Content in Different Maize Organs under Lead Stress. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2014. (in Chinese with English abstract)
[77] Wang J, Wang D Y, Zhu M, Li F H. Exogenous salicylic acid ameliorates waterlogging stress damages and improves photosynthetic efficiency and antioxidative defense system in waxy corn. Photosynthetica, 2021, 59: 84-94.
doi: 10.32615/ps.2021.005
[78] Khu D M, Reyno R, Han Y H, Zhao P X, Bouton J H, Brummer E C, Monteros M J. Identification of aluminum tolerance quantitative trait loci in tetraploid alfalfa. Crop Sci, 2013, 53: 148-163.
doi: 10.2135/cropsci2012.03.0181
[79] Buapeta P, Low W J Q, Todd P A. Differing photosynthetic responses to excess irradiance in the two coexisting seagrasses, Halophila ovalis and Halophila decipiens: chloroplast avoidance movement, chlorophyll fluorescence, and leaf optical properties. Aquat Bot, 2020, 166: 103268.
doi: 10.1016/j.aquabot.2020.103268
[80] Jiang D X, Hou J J, Gao W W, Tong X, Li M, Chu X, Chen G X. Exogenous spermidine alleviates the adverse effects of aluminum toxicity on photosystem II through improved antioxidant system and endogenous polyamine contents. Ecotox Environ Safe, 2021, 207: 111265.
doi: 10.1016/j.ecoenv.2020.111265
[81] Zhang F, Zhu K, Wang Y Q, Zhang Z P, Lu F, Yu H Q, Zou J Q. Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosyntheica, 2019, 57: 1156-1164.
[82] 肖飞. 棉花花铃期叶片PSII和PSI光抑制及对低温的响应. 石河子大学硕士学位论文, 新疆石河子, 2017.
Xiao F. The PSII and PSI Photoinhibition in the Response of Cotton at Boll Stage to Low Temperature. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2017. (in Chinese with English abstract)
[83] 宋奇娉, 封鹏雯, 刘洋, 杨兴洪. PSII组装与修复循环机制研究进展. 植物生理学报, 2019, 55: 133-140.
Song Q P, Feng P W, Liu Y, Yang X H. The research progress of the mechanism on PSII assemble and repair circulation. Plant Physiol J, 2019, 55: 133-140 (in Chinese with English abstract).
[84] Chen H, Zhang D, Guo J, Wu H, Jin M F, Lu Q T, Lu C M, Zhang L X. A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem I. Plant Mol Biol, 2006, 61: 567-575.
pmid: 16897475
[1] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[2] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[3] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[4] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[5] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[6] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[7] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[8] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[9] YANG Ming, LI Dan-Ting, FAN De-Jia, TAN Song-Juan, CHENG Xia-Nian, LIU Yu-Qiang, WAN Jian-Min. Mapping of QTLs for resistance to white-backed planthopper in Guangxi wild rice Y11 [J]. Acta Agronomica Sinica, 2022, 48(11): 2715-2723.
[10] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[11] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[12] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[13] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[14] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[15] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[2] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[3] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[4] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[5] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[6] Qui Chongli. STUDIES ON THE INCOMPATIBILITY OF HYBRIDIZATION BETWEEN TRITICUM AESTIVUM L.AND HEXAPLOID TRITICALE Ⅰ.THE DEVELOPMENT OF HYBRID EMBRYO[J]. Acta Agron Sin, 1986, (01): 49 -56 .
[7] CHEN Ji-Bao;JING Rui-Lian;MAO Xin-Guo;CHANG Xiao-Ping;WANG Shu-Min. A Response of PvP5CS2 Gene to Abiotic Stresses in Common Bean[J]. Acta Agron Sin, 2008, 34(07): 1121 -1127 .
[8] ZHANG Wen-Jing;HU Hong-Biao;CHEN Bing-Lin;WANG You-Hua;ZHOU Zhi-Guo. Difference of Physiological Characteristics of Cotton Bolls in Development of Fiber Thickening and Its Relationship with Fiber Strength[J]. Acta Agron Sin, 2008, 34(05): 859 -869 .
[9] WANG Cai-Bin;WU Zheng-Feng;CHENG Bo;ZHENG Ya-Ping;WAN Shu-Bo;GUO Feng;Chen Dian-Xu. Effect of Continuous Cropping on Photosynthesis and Metabolism of Reactive Oxygen in Peanut[J]. Acta Agron Sin, 2007, 33(08): 1304 -1309 .
[10] HE Liang;LI Fu-Hua;SHA Li-Na;FU Feng-Ling;LI Wan-Chen. Activity of Serine/Threonine Protein Phosphatase Type-2C (PP2C) and Its Relationships to Drought Tolerance in Maize[J]. Acta Agron Sin, 2008, 34(05): 899 -903 .