Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1894-1904.doi: 10.3724/SP.J.1006.2022.14114

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods

ZHANG Sheng-Zhong1(), HU Xiao-Hui1, CI Dun-Wei1, YANG Wei-Qiang1, WANG Fei-Fei1, QIU Jun-Lan2, ZHANG Tian-Yu3, ZHONG Wen3, YU Hao-Liang4, SUN Dong-Ping4, SHAO Zhan-Gong5, MIAO Hua-Rong1,*(), CHEN Jing1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2Weihai Seed Management Station, Weihai 264200, Shandong, China
    3Shandong Seed Administration Station, Jinan 250100, Shandong, China
    4Yantai Fenglin Foodstuff Co., Ltd, Yantai 264108, Shandong, China
    5Agricultural and Rural Bureau of Laixi City, Qingdao 266600, Shandong, China
  • Received:2021-07-01 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-28
  • Contact: MIAO Hua-Rong,CHEN Jing E-mail:593318769@qq.com;1949813628@qq.com;mianbaohua2008@126.com
  • Supported by:
    National Natural Science Foundation of China(32001584);Breeding Project from Department Science & Technology of Shandong Province(2020LZGC001);Agricultural Scientific and the Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2021A09);Agricultural Scientific and the Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2021A46);Qingdao People's Livelihood Science and Technology Program(20-3-4-26-nsh)

Abstract:

The thickness of pod reticulation is not only an important criterion of peanut taxonomy, but also an agronomy trait related to peanut mechanical harvesting. To explore the genetic mechanism of reticulation thickness of peanut pods, a novel phenotyping method was developed to determine the reticulation thickness through reconstructing three dimensional (3D) models of pods. Meanwhile, a recombinant inbred line (RIL) population (181 lines) was derived from a cross between Huayu 36 and 6-13 and planted in three environments from 2019 to 2020, including Qingdao, Dongying, and Weihai of Shandong province. Phenotypic data of the RIL population were collected from these three environments. Two related traits, thicknesses of latitudinal and longitudinal protuberant veins (reticulations), had continuous and transgressive distributions in the RIL population, with broad-sense heritablities of 0.92 and 0.91, respectively. Based on a previous high density genetic map, a total of 11 additive QTLs were identified explaining phenotypic variations of 5.21%-11.06%, among which six QTLs were related to thickness of latitudinal protuberant vein and five related to thickness of longitudinal protuberant vein. Two major loci, qLA2 and qLO9 could be detected in more than one environments, with contributing alleles coming from Huayu 36 and 6-13, respectively. A total of 22 pairs of epistatic QTLs involving 34 loci were identified explaining phenotypic variations of 0.55%-4.37%, among which 10 pairs of interactions were related to thickness of latitudinal protuberant vein and 12 pairs were related to thickness of longitudinal protuberant vein. These results provide valuable information for further gene mapping and molecular breeding in peanut.

Key words: peanut, pod reticulation, QTLs, additive, epistatic

Fig. 1

Workflow for evaluation of pod reticulation through 3D model reconstruction in peanut A: the multiple positions for camera shooting; B: the obtained pod image sequences; C: key point matching; D: construction of sparse point cloud; E: construction of dense point cloud; F: reconstruction of the mesh surface of 3D model; G: collection of 3D coordinates of specific points. The white rectangle represents the target area for pod reticulation evaluation. The red-green-blue symbol represents a 3D image."

Fig. 2

Comparison of two measurement strategies for pod reticulation thickness A: the image of 7 peanut cultivars (or lines); B: the 3D models of 7 peanut cultivars (or lines) and the red-green-blue symbol representing 3D image; C: thickness measurement of pod reticulation based on reticulation removing stratedgy; D: thickness measurement of pod reticulation based on 3D model reconstruction strategy. Different lowercase letters (a, b, c, and d) represent significant difference at P = 0.05 level by multiple comparison (LSD). The red-green-blue symbol represents a 3D image."

Fig. 3

Phenotypic variation of pod reticulation thickness among two parents and certain RILs The red-green-blue symbol represents a 3D image."

Table 1

Statistics analysis of phenotypic data for two parents and its RIL population"

性状
Trait
环境Environment 亲本Parents RIL群体RIL population
花育36号Huayu 36 6-13 平均值Mean 标准差SD 最小值Min. 最大值Max. 峰度Kurt. 偏度Skew. Shapiro-Wilk
横纹厚度
LA (mm)
E1 0.2431 0.0293** 0.1902 0.0829 0.0167 0.4448 -0.12 0.10 0.989*
E2 0.2320 0.0514** 0.1731 0.0914 0.0147 0.4854 0.54 0.60 0.977**
E3 0.1961 0.0496** 0.1993 0.0909 0.0101 0.4854 0.26 0.31 0.986*
纵纹厚度
LO (mm)
E1 0.4003 0.7165** 0.4884 0.1138 0.2704 0.7673 -0.27 0.50 0.970
E2 0.3811 0.7356** 0.4871 0.1277 0.2538 0.9096 -0.11 0.37 0.981**
E3 0.4278 0.7490** 0.4777 0.1340 0.1788 0.8519 0.74 0.81 0.948

Fig. 4

Frequency distribution of pod reticulation in RIL population across different environments"

Table 2

Variance analysis of the pod reticulation related traits"

性状Trait 来源Source 自由度DF 方差SS 标准差MS FF-value PP value 遗传率h2
横纹厚度
LA
基因型G 169 0.0851 0.0005 20.4911 P<0.001 0.92
环境E 2 0.0015 0.0007 29.6624 P<0.001
基因型×环境G × E 252 0.0148 0.0001 2.3888 P<0.001
误差Error 833 0.0205 0
纵纹厚度
LO
基因型G 169 0.1643 0.0010 13.9010 P<0.001 0.91
环境E 2 0.0003 0.0002 2.2961 P<0.001
基因型×环境G × E 252 0.0311 0.0001 1.7620 P<0.001
误差Error 832 0.0582 0.0001

Fig. 5

QTL location on linkage groups in different environments Red and blue colors represent the thicknesses of latitudinal and longitudinal protuberant veins, respectively."

Table 3

Information of QTLs related to peanut pod reticulation"

性状
Trait
QTL 环境Env. 染色体Chr. 标记区间
Marker interval
置信区间
C.I. (cM)
LOD 加性效应Add 贡献率PVE (%)
横纹厚度
LA
qLA2 E1 2 Marker938-Marker875 0-3.9 3.31 -0.0030 11.06
E2 2 Marker938-Marker875 0-5.6 2.91 -0.0029 6.08
E3 2 Marker938-Marker864 0-2.8 3.70 -0.0039 7.44
qLA3 E1 3 Marker1868-Marker1876 24.8-34.2 2.93 0.0028 5.62
qLA12 E3 12 Marker6681-Marker6697 91-105.2 2.64 0.0021 5.21
qLA15 E1 15 Marker9048-Marker9075 35-53.1 2.83 -0.0034 5.34
qLA16.1 E1 16 Marker9463-Marker10015 0.9-11.2 4.30 0.0047 10.79
qLA16.2 E2 16 Marker10139-Marker10315 19.3-24.8 3.59 -0.0034 7.55
纵纹厚度
LO
qLO4 E1 4 Marker2874-3754F 35-53.1 3.21 -0.0034 8.31
E3 4 Marker2874-3754F 34.3-52.7 3.10 -0.0040 8.74
qLO9 E1 9 Marker4980-Marker5581 0.9-11.2 3.76 0.0047 10.96
E2 9 Marker4980-Marker5533 1-11.2 3.85 0.0050 10.99
qLO12 E3 12 Marker6697-Marker6722 96-105.5 4.07 0.0045 10.71
qLO17 E2 17 Marker10418-Marker10431 0-8.4 2.61 -0.0033 6.05
qLO19 E2 19 Marker11749-Marker11769 11.5-15.5 3.10 0.0047 7.26

Table 4

Information of epistatic QTLs related to peanut pod reticulation"

性状
Trait
QTLi 染色体Chr. 标记区间
Marker interval
QTLj 染色体Chr. 标记区间
Marker interval
LOD 上位性效应
AA
贡献率
PVE (%)
横纹厚度
LA
Epi-qLA1 1 Marker344-Marker340 Epi-qLA7 7 AHGS0035-AHGS1954 5.57 0.0015 2.72
Epi-qLA2 2 Marker862-Marker746 Epi-qLA3.1 3 Marker1177-Marker1191 5.73 0.0021 2.64
Epi-qLA3.2 3 Marker1894-Marker1906 Epi-qLA10.3 10 Marker5972-Marker5996 5.24 0.0016 2.58
Epi-qLA3.2 3 Marker1894-Marker1906 Epi-qLA12 12 Marker6650-Marker6653 5.03 0.0017 2.82
Epi-qLA3.2 3 Marker1894-Marker1906 Epi-qLA16 16 Marker10343-Marker10344 5.44 0.0021 2.77
Epi-qLA5.1 5 Marker3174-Marker3169 Epi-qLA5.2 5 Marker3064-Marker3055 5.32 0.0023 1.77
Epi-qLA5.2 5 Marker3064-Marker3055 Epi-qLA10.2 10 Marker5872-Marker5972 6.93 0.0027 3.50
Epi-qLA5.1 5 Marker3174-Marker3169 Epi-qLA19 19 AHGS1634-Marker11752 5.26 -0.0015 2.65
Epi-qLA8 8 Marker4781-Marker4778 Epi-qLA9 9 Marker5648-Marker5656 5.93 0.0016 3.17
Epi-qLA9 9 Marker5648-Marker5656 Epi-qLA10.1 10 Marker5953-Marker5941 5.90 -0.0016 3.15
纵纹厚度
LO
Epi-qLO1.1 1 Marker25-Marker11 Epi-qLO15 15 Marker8480-Marker8432 5.44 0.1933 2.40
Epi-qLO1.2 1 Marker597-Marker601 Epi-qLO11.2 11 Marker6349-Marker6352 5.55 0.0957 3.69
Epi-qLO3 3 Marker1177-Marker1191 Epi-qLO11.1 11 Marker6220-Marker6275 9.91 -0.1251 4.37
Epi-qLO5 5 Marker3174-Marker3169 Epi-qLO10.2 10 Marker5872-Marker5972 5.46 -0.1136 3.51
Epi-qLO6.1 6 Marker3659-Marker3660 Epi-qLO20 20 Marker12781-Marker12791 6.64 0.1012 0.55
Epi-qLO6.2 6 Marker4191-Marker4236 Epi-qLO8.1 8 Marker4862-Marker4875 6.99 -0.1060 3.32
Epi-qLO7 7 Marker4658-Marker4605 Epi-qLO18 18 Marker11664-Marker11669 5.06 -0.1120 3.76
Epi-qLO8.2 8 AGGS1495-Marker4770 Epi-qLO15.2 15 Marker8513-Marker8628 6.83 -0.1403 1.91
Epi-qLO10.1 10 Marker5877-Marker5872 Epi-qLO11.1 11 Marker6220-Marker6275 5.39 0.2010 1.57
Epi-qLO10.2 10 Marker5872-Marker5972 Epi-qLO15.2 15 Marker8513-Marker8628 6.75 0.2029 3.89
Epi-qLO10.2 10 Marker5872-Marker5972 Epi-qLO16 17 Marker10786-C123 5.04 0.1245 2.59
Epi-qLO13 13 Marker6815-Marker6823 Epi-qLO15.1 15 Marker8503-Marker8489 5.52 0.1190 3.37
[1] FAO FAO Statistical Database. Rome, Italy. Available: http://faostat.fao.org.
[2] 禹山林. 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008. pp 55-58.
Yu S L. Chinese Peanut Cultivars and Their Pedigrees. Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 55-58. (in Chinese)
[3] Mondal S, Badigannavar A M. Identification of major consensus QTLs for seed size and minor QTLs for pod traits in cultivated groundnut (Arachis hypogaea L.). 3 Biotech, 2019, 9: 347.
doi: 10.1007/s13205-019-1881-7
[4] Patil V H. Genetic Studies in Groundnut (Arachis hypogaea L.). MS Thesis of Poona University, Poona, India, 1965.
[5] Jadhav G D, Shinde N N. Studies in groundnut (Arachis hypogaea). India J Agric Res, 1979, 13: 93-96.
[6] Murthy T G K, Tiwari S P, Reddy P S. A linkage group for genes governing pod characters in peanut.v Euphytica, 1988, 39: 43-46.
doi: 10.1007/BF00025109
[7] Manoharan V, Ramalingam R S. Inheritance of testa colour and pod reticulation in groundnut. Madras Agric J, 1992, 79: 646-648.
[8] 周金超, 杨鑫雷, 崔顺立, 侯名语, 陈焕英, 穆国俊, 刘立峰. 花生SSR标记与农艺性状的相关性. 作物学报, 2014, 40: 1197-1204.
Zhou J C, Yang X L, Cui S L, Hou M Y, Chen H Y, Mu G J, Liu L F. Correlation between SSR markers and agronomic traits in peanut (Arachis hypogaea L.). Acta Agron Sin, 2014, 40: 1197-1204. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01197
[9] 郭慧敏. 栽培种花生染色体片段置换系群体的构建及部分农艺性状QTL定位. 河北农业大学硕士学位论文,河北保定, 2014.
Guo H M. Construction of Chromosome Segement Substitution Lines and QTLs Mapping for Agronomic Traits in Cultivated Peanut. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2014. (in Chinese with English abstract)
[10] Hu W J, Zhang C, Jiang Y Q, Huang C L, Liu Q, Xiong L Z, Yang W N, Chen F. Nondestructive 3D image analysis pipeline to extract rice grain traits using X-ray computed tomography. Plant Phenomics, 2020, 2020: 1-12.
[11] Su Y, Xiao L T. 3D visualization and volume-based quantification of rice chalkiness in vivo by using high resolution micro-CT. Rice, 2020, 13: 69.
doi: 10.1186/s12284-020-00429-w
[12] Dornbusch T, Wernecke P, Diepenbrock W. A method to extract morphological traits of plant organs from 3D point clouds as a database for an architectural plant model. Ecol Model, 2007, 200: 119-129.
[13] Ivanov N, Boissard P, Chapron M, Andrieