Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2797-2812.doi: 10.3724/SP.J.1006.2022.14199
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MA Wen-Jing1(), LIU Zhen1, LI Zhi-Tao1, ZHU Jin-Yong1, LI Hong-Yang1, CHEN Li-Min1, SHI Tian-Bin1, ZHANG Jun-Lian2, LIU Yu-Hui1,*()
[1] |
Saori Y, Takafumi Y, Norihito N, Hanayo N, Takeshi M. Light-responsive double B-Box containing transcription factors are conserved in physcomitrella patens. Biosci Biotechnol Biochem, 2011, 75: 2037-2041.
doi: 10.1271/bbb.110359 |
[2] |
Huang J Y, Zhao X B, Weng X Y, Wang L. The rice B-Box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLoS One, 2012, 7: e48242.
doi: 10.1371/journal.pone.0048242 |
[3] |
Khanna R, Kronmiller B, Maszle D R, Coupland G, Wu S H. The Arabidopsis B-Box zinc finger family. Plant Cell, 2009, 21: 3416-3420.
doi: 10.1105/tpc.109.069088 |
[4] |
Sreeramaiah N G, Javier B. The BBX family of plant transcription factors. Trends Plant Sci, 2014, 19: 460-470.
doi: 10.1016/j.tplants.2014.01.010 pmid: 24582145 |
[5] |
Takeshi K, Shogo I, Norihito N, Yusuke N, Masaya M, Takafumi Y, Takeshi M. The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2014, 72: 1539-1549.
doi: 10.1271/bbb.80041 |
[6] |
Agnieszka K M, Czarnecka J, Banachowicz E, Pascal R, Tadeusz R. Solanum tuberosum ZPR1 encodes a light regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. Plant Cell Environ, 2017, 40: 424-440.
doi: 10.1111/pce.12875 |
[7] |
Nagaoka S, Tetsuo T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003, 54: 2231-2238.
doi: 10.1093/jxb/erg241 |
[8] |
Putterill J, Pobson F, Lee K, Simion R, Couplabd G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857.
pmid: 7697715 |
[9] |
Xu D Q, Jiang Y, Li J, Holm M, Deng X W. The B-box domain protein BBX21 promotes photomorphogenesis. Plant Physiol, 2018, 176: 2365-2375.
doi: 10.1104/pp.17.01305 |
[10] |
Sreeramaiah N G, Magnus H, Javier F B. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signal Behav, 2013, 8: e25208-1.
doi: 10.4161/psb.25208 |
[11] |
Min J H, Chung J S, Lee K H, Kim C S. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. J Integr Plant Biol, 2015, 57: 313-324.
doi: 10.1111/jipb.12246 |
[12] |
Weng X Y, Wang L, Wang J, Hu Y, Du H, Xu C G, Xing Y Z, Li X H, Xiao J H, Zhang Q F. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol, 2014, 164: 735-747.
doi: 10.1104/pp.113.231308 |
[13] |
An J P, Wang X F, Espley R V, Kui L W, Bi S Q, You C X, Hao Y J. An apple b-box protein mdbbx37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant Cell Physiol, 2020, 61: 130-143.
doi: 10.1093/pcp/pcz185 |
[14] |
Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240: 1051-1062.
doi: 10.1007/s00425-014-2129-8 |
[15] |
Agnieszka K M, Czarnecka J, Banachowicz E, Rey P, Rorat T. Solanum tuberosum ZPR1 encodes a light-regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. Plant Cell Environ, 2017, 40: 424-440.
doi: 10.1111/pce.12875 |
[16] | Altschul S F, Madden T L, Schäffer A A, Zhang J H, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Narnia, 1997, 25: 3389-3402. |
[17] |
Hall B G. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol, 2013, 30: 1229-1235.
doi: 10.1093/molbev/mst012 |
[18] | Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W F, William S N. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208. |
[19] | 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026. |
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026. (in Chinese with English abstract) | |
[20] | Wang L Q, Guo K, Li Y, Tu Y Y, Hu H Z, Wang B R, Cui X C, Peng L C. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 12637-12642. |
[21] |
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genome Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911 |
[22] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[23] | Damian S, Morris J H, Helen C, Michael K, Stefan W, Milan S, Alberto S, Nadezhda T D, Alexander R, Peer B, Lars J J, Christian V M. The STRING database in 2017: quality- controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017, 45: D362-D368. |
[24] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowshi B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[25] |
Shuuichi N, Tetsuo T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003, 54: 2231-2237.
