Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2797-2812.doi: 10.3724/SP.J.1006.2022.14199

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.)

MA Wen-Jing1(), LIU Zhen1, LI Zhi-Tao1, ZHU Jin-Yong1, LI Hong-Yang1, CHEN Li-Min1, SHI Tian-Bin1, ZHANG Jun-Lian2, LIU Yu-Hui1,*()   

  1. 1College of Agronomy, Gansu Agricultural University / State Key Laboratory of Aridland Crop Science / Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2021-10-26 Accepted:2022-02-25 Online:2022-11-12 Published:2022-03-24
  • Contact: LIU Yu-Hui E-mail:810774875@qq.com;lyhui@gsau.edu.cn
  • Supported by:
    The Program for Innovation Ability Improvement of the Higher Education Institutions of Gansu Province(2020A-056);The National Natural Science Foundation of China(31860398);The Fuxi Talent Project of Gansu Agricultural University(Gaufx-02Y04);The China Agriculture Research System of MOF and MARA(马铃薯);The China Agriculture Research System of MOF and MARA(CARS-09-P14);The Scientific Research Startup Funds for Openly-recruited Doctors Agricultural University(GAU-KYQD-2020-11)

Abstract:

The B-box (BBX) gene family is a type of zinc finger protein transcription factor that plays an important role in the growth and development of plants. In this study, 30 potato BBXs family members (StBBXs) were identified, and their physical and chemical properties, chromosomal location, gene structure, protein conserved domains, gene repetition events, expression patterns, and protein interaction network were analyzed. The results showed that 30 StBBXs were unevenly distributed on 11 chromosomes. According to their gene structures and phylogenetic characteristics, 30 StBBXs were divided into 5 subclasses. Collinearity analysis indicated that there were 15 pairs BBX genes which were orthologous to potato (Solanum tuberosum) and Arabidopsis. We analyzed the relative expression profiles of StBBX genes in different tissues of double haploid (DM) potato, as well as under abiotic stresses and hormone treatments by RNA-seq downloaded from the PGSC (Potato Genome Sequencing Consortium) database. In addition, to explore the relative expression patterns of the StBBX genes in these tissues, we performed RNA-seq on the tuber skin and flesh of three potato varieties with different colors and analyzed their correlations with the expression of key genes for anthocyanin synthesis. Furthermore, the protein interaction network of StBBXs which differentially expressed in color tuber tissues was constructed using String database. These results provide a theoretical basis for further understanding the StBBX gene family, further function of StBBX genes in abiotic stress tolerance and anthocyanin biosynthesis in potato, and StBBX genes in potato might be related to abiotic stress responses and anthocyanin biosynthesis.

Key words: potato, BBX genes family, abiotic stress, anthocyanin biosynthesis, expression analysis

Fig. 1

Tubers of three potato varieties with different colors"

Table 1

Primers for qPCR study"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
StEF-1α ATTGGAAACGGATATGCTCCA TCCTTACCTGAACGCCTGTCA
PG0011378 ATCATCAGCAGCAGCAGCAAGAG TCACGGTCACAGGTAAAACAGAGC
PG0029365 CGTCGGCATGAGCGGTTTCC TCATCATCAGCAGCATCAGCATCG
PG0027475 CGGTGGAATCGGTCGTGAAGTC CGTGGTCGTGGTCATGGTTGTG
PG0027017 GCAAGGACTGTGACGAAGCAATTC GCTCAAGGCTACACGGATTCCAG
PG0026311 GACTCCGCCTCCGCCAGATC GACTCCGCTTCCGCTTCTTCTTC
PG0026181 TGGAGGAGAGTGAGAGCGTGAATG GCGGTGGAGGCGTCGTATTTG
PG0025024 GGTGCGTTCGGTGAGTTCTTCC CCTTACTCGCTTCCACGGAGATG
PG0013753 GTCATCAACTCCGCCTCCACAG CATTCGTCACGCATTCGTTCAAAG

Fig. 2

Evolutionary tree of BBXs gene family in Arabidopsis and potato The red circles represents StBBXs, and the blue triangles represent AtBBXs."

Table 2

Physicochemical properties and subcellular localization of StBBX genes family"

基因名称
Gene name
氨基酸长度 Amino acid
length
相对分子量
Molecular weight
(kD)
等电点
Point isoelectric (pI)
亚细胞定位
Subcellular localization
染色体定位 Chromosome
localization
亚组分类
Class of
subgroup
PG0003625 551 44,860.59 5.26 细胞核Nuclear Chr02 BBX IV
PG0022345 575 46,990.87 5.27 细胞核Nuclear Chr02 BBX V
PG1010056 1220 100,730.6 5.05 细胞核Nuclear Chr02 BBX I
PG0007061 899 74,980.43 5.12 细胞核Nuclear Chr07 BBX IV
PG0017411 1238 102,001 5.08 细胞核Nuclear Chr07 BBX II
PG0026169 395 32,108.31 5.34 细胞核Nuclear Chr07 BBX V
PG0026181 776 61,856.12 5.18 细胞核Nuclear Chr07 BBX V
PG0027475 1160 96,517.16 5.04 细胞核Nuclear Chr07 BBX I
PG0003109 641 52,158.76 5.22 细胞核Nuclear Chr01 BBX IV
PG0030958 761 64,412.27 5.20 细胞核Nuclear Chr01 BBX IV
PG0001263 1271 104,574.6 5.09 细胞核Nuclear Chr05 BBX II
PG0005325 1244 102,491.8 5.07 细胞核Nuclear Chr05 BBX II
PG0014566 1346 108,627.7 5.10 细胞核Nuclear Chr05 BBX III
PG0025414 1364 112,088.5 5.05 细胞核Nuclear Chr05 BBX II
PG0013178 341 27,626.76 5.50 细胞核Nuclear Chr12 BBX II
PG0013753 623 49,919.71 5.25 细胞核Nuclear Chr12 BBX V
PG0019025 902 75,119.83 5.12 细胞核Nuclear Chr12 BBX IV
PG0028818 1229 100,908.6 5.09 细胞核Nuclear Chr12 BBX II
PG0029365 1076 88,519.16 5.07 细胞核Nuclear Chr12 BBX I
PG0029426 995 83,207.43 5.13 细胞核Nuclear Chr12 BBX IV
PG0011378 1142 94,480.42 5.11 细胞核Nuclear Chr12 BBX II
PG0005633 1208 97,557.49 5.11 细胞核Nuclear Chr03 BBX III
PG0026515 782 65,781.32 5.15 细胞核Nuclear Chr06 BBX V
PG0027017 704 58,425.39 5.17 细胞核Nuclear Chr06 BBX IV
PG0026311 1046 85,660.46 5.06 细胞核Nuclear Chr08 BBX I
PG0025024 701 57,480.47 5.21 细胞核Nuclear Chr10 BBX V
PG0003711 899 75,536.97 5.15 细胞核Nuclear Chr04 BBX IV
PG0005997 1472 122,076 5.03 细胞核Nuclear Chr04 BBX V
PG0007749 1694 137,183.7 5.08 细胞核Nuclear Chr04 BBX III
PG2010056 1244 102,374.8 5.05 细胞核Nuclear Chr02 BBX I

Fig. 3

Evolutionary relationship, gene structure, and conserved motif analysis of StBBX genes family A: StBBXs evolutionary tree. B: exon/intron structure of StBBXs. The blue boxes represent exons, and the black lines of the same length represent introns. The upstream/downstream area is indicated by a red box. The numbers 0, 1, and 2 indicate the splicing stage of introns. C: the distribution of conserved motifs in StBBX.s 10 different colored boxes represent 10 different motifs."

Fig. 4

BBX genes family repeat events The red line indicates that there is homology between StBBX genes and AtBBX genes, and the chromosome number is displayed at the bottom of each chromosome."

Fig. 5

Relative expression levels of StBBXs in different tissues The relative expression level of 30 StBBXs is taken as the logarithm with base 2 for standardization and the color patches of different colors indicate the relative expression levels of genes in different tissues."

Fig. 6

Relative expression levels of StBBXs under different abiotic stresses and different hormone treatments The logarithm with the base of 2 is taken for the expression of 30 StBBXs for standardized treatment. Color blocks of different colors represent the expression levels of genes under abiotic stress and hormone treatment."

