Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 825-839.doi: 10.3724/SP.J.1006.2022.14080
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
JIN Min-Shan1(), QU Rui-Fang1, LI Hong-Ying1,3, HAN Yan-Qing2,3, MA Fang-Fang1,3, HAN Yuan-Huai1,3, XING Guo-Fang1,3,*()
[1] |
Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. Plant Cell, 2002, 14:S185-S205.
doi: 10.1105/tpc.010455 |
[2] |
Smeekens S, Hellmann H A. Sugar sensing and signaling in plants. Front Plant Sci, 2014, 5:113-114.
doi: 10.3389/fpls.2014.00113 pmid: 24723932 |
[3] |
Kong W L, An B G, Zhang Y, Yang J, Li M S, Sun T, Li Y S. Sugar transporter proteins (STPs) in gramineae crops: comparative analysis, phylogeny, evolution, and expression profiling. Cells, 2019, 8:560-573.
doi: 10.3390/cells8060560 |
[4] | Büttner M. The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol, 2010, 12:3541-3547. |
[5] |
Williams L E, Lemoine R, Sauer N. Sugar transporters in higher plants—a diversity of roles and complex regulation. Trends Plant Sci, 2000, 5:283-290.
pmid: 10871900 |
[6] |
Naohiro A, Tatsuro H, Scofield G N, Whitfeld P R, Furbank R T. The sucrose transporter gene family in rice. Plant Cell Physiol, 2003, 44:223-232.
pmid: 12668768 |
[7] |
Johnson D A, Thomas M A. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence. Mol Biol Evol, 2007, 24:2412-2423.
doi: 10.1093/molbev/msm184 |
[8] | Meng Y, Wang S. Rice MtN3/saliva family genes and their homologues in cellular organisms. Mol Plant, 2013, 6:655-674. |
[9] |
Chen L Q, Cheung L S, Feng L, Tanner W, Frommer W B. Transport of sugars. Annu Rev Biochem, 2015, 84:865-894.
doi: 10.1146/biochem.2015.84.issue-1 |
[10] |
Weschke W, Panitz R, Gubatz S, Wang Q, Wobus U. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J, 2003, 33:395-411.
doi: 10.1046/j.1365-313X.2003.01633.x |
[11] |
Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 2004, 55:341-372.
pmid: 15377224 |
[12] |
Kühn C, Franceschi V R, Schulz A, Lemoine R, Frommer W B. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science, 1997, 275:1298-1300.
pmid: 9036853 |
[13] | 袁进成, 刘颖慧. 植物糖转运蛋白研究进展. 中国农学通报, 2013, 29(36):287-294. |
Yuan J C, Liu Y H. Genetics and functional properties of sugar transporters in plants. Chin Agric Sci Bull, 2013, 29(36):287-294 (in Chinese with English abstract). | |
[14] |
Chang A B, Lin R, Studley W K, Tran C V, Saier M H. Phylogeny as a guide to structure and function of membrane transport proteins (review). Mol Membr Biol, 2004, 21:171-178.
doi: 10.1080/09687680410001720830 |
[15] |
Saier M H. Families of transmembrane sugar transport proteins. Mol Microbiol, 2000, 35:699-710.
pmid: 10692148 |
[16] |
Sauer N, Friedländer K, Gräml-Wicke U. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J, 1990, 9:3045-3050.
pmid: 2209537 |
[17] |
Scholz-Starke J, Büttner M, Sauer N. AtSTP6, a new pollen- specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol, 2003, 131:70-77.
pmid: 12529516 |
[18] |
Norholm M H H, Nour-Eldin H H, Brodersen P, Mundy J, Halkier B A. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett, 2006, 580:2381-2387.
pmid: 16616142 |
[19] |
Schneidereit A, Scholz-Starke J, Büttner M. Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis. Plant Physiol, 2003, 133:182-190.
pmid: 12970485 |
[20] |
Sherson S M, Hemmann G, Wallace G, Forbes S, Smith S M. Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars. Plant J, 2000, 24:849-857.
pmid: 11135118 |
[21] |
Otori K, Tanabe N, Tamoi M, Shigeoka S. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Biosci Biotechnol Biochem, 2019, 83:472-481.
doi: 10.1080/09168451.2018.1550355 |
[22] |
Truernit E, Schmid J, Epple P, Illig J, Sauer N. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell, 1996, 8:2169-2182.
pmid: 8989877 |
[23] | 毛常青. 玉米糖转运蛋白基因的鉴定、系统发育和表达分析. 四川农业大学硕士学位论文,四川温江, 2019. |
Mao C Q. Identification, Phylogenetic and Expression Analysis of Sugar Transporter Gene in Maize. MS Thesis of Sichuan Agricultural University, Wenjiang, Sichuan,China, 2019 (in Chinese with English abstract). | |
[24] |
Büttner M, Truernit E, Baier K. Scholz-Starke J, Sontheim M, Lauterbach C, Huss V A R, Sauer N. AtSTP3, a green leaf- specific, low affinity monosaccharide-H+ symporter of Arabidopsis thaliana. Plant Cell Environ, 2000, 23:175-184.
doi: 10.1046/j.1365-3040.2000.00538.x |
[25] |
Fotopoulos V, Gilbert M J, Pittman J K, Marvier A C, Buchanan A J, Sauer N, Hall J L, Williams L E. The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol, 2003, 132:821-829.
pmid: 12805612 |
[26] | 李国顺, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54:459-470. |
Li G S, Liu F, Liu M, Cheng R H, Xia E J, Diao X M. Current status and future prospective of foxtail millet production and seed industry in China. Sci Agric Sin, 2021, 54:459-470 (in Chinese with English abstract). | |
[27] | 刁现民. 中国谷子产业与产业技术体系. 北京: 中国农业科学技术出版社, 2011. |
Diao X M. China’s Millet Industry and Industrial Technology System. Beijing: China Agricultural Science and Technology Press, 2011 (in Chinese). | |
[28] | 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29:292-301. |
Jia G Q, Diao X M. Current status and perspectives of research on foxtail millet (Setaria italica(L.) P. Beauv): a potential model of plant functional genomics studies. Chin Bull Life Sci, 2017, 29:292-301 (in Chinese with English abstract). | |
[29] |
Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini-foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6:1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[30] |
Diao X M. Production and genetic improvement of minor cereals in China. Crop J, 2017, 5:103-114.
doi: 10.1016/j.cj.2016.06.004 |
[31] |
Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro- Herrera M, Wang L, Li P H, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nat Biotechnol, 2012, 30:555-561.
doi: 10.1038/nbt.2196 pmid: 22580951 |
[32] |
Zhang Z, Liao H, Lucas W J. Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants. J Integr Plant Biol, 2014, 56:192-220.
doi: 10.1111/jipb.12163 |
[33] | Lata C, Prasad M. Setavia genome sequencing: an overview. J Plant Biochem Biotechol, 2013, 22:257-260. |
[34] |
Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet, 2013, 45:957-961.
doi: 10.1038/ng.2673 |
[35] |
Saier M H. Families of transmembrane sugar transport proteins. Mol Microbiol, 2010, 35:699-710.
doi: 10.1046/j.1365-2958.2000.01759.x |
[36] |
Chen C J, Chen H, Zhang Y, Thomas H R, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13:1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[37] | 徐志军, 刘洋, 徐磊, 安东升. 高粱糖转运蛋白基因家族全基因组鉴定、分类及表达分析. 华北农学报, 2019, 34(5):65-73. |
Xu Z J, Liu Y, Xu L, An D S. Genome-wide identification, classification and expression analysis of sugar transporter gene family in sorghum bicolor. Acta Agric Boreali-Sin, 2019, 34(5):65-73 (in Chinese with English abstract). | |
[38] |
Schofield R A, Bi Y-M, Kant S, Rothstein S J. Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant Cell Environ, 2010, 32:271-285.
doi: 10.1111/pce.2009.32.issue-3 |
[39] |
Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot Pierre, La Camera S. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol Biol, 2014, 85:473-484.
doi: 10.1007/s11103-014-0198-5 pmid: 24817131 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[3] | DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885. |
[4] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[5] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[6] | MA Gui-Fang, MAN Xia-Xia, ZHANG Yi-Juan, GAO Hao, SUN Zhao-Xia, LI Hong-Ying, HAN Yuan-Huai, HOU Si-Yu. Integrated analysis between folate metabolites profiles and transcriptome of panicle in foxtail millet [J]. Acta Agronomica Sinica, 2021, 47(5): 837-846. |
[7] | JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649. |
[8] | YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415. |
[9] | HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952. |
[10] | JIA Xiao-Ping,YUAN Xi-Lei,LI Jian-Feng,WANG Yong-Fang,ZHANG Xiao-Mei,ZHANG Bo,QUAN Jian-Zhang,DONG Zhi-Ping. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 1052-1062. |
[11] | LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032. |
[12] | Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711. |
[13] | LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543. |
[14] | Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861. |
[15] | CHEN Er-Ying, WANG Run-Feng, QIN Ling, YANG Yan-Bing, LI Fei-Fei, ZHANG Hua-Wen, WANG Hai-Lian, LIU Bin, KONG Qing-Hua, GUAN Yan-An. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination [J]. Acta Agronomica Sinica, 2020, 46(10): 1591-1604. |
|