pmid: 12909688 |
[26] |
Ledger S, Strayer C, Ashton F, Kay S A, Putterill J. Analysis of the function of two circadian regulated CONSTANS LIKE genes. Plant J, 2001, 26: 15-22.
pmid: 11359606 |
[27] |
牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析. 作物学报, 2021, 47: 2348-2361.
doi: 10.3724/SP.J.1006.2021.04268 |
Niu N, Liu Z, Huang P X, Zhu J Y, Li Z T, Ma W J, Zhang J L, Bai J P, Liu Y H. Genome-wide identification and expression analysis of potato GAUT gene family. Acta Agron Sin, 2021, 47: 2348-2361. (in Chinese with English abstract) | |
[28] | Liu Z, Li Y M, Zhu J Y, Ma W J, Li Z T, Bi Z Z, Sun Z, Bai J P, Zhang J L, Liu Y H. Genome-wide identification and analysis of the nf-y gene family in potato (Solanum tuberosum L.). Front Genet, 2021, 12: e739989. |
[29] |
Li Y M, Wang K L, Liu Z, Allan A C, Qin S H, Zhang J L, Liu Y H. Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol, 2020, 148: 817-832.
doi: 10.1016/j.ijbiomac.2020.01.167 |
[30] |
Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. Two B-Box proteins regulate photomorphogenesis by oppositely modulating hy5 through their diverse c-terminal domains. Plant Physiol, 2018, 176: 2963-2976.
doi: 10.1104/pp.17.00856 |
[31] |
Xu D, Li J, Gangappa S N, Hettiar A C, Holm M. Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet, 2014, 10: e1004197.
doi: 10.1371/journal.pgen.1004197 |
[32] |
Xu D Q, Jiang Y, Li J G, Lin F, Holm M, Dang X W. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc Natl Acad Sci USA, 2016, 113: 7655-7660.
doi: 10.1073/pnas.1607687113 |
[33] |
Fan X Y, Sun Y, Cao D M, Bai M Y, Luo X M, Yang H J, Wei C, Zhu S W, Sun Y, Chong K, Wang Z Y. BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways. Mol Plant, 2012, 5: 591-600.
doi: 10.1093/mp/sss041 |
[34] |
Wei C Q, Chen C W, Ai L F, Zhao J, Zhang Z Z, Lie K H, Burlingame A L, Sun Y, Wang Z Y. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesi. J Genet Genomics, 2016, 43: 555-563.
doi: 10.1016/j.jgg.2016.05.007 |
[35] |
Lin F, Jiang Y, Li J, Yan T, Fan L, Liang J, Chen Z J, Xu D, Deng X W. B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. Plant Cell, 2018, 30: 2006-2019.
doi: 10.1105/tpc.18.00226 |
[36] |
Li Y, Yu Y J, Liu M M, Song Y, Li H M, Sun J Q, Wang Q, Xie Q G, Wang L, Xu X D. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. Plant Cell, 2021, 33: 2602-2617.
doi: 10.1093/plcell/koab133 |
[37] |
Hai L P, Jeong H L, Soo J K, Cheong G W, Inhwan H. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J, 2010, 27: 305-314.
doi: 10.1046/j.1365-313x.2001.01099.x |
[38] | Xiao J, Hu R, Gu T, Han J P, Qiu D, Su P P, Feng J L, Chang J L, Yang G X, He G Y. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BioMed Central, 2019, 20: 287. |
[39] | Wang H G, Zhang Z L, Li H Y, Zhao X Y, Liu X M, Ortiz M, Lin C T, Liu B. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis. Narnia, 2013, 64: 1017-1024. |
[40] |
Wang Q M, Tu X J, Zhang J H, Chen X B, Rao L Q. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Mol Biol Rep, 2013, 40: 2679-2688.
doi: 10.1007/s11033-012-2354-9 |
[41] |
Xu Y J, Zhao X, Aiwaili P, Mu X Y, Zhao M, Zhao J A, Cheng L N, Ma C, Gao J P, Hong B. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. Plant J, 2020, 103: 1783-1795.
doi: 10.1111/tpj.14863 |
[42] | 刘兰兰. 水稻OsBBX基因响应热胁迫的初步研究. 湖南农业大学硕士学位论文, 湖南长沙, 2015. |
Liu L L. Preliminary Study on OsBBX Genes under Heat Stress in Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015 (in Chinese with English abstract). | |
[43] |
Muhammad I, Yang Y J, Liu R X, Xu Y J, Muhammad A K, Wei Q, Gao J P, Hong B. Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis. Plant Mol Biol, 2015, 89: 1-19.
doi: 10.1007/s11103-015-0347-5 pmid: 26253592 |
[44] | 饶力群, 刘兰兰, 汪启明, 帅进, 彭澎, 李梦云, 唐世伟. 热诱导表达的水稻OsBBX30基因克隆和表达分析. 湖南大学学报(自然科学版), 2015, 42(6): 101-106. |
Rao L Q, Liu L L, Wang Q M, Shuai J, Peng P, Li M Y, Tang S W. Cloning and expression analysis of rice OsBBX30 gene expressed by heat induction. J Hunan Agric Univ (Nat Sci Edn), 2015, 42(6): 101-106. | |
[45] |
Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240: 1051-1062.
doi: 10.1007/s00425-014-2129-8 |
[46] | Fang H C, Dong Y H, Yue X X, Hu J F, Jiang S H, Xu H F, Wang Y C, Su M Y, Zhang J, Zhang Z Y, Wang N, Chen X S. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environ, 2019: 2090-2104. |
[47] | Gangappa S N, Holm M, Botto J F. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signal Behav, 2013, 8: 1559-2324. |
[48] | 王立光, 李静雯, 叶春雷, 陈军, 罗俊杰. 光调控因子HY5及HYH在蔗糖诱导花青素积累中作用. 甘肃农业科技, 2019, (1): 21-25. |
Wang L G, Li J W, Ye C L, Chen J, Luo J J. The role of light-regulating factors HY5 and HYH in sucrose-induced anthocyanin accumulation. Gansu Agricl Sci Technol, 2019, (1): 21-25. (in Chinese with English abstract) | |
[49] |
Liu Y H, Lin W K, Espley R V, Wang L, Yang H Y, Yu B, Dare A, Varkonyi G E, Wang J, Zhang J L, Wang D, Allan A C. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. J Exp Bot, 2016, 67: 2159-2176.
doi: 10.1093/jxb/erw014 |
[50] |
Sainz M B, Chandler G V L. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell, 1997, 9: 611-625.
pmid: 9144964 |
[51] |
Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell, 2013, 25: 1243-1257.
doi: 10.1105/tpc.113.109751 |
[52] |
Liu W, Tang R, Zhang Y, Liu X J, Gao Y Y, Dai Z W, Li S H, Wu B H, Wang L J. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). Planta, 2021, 253: 114.
doi: 10.1007/s00425-021-03618-z |
[53] | Zhang H N, Li W C, Shi S Y, Shu B, Liu L Q, Wei Y Z, Xie J H. Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi. Front Plant Sci, 2016, 7: 963. |
[54] |
Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav, 2015, 10: e970440.
doi: 10.4161/15592316.2014.970440 |
[55] |
Shkryl Y, Yugay Y L, Avramenko T, Grigorchuk V, Gorpenchenko T, Grischenko O, Bulgakov V. CRISPR/Cas9-mediated knockout of HOS1 reveals its role in the regulation of secondary metabolism in Arabidopsis thaliana. Plants, 2021, 10: 104.
doi: 10.3390/plants10010104 |
[56] |
Wnag J F, Li G B, Li C X, Zhang C L, Cui A, Wang X, Zheng F Y, Zhang D D, Larkin R M, Ye Z B, Zhang J H. NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. New Phytol, 2020, 229: 3237-3252.
doi: 10.1111/nph.17112 |
[1] | HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284. |
[2] | YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241. |
[3] | XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087. |
[4] | WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937. |
[5] | JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668. |
[6] | LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682. |
[7] | CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696. |
[8] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[9] | WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278. |
[10] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[11] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[12] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[13] | ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929. |
[14] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[15] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
|