Fig. 7

Relative expression levels of StBBXs in different potato skins and flesh The relative expression levels of 30 StBBXs are taken as the logarithm with base 2 for standardization, the color patches of different colors indicate the relative expression levels of genes in different color potato skins and flesh."

Fig. 8

Correlation analysis of the anthocyanin content of StBBXs in different parts of colored potatoes * and ** mean significant correlation at the 0.05 and 0.01 probability levels, respectively."

Fig. 9

Relative expression analysis of eight StBBX genes in white and color potato skin and potato flesh Relative expression analysis of eight StBBXs genes in white and colored potato skins and flesh. XDS, LTS, and HMS represent the potato skins of “Xindaping”, “Hongmei”, and “Heimeiren”, respectively. XDF, LTF, and HMF represent the potato fleshes of “Xindaping”, “Hongmei”, and “Heimeiren”, respectively."

Fig. 10

StBBX proteins interaction network Red circles indicate StBBXs candidate genes, yellow circles indicate genes related to anthocyanin synthesis. Blue lines indicate composite scores ≥ 400, purple lines indicate composite scores ≥ 700, and red lines indicate composite scores ≥ 900."

[1] Saori Y, Takafumi Y, Norihito N, Hanayo N, Takeshi M. Light-responsive double B-Box containing transcription factors are conserved in physcomitrella patens. Biosci Biotechnol Biochem, 2011, 75: 2037-2041.
doi: 10.1271/bbb.110359
[2] Huang J Y, Zhao X B, Weng X Y, Wang L. The rice B-Box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLoS One, 2012, 7: e48242.
doi: 10.1371/journal.pone.0048242
[3] Khanna R, Kronmiller B, Maszle D R, Coupland G, Wu S H. The Arabidopsis B-Box zinc finger family. Plant Cell, 2009, 21: 3416-3420.
doi: 10.1105/tpc.109.069088
[4] Sreeramaiah N G, Javier B. The BBX family of plant transcription factors. Trends Plant Sci, 2014, 19: 460-470.
doi: 10.1016/j.tplants.2014.01.010 pmid: 24582145
[5] Takeshi K, Shogo I, Norihito N, Yusuke N, Masaya M, Takafumi Y, Takeshi M. The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2014, 72: 1539-1549.
doi: 10.1271/bbb.80041
[6] Agnieszka K M, Czarnecka J, Banachowicz E, Pascal R, Tadeusz R. Solanum tuberosum ZPR1 encodes a light regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. Plant Cell Environ, 2017, 40: 424-440.
doi: 10.1111/pce.12875
[7] Nagaoka S, Tetsuo T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003, 54: 2231-2238.
doi: 10.1093/jxb/erg241
[8] Putterill J, Pobson F, Lee K, Simion R, Couplabd G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857.
pmid: 7697715
[9] Xu D Q, Jiang Y, Li J, Holm M, Deng X W. The B-box domain protein BBX21 promotes photomorphogenesis. Plant Physiol, 2018, 176: 2365-2375.
doi: 10.1104/pp.17.01305
[10] Sreeramaiah N G, Magnus H, Javier F B. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signal Behav, 2013, 8: e25208-1.
doi: 10.4161/psb.25208
[11] Min J H, Chung J S, Lee K H, Kim C S. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. J Integr Plant Biol, 2015, 57: 313-324.
doi: 10.1111/jipb.12246
[12] Weng X Y, Wang L, Wang J, Hu Y, Du H, Xu C G, Xing Y Z, Li X H, Xiao J H, Zhang Q F. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol, 2014, 164: 735-747.
doi: 10.1104/pp.113.231308
[13] An J P, Wang X F, Espley R V, Kui L W, Bi S Q, You C X, Hao Y J. An apple b-box protein mdbbx37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant Cell Physiol, 2020, 61: 130-143.
doi: 10.1093/pcp/pcz185
[14] Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240: 1051-1062.
doi: 10.1007/s00425-014-2129-8
[15] Agnieszka K M, Czarnecka J, Banachowicz E, Rey P, Rorat T. Solanum tuberosum ZPR1 encodes a light-regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. Plant Cell Environ, 2017, 40: 424-440.
doi: 10.1111/pce.12875
[16] Altschul S F, Madden T L, Schäffer A A, Zhang J H, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Narnia, 1997, 25: 3389-3402.
[17] Hall B G. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol, 2013, 30: 1229-1235.
doi: 10.1093/molbev/mst012
[18] Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W F, William S N. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
[19] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026. (in Chinese with English abstract)
[20] Wang L Q, Guo K, Li Y, Tu Y Y, Hu H Z, Wang B R, Cui X C, Peng L C. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 12637-12642.
[21] Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genome Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911
[22] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[23] Damian S, Morris J H, Helen C, Michael K, Stefan W, Milan S, Alberto S, Nadezhda T D, Alexander R, Peer B, Lars J J, Christian V M. The STRING database in 2017: quality- controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017, 45: D362-D368.
[24] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowshi B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658
[25] Shuuichi N, Tetsuo T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003, 54: 2231-2237.
pmid: 12909688
[26] Ledger S, Strayer C, Ashton F, Kay S A, Putterill J. Analysis of the function of two circadian regulated CONSTANS LIKE genes. Plant J, 2001, 26: 15-22.
pmid: 11359606
[27] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析. 作物学报, 2021, 47: 2348-2361.
doi: 10.3724/SP.J.1006.2021.04268
Niu N, Liu Z, Huang P X, Zhu J Y, Li Z T, Ma W J, Zhang J L, Bai J P, Liu Y H. Genome-wide identification and expression analysis of potato GAUT gene family. Acta Agron Sin, 2021, 47: 2348-2361. (in Chinese with English abstract)
[28] Liu Z, Li Y M, Zhu J Y, Ma W J, Li Z T, Bi Z Z, Sun Z, Bai J P, Zhang J L, Liu Y H. Genome-wide identification and analysis of the nf-y gene family in potato (Solanum tuberosum L.). Front Genet, 2021, 12: e739989.
[29] Li Y M, Wang K L, Liu Z, Allan A C, Qin S H, Zhang J L, Liu Y H. Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol, 2020, 148: 817-832.
doi: 10.1016/j.ijbiomac.2020.01.167
[30] Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. Two B-Box proteins regulate photomorphogenesis by oppositely modulating hy5 through their diverse c-terminal domains. Plant Physiol, 2018, 176: 2963-2976.
doi: 10.1104/pp.17.00856
[31] Xu D, Li J, Gangappa S N, Hettiar A C, Holm M. Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet, 2014, 10: e1004197.
doi: 10.1371/journal.pgen.1004197
[32] Xu D Q, Jiang Y, Li J G, Lin F, Holm M, Dang X W. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc Natl Acad Sci USA, 2016, 113: 7655-7660.
doi: 10.1073/pnas.1607687113
[33] Fan X Y, Sun Y, Cao D M, Bai M Y, Luo X M, Yang H J, Wei C, Zhu S W, Sun Y, Chong K, Wang Z Y. BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways. Mol Plant, 2012, 5: 591-600.
doi: 10.1093/mp/sss041
[34] Wei C Q, Chen C W, Ai L F, Zhao J, Zhang Z Z, Lie K H, Burlingame A L, Sun Y, Wang Z Y. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesi. J Genet Genomics, 2016, 43: 555-563.
doi: 10.1016/j.jgg.2016.05.007
[35] Lin F, Jiang Y, Li J, Yan T, Fan L, Liang J, Chen Z J, Xu D, Deng X W. B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. Plant Cell, 2018, 30: 2006-2019.
doi: 10.1105/tpc.18.00226
[36] Li Y, Yu Y J, Liu M M, Song Y, Li H M, Sun J Q, Wang Q, Xie Q G, Wang L, Xu X D. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. Plant Cell, 2021, 33: 2602-2617.
doi: 10.1093/plcell/koab133
[37] Hai L P, Jeong H L, Soo J K, Cheong G W, Inhwan H. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J, 2010, 27: 305-314.
doi: 10.1046/j.1365-313x.2001.01099.x
[38] Xiao J, Hu R, Gu T, Han J P, Qiu D, Su P P, Feng J L, Chang J L, Yang G X, He G Y. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BioMed Central, 2019, 20: 287.
[39] Wang H G, Zhang Z L, Li H Y, Zhao X Y, Liu X M, Ortiz M, Lin C T, Liu B. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis. Narnia, 2013, 64: 1017-1024.
[40] Wang Q M, Tu X J, Zhang J H, Chen X B, Rao L Q. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Mol Biol Rep, 2013, 40: 2679-2688.
doi: 10.1007/s11033-012-2354-9
[41] Xu Y J, Zhao X, Aiwaili P, Mu X Y, Zhao M, Zhao J A, Cheng L N, Ma C, Gao J P, Hong B. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. Plant J, 2020, 103: 1783-1795.
doi: 10.1111/tpj.14863
[42] 刘兰兰. 水稻OsBBX基因响应热胁迫的初步研究. 湖南农业大学硕士学位论文, 湖南长沙, 2015.
Liu L L. Preliminary Study on OsBBX Genes under Heat Stress in Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015 (in Chinese with English abstract).
[43] Muhammad I, Yang Y J, Liu R X, Xu Y J, Muhammad A K, Wei Q, Gao J P, Hong B. Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis. Plant Mol Biol, 2015, 89: 1-19.
doi: 10.1007/s11103-015-0347-5 pmid: 26253592
[44] 饶力群, 刘兰兰, 汪启明, 帅进, 彭澎, 李梦云, 唐世伟. 热诱导表达的水稻OsBBX30基因克隆和表达分析. 湖南大学学报(自然科学版), 2015, 42(6): 101-106.
Rao L Q, Liu L L, Wang Q M, Shuai J, Peng P, Li M Y, Tang S W. Cloning and expression analysis of rice OsBBX30 gene expressed by heat induction. J Hunan Agric Univ (Nat Sci Edn), 2015, 42(6): 101-106.
[45] Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240: 1051-1062.
doi: 10.1007/s00425-014-2129-8
[46] Fang H C, Dong Y H, Yue X X, Hu J F, Jiang S H, Xu H F, Wang Y C, Su M Y, Zhang J, Zhang Z Y, Wang N, Chen X S. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environ, 2019: 2090-2104.
[47] Gangappa S N, Holm M, Botto J F. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signal Behav, 2013, 8: 1559-2324.
[48] 王立光, 李静雯, 叶春雷, 陈军, 罗俊杰. 光调控因子HY5及HYH在蔗糖诱导花青素积累中作用. 甘肃农业科技, 2019, (1): 21-25.
Wang L G, Li J W, Ye C L, Chen J, Luo J J. The role of light-regulating factors HY5 and HYH in sucrose-induced anthocyanin accumulation. Gansu Agricl Sci Technol, 2019, (1): 21-25. (in Chinese with English abstract)
[49] Liu Y H, Lin W K, Espley R V, Wang L, Yang H Y, Yu B, Dare A, Varkonyi G E, Wang J, Zhang J L, Wang D, Allan A C. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. J Exp Bot, 2016, 67: 2159-2176.
doi: 10.1093/jxb/erw014
[50] Sainz M B, Chandler G V L. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell, 1997, 9: 611-625.
pmid: 9144964
[51] Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell, 2013, 25: 1243-1257.
doi: 10.1105/tpc.113.109751
[52] Liu W, Tang R, Zhang Y, Liu X J, Gao Y Y, Dai Z W, Li S H, Wu B H, Wang L J. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). Planta, 2021, 253: 114.
doi: 10.1007/s00425-021-03618-z
[53] Zhang H N, Li W C, Shi S Y, Shu B, Liu L Q, Wei Y Z, Xie J H. Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi. Front Plant Sci, 2016, 7: 963.
[54] Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav, 2015, 10: e970440.
doi: 10.4161/15592316.2014.970440
[55] Shkryl Y, Yugay Y L, Avramenko T, Grigorchuk V, Gorpenchenko T, Grischenko O, Bulgakov V. CRISPR/Cas9-mediated knockout of HOS1 reveals its role in the regulation of secondary metabolism in Arabidopsis thaliana. Plants, 2021, 10: 104.
doi: 10.3390/plants10010104
[56] Wnag J F, Li G B, Li C X, Zhang C L, Cui A, Wang X, Zheng F Y, Zhang D D, Larkin R M, Ye Z B, Zhang J H. NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. New Phytol, 2020, 229: 3237-3252.
doi: 10.1111/nph.17112
[1] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
[2] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[3] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[4] WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937.
[5] JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668.
[6] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[7] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[8] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[9] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[10] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[11] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[12] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[13] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[14] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[15] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .