Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2813-2825.doi: 10.3724/SP.J.1006.2022.12069
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SONG Bo-Wen1(), WANG Chao-Huan1, ZHAO Zhe1, CHEN Chun1, HUANG Ming1, CHEN Wei-Xiong2, LIANG Ke-Qin1,*(), XIAO Wu-Ming1,*()
[1] |
Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209 |
[2] |
McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815-829.
doi: 10.1007/BF00273666 pmid: 24232389 |
[3] |
Shabir G, Aslam K, Khan A R, Shahid M, Manzoor H, Noreen S, Khan M A, Baber M, Sabar M, Shah S M, Arif M. Rice molecular markers and genetic mapping: current status and prospects. J Integr Agric, 2017, 16: 1879-1891.
doi: 10.1016/S2095-3119(16)61591-5 |
[4] |
Kaur S, Panesar P S, Bera M B, Kaur V. Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review. Crit Rev Food Sci, 2015, 55: 41-49.
doi: 10.1080/10408398.2011.646363 |
[5] |
Kumar V, Singh A, Mithra S V A, Krishnamurthy S L, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S K, Khurana J P, Singh N K, Mohapatra T. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res, 2015, 22: 133-145.
doi: 10.1093/dnares/dsu046 |
[6] | 孙佳丽, 彭锐, 彭既明. 水稻数量性状(QTL)定位主要作图群体及统计方法概述. 湖南农业科学, 2016, (7): 120-123. |
Sun J L, Peng R, Peng J M. Over view of rice quantitative traits (QTL) mapping main construction population and statistical methods. Hunan Agric Sci, 2016, (7): 120-123. (in Chinese with English abstract) | |
[7] |
Scott M F, Ladejobi O, Amer S, Bentley A R, Biernaskie J, Boden S A, Clark M, Dell’Acqua M, Dixon L E, Filippi C V, Fradgley N, Gardner K A, Mackay I J, O’Sullivan D, Percival-Alwyn L, Roorkiwal M, Singh R K, Thudi M, Varshney R K, Venturini L, Whan A, Cockram J, Mott R. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity, 2020, 125: 396-416.
doi: 10.1038/s41437-020-0336-6 |
[8] |
Yang M, Lu K, Zhao F, Xie W, Ramakrishna P, Wang G, Du Q, Liang L, Sun C, Zhao H, Zhang Z, Liu Z, Tian J, Huang X, Wang W, Dong H, Hu J, Ming L, Xing Y, Wang G, Xiao J, Salt D E, Lian X. Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell, 2018, 30: 2720-2740.
doi: 10.1105/tpc.18.00375 |
[9] |
Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci, 2013, 18: 218-226.
doi: 10.1016/j.tplants.2012.11.001 |
[10] | Peng H, Wang K, Chen Z, Cao Y H, Gao Q, Li Y, Li X X, Lu H W, Du H L, Lu M, Yang X, Liang C Z. MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res, 2020, 48: D1085-D1092. |
[11] |
Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352 |
[12] |
Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X O, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
doi: 10.1038/ng.3346 |
[13] |
Qi Z Y, Xiong L Z. Characterization of a Purine Permease Family Gene OsPUP7 Involved in Growth and Development Control in Rice. J Integr Plant Biol, 2013, 55: 1119-1135.
doi: 10.1111/jipb.12101 |
[14] |
Jeon Y, Lee H, Kim S, Shim K, Kang J, Kim H, Tai T H, Ahn S. Natural variation in rice ascorbate peroxidase gene APX9 is associated with a yield-enhancing QTL cluster. J Exp Bot, 2021, 72: 4254-4268.
doi: 10.1093/jxb/erab155 |
[15] |
Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015, 2: 15195.
doi: 10.1038/nplants.2015.195 |
[16] |
Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203 |
[17] |
Fan C H, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1 |
[18] |
Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017, 3: 17043.
doi: 10.1038/nplants.2017.43 |
[19] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[20] | 王朝欢, 宋博文, 余思佳, 肖武名, 黄明. 基于全基因组测序构建水稻RIL群体遗传图谱. 华南农业大学学报, 2021, 42(2): 44-50. |
Wang C H, Song B W, Yu S J, Xiao W M, Huang M. Construction of a genetic map of rice RILs based on whole genome sequencing. J South China Agric Univ, 2021, 42(2): 44-50. (in Chinese with English abstract) | |
[21] |
Huang X H, Feng Q, Qian Q, Zhao Q, Wang L, Wang A H, Guan J P, Fan D L, Weng Q J, Huang T, Dong G J, Sang T, Han B. High-throughput genotyping by whole-genome resequencing. Genome Res, 2009, 19: 1068-1076.
doi: 10.1101/gr.089516.108 |
[22] |
Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811 |
[23] |
McCouch S R, Rice G C. Gene nomenclature system for rice. Rice, 2008, 1: 72-84.
doi: 10.1007/s12284-008-9004-9 |
[24] |
Hina A M, Cao Y C, Song S Y, Li S G, Sharmin R A, Elattar M A, Bhat J A, Zhao T J. High-resolution mapping in two RIL populations refines major “QTL hotspot” regions for seed size and shape in soybean (Glycine max L.). Int J Mol Sci, 2020, 21: 1040-1073.
doi: 10.3390/ijms21031040 |
[25] |
李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918 |
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918 |
|
[26] |
Zhao Q A, Huang X H, Lin Z X, Han B. SEG-Map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice, 2010, 3: 98-102.
doi: 10.1007/s12284-010-9051-x |
[27] |
苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100-1107.
doi: 10.3724/SP.J.1006.2010.01100 |
Su C F, Zhao T J, Gai Y J. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100-1107. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01100 |
|
[28] | 李珊珊. QTL与环境互作的完备区间作图方法研究. 中国农业科学院硕士学位论文, 北京, 2015. |
Li S S. Inclusive Composite Interval Mapping of Quantitative Trait Loci by Environment Interactions. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. (in Chinese with English abstract) | |
[29] |
Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622.
doi: 10.1007/s00122-007-0695-x |
[1] | XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220. |
[2] | HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264. |
[3] | ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299. |
[4] | WU La-Mei, YANG Hao-Na, WANG Li-Feng, LI Zu-Ren, DENG Xi-Le, BAI Lian-Yang. Application of weeding bast fiber film in rice seedling field and its effect on rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2315-2324. |
[5] | CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338. |
[6] | WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389. |
[7] | SANG Guo-Qing, TANG Zhi-Guang, MAO Ke-Biao, DENG Gang, WANG Jing-Wen, LI Jia. High-resolution paddy rice mapping using Sentinel data based on GEE platform: a case study of Hunan province, China [J]. Acta Agronomica Sinica, 2022, 48(9): 2409-2420. |
[8] | ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027. |
[9] | LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040. |
[10] | WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133. |
[11] | ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065. |
[12] | CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582. |
[13] | HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842. |
[14] | TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745. |
[15] | YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821. |
|