Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1103-1118.doi: 10.3724/SP.J.1006.2022.14055
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI A-Li(), FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu*(
)
[1] | Ha C V, Watanabe Y, Tran U T, Le D T, Tanaka M, Nguyen K H, Seki M, Nguyen D V, Tran L P. Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions. Front Plant Sci, 2015, 6:551. |
[2] |
Yuan S L, Li R, Chen H F, Zhang C J, Chen L M, Hao Q N, Chen S L, Shan Z H, Yang Z L, Zhang X J, Qiu D Z, Zhou X A. RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2. Sci Rep, 2017, 7:42248.
doi: 10.1038/srep42248 |
[3] |
Gupta A, Rico M A, Cañodelgado A I. The physiology of plant responses to drought. Science, 2020, 368:266-269.
doi: 10.1126/science.aaz7614 |
[4] | IPCC. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. pp 95-123. |
[5] |
Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen H T. Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci, 2014, 5:244.
doi: 10.3389/fpls.2014.00244 pmid: 24917870 |
[6] |
Wang Q, Liu Y Y, Zhang Y Z, Tong L J, Li X Y, Li J L, Sun Z G. Assessment of spatial agglomeration of agricultural drought disaster in China from 1978 to 2016. Sci Rep, 2019, 9:77-86.
doi: 10.1038/s41598-018-37378-w |
[7] |
Wang C Y, Hans W L, Song Y L, Wang F, Liu Y J, Tian J F, Xu J X, Song Y B, Ren G Y. Impacts of drought on maize and soybean production in northeast China during the past five decades. Int J Environ Res Public Health, 2020, 17:2459.
doi: 10.3390/ijerph17072459 |
[8] |
Ergun D, Halil K, Osman C. Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Res, 2007, 103:154-159.
doi: 10.1016/j.fcr.2007.05.009 |
[9] | Sobejanopaz V, Mikkelsen T N, Baum A, Mo X, Liu S, Köppl C J, Johnson M S, Gulyas L, García M. Hyperspectral and thermal sensing of stomatal conductance, transpiration, and photosynthesis for soybean and maize under drought. Remote Sens-Basel, 2020, 12:3182-3182. |
[10] |
Ostmeyer T, Parker N, Jaenisch B, Alkotami L, Bustamante C, Jagadish S V K. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops. Plant Physiol Rep, 2020, 25:549-568.
doi: 10.1007/s40502-020-00538-0 |
[11] | 叶子飘, 康华靖, 段世华, 王怡娟. 不同CO2浓度下大豆叶片的光合生理生态特性. 应用生态学报, 2018, 29:583-591. |
Ye Z P, Kang H J, Duan S H, Wang Y J. Photosynthetic physio-ecological characteristics in soybean leaves at different CO2 concentrations. Chin J Appl Ecol, 2018, 29:583-591 (in Chinese with English abstract) | |
[12] |
Alistair R, Yves G, Mark S, Patrick B M, Carl J B, Donald R O, Stephen P L. Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant Cell Environ, 2006, 29:1651-1658.
pmid: 16898025 |
[13] |
Li M, Li Y M, Zhang W D, Li S H, Gao Y, Ai X Z, Zhang D L, Liu B B, Li Q M. Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. Anal Biochem, 2018, 559:71-85.
doi: 10.1016/j.ab.2018.08.020 |
[14] | 牛胤全, 史雨刚, 汤小莎, 晋秀娟, 曹亚萍, 杨进文, 王曙光, 孙黛珍. 高CO2浓度、干旱及其互作对不同持绿型小麦幼苗的影响. 应用生态学报, 2020, 31:2407-2414. |
Niu Y Q, Shi Y G, Tang X S, Jin X J, Cao Y P, Yang J W, Wang S G, Sun D Z. Effects of high CO2 concentration, drought, and their interaction on different stay-green wheat seeds. Chin J Appl Ecol, 2020, 31:2407-2414 (in Chinese with English abstract) | |
[15] |
Wang A P, Lam S K, Hao X Y, Li Y H F, Zong Y Z, Wang H R, Li P. Elevated CO2 reduces the adverse effects of drought stress on a high-yielding soybean (Glycine max(L.) Merr.) cultivar by increasing water use efficiency. Plant Physiol Biochem, 2018, 132:660-665.
doi: 10.1016/j.plaphy.2018.10.016 |
[16] | 张小琴, 张媛铃, 李炳言, 冯雅楠, 李萍, 张东升, 王利伟, 郝兴宇. CO2浓度升高对大豆干旱胁迫的缓解效应. 应用生态学报, 2021, 32:182-190. |
Zhang X Q, Zhang Y L, Li B Y, Feng Y N, Li P, Zhang D S, Wang L W, Hao X Y. Mitigating effect of elevated CO2 concentration on soybean to drought stress, Chin J Appl Ecol, 2021, 32:182-190 (in Chinese with English abstract) | |
[17] |
Hao L, Liu X, Zhang X, Sun B, Liu C, Zhang D, Tang H, Li C, Li Y, Shi Y, Xie X, Song Y, Wang T, Li Y. Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing. J Integr Agric, 2020, 19:449-464.
doi: 10.1016/S2095-3119(19)62660-2 |
[18] |
Andrew J S, Jenna L W, Yung T B, Bindu J, Brian W D, Andrew D F, Gary J M, Rex T N, David G, James E S, Michelle A G, Steven B C, Gregory D M, Carroll P V, Randy C S. RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol, 2010, 10:160.
doi: 10.1186/1471-2229-10-160 |
[19] |
秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47:780-786.
doi: 10.3724/SP.J.1006.2021.04122 |
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47:780-786 (in Chinese with English abstract) | |
[20] |
Wang K, Bu T, Cheng Q, Dong L, Su T, Chen Z, Kong F, Gong Z, Liu B, Li M. Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses. New Phytol, 2020, 229:2660-2675.
doi: 10.1111/nph.v229.5 |
[21] |
Li B Y, Feng Y N, Zong Y Z, Zhang D S, Hao X Y, Li P. Elevated CO2-induced changes in photosynthesis, antioxidant enzymes and signal transduction enzyme of soybean under drought stress. Plant Physiol Biochem, 2020, 154:105-114.
doi: 10.1016/j.plaphy.2020.05.039 |
[22] |
Li S, Silvas P, Babu V, Trupti J, Joao V M D S, Wang J J, Li L, Wan J R, Wang Y Q, Xu D, Henry T N. Genome-wide transcriptome analysis of soybean primary root under varying water- deficit conditions. BMC Genomics, 2016, 17:57.
doi: 10.1186/s12864-016-2378-y |
[23] |
Du Y L, Zhao Q, Chen L R, Yao X D, Zhang W, Zhang B, Xie F T. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol Biochem, 2020, 146:1-12.
doi: 10.1016/j.plaphy.2019.11.003 |
[24] |
Florea L, Song L, Salzberg S L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000 Res, 2013, 2:188.
doi: 10.12688/f1000research |
[25] | Michael I L, Wolf G H, Simon A. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15:31-46. |
[26] |
Livak K J, Schmittgen T D. Analysis of relative gene expression datausing real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[27] |
Li J S, Suzui N, Nakai Y, Yin Y G, Ishii S, Fujimaki S, Kawachi N, Rai H, Matsumoto T, Satoi K, Ohkama O N, Nakamura S. Shoot base responds to root-applied glutathione and functions as a critical region to inhibit cadmium translocation from the roots to shoots in oilseed rape (Brassica napus). Plant Sci, 2021, 305:110822-110822.
doi: 10.1016/j.plantsci.2021.110822 |
[28] | Madhav L K. Are extreme weather events on the rise? Energy Environ Sci, 2013, 24:537-550. |
[29] |
Hao X Y, Gao J, Han X, Ma Z Y, Andrew M, Ju H, Li P, Yang W S, Gao Z Q, Lin E D. Effects of open-air elevated atmospheric CO2 concentration on yield quality of soybean (Glycine max(L.) Merr). Agric Ecosyst Environ, 2014, 192:80-84.
doi: 10.1016/j.agee.2014.04.002 |
[30] |
Ramakrishna A, Gokare A R. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav, 2011, 6:1720-1731.
doi: 10.4161/psb.6.11.17613 pmid: 22041989 |
[31] |
Huang B L, Li X, Liu P, Ma L, Wu W H, Zhang X K, Li Z Y, Huang B Q. Transcriptomic analysis of Eruca vesicaria subs. sativa lines with contrasting tolerance to polyethylene glycol-simulated drought stress. BMC Plant Biol, 2019, 19:443-448.
doi: 10.1186/s12870-019-2054-x |
[32] |
Yan J J, Tong Z J, Liu Y Y, Li Y N, Zhao C, Mukhtar I, Tao Y X, Chen B Z, Deng Y J, Xie B G. Comparative transcriptomics of Flammulina filiformis suggests a high CO2 concentration inhibits early pileus expansion by decreasing cell division control pathways. Int J Mol Sci, 2019, 20:5923.
doi: 10.3390/ijms20235923 |
[33] |
Motoaki S, Taishi U, Kaoru U, Kazuo S. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol, 2007, 10:296-302.
pmid: 17468040 |
[34] |
Kazuo S, Kazuko Y. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58:221-227.
doi: 10.1093/jxb/erl164 |
[35] |
Dahuja A, Kumar R R, Sakhare A, Watts A, Singh B, Goswami S, Sachdev A, Praveen S. Role of ABC transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol Plant, 2020. 171:785-801.
doi: 10.1111/ppl.v171.4 |
[36] |
张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响. 作物学报, 2021, 47:1791-1805.
doi: 10.3724/SP.J.1006.2021.04154 |
Zhang M C, He S Y, Qin B, Wang M X, Jin X J, Ren C Y, Wu Y K, Zhang Y X. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress. Acta Agron Sin, 2021, 47:1791-1805 (in Chinese with English abstract) | |
[37] |
Gurrieri L, Merico M, Trost P, Forlani G, Sparla F. Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology, 2020, 9:367-367.
doi: 10.3390/biology9110367 |
[38] |
Yang J, Isabel O M, Jaworski J G, Beachy R N. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiol Biochem, 2011, 49:1448-1455.
doi: 10.1016/j.plaphy.2011.09.006 |
[39] | 金奖铁, 李扬, 李荣俊, 刘秀林, 李林懋. 大气二氧化碳浓度升高影响植物生长发育的研究进展. 植物生理学报, 2019, 55:558-568. |
Jin J T, Li Y, Li R J, Liu X L, Li L R. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development. Plant Physiol J, 2019, 55:558-568 (in Chinese with English abstract) | |
[40] |
Claudia T, David R M. Effects of elevated atmospheric CO2 concentration on leaf anatomy and morphology in Panicum species representing different photosynthetic modes. Int J Plant Sci, 1999, 160:1063-1073.
doi: 10.1086/314201 |
[41] | Sharon B G, Orla D, Stephanie P K, Anna M L, Justin M M, Rachel E P, David M R, Ursula M R, Matthew H S, Reid S, Elizabeth A A, Carl J B, Stephen P L, Donald R O, Andrew D B L. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat Plants, 2016, 2:53-67. |
[42] |
Muqadas A, Muhammad M R, Muhammad S H, Rana M A, Zulfiqar A, Javaid A B, Zhao T J. Comprehensive RNA-seq analysis revealed molecular pathways and genes associated with drought tolerance in wild soybean (Glycine soja Sieb and Zucc). Physiol Plant, 2021, 172:707-732.
doi: 10.1111/ppl.v172.2 |
[43] | Ainsworth E A, Rogers A, Vodkin L O, Walter A, Schurr U. The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol, 2006, 142:135-147. |
[44] |
Zhao B, Zhang S L, Yang W Q, Li B Y, Lan C, Zhang J L, Yuan L, Wang Y, Xie Q G, Han J W, Luis A J M, Hao X Y, Jeremy A R, Miao Y C, Yu K, Zhang X B. Multi-omic dissection of the drought resistance traits of soybean landrace LX. Plant Cell Environ, 2021, 44:1379-1398.
doi: 10.1111/pce.v44.5 |
[45] | Wang L, Xu Q, Yu H, Ma H Y, Li X Q, Yang J, Chu J F, Xie Q, Wang Y H, Smith S M, Li J Y, Xiong G S, Wang B. Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis. Plant Cell, 2020, 32:2251-2270. |
[46] | 罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯. Karrikins信号传导通路及功能研究进展. 遗传, 2016, 38:52-61. |
Luo X F, Qi Y, Meng Y J, Shuai H W, Chen F, Yang W Y, Shu K. Current understanding of signaling transduction pathway and biological functions of Karrikins. Hereditas, 2016, 38:52-61 (in Chinese with English abstract) |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[4] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[5] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[6] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[7] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[8] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[9] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[10] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[11] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[12] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[13] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[14] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[15] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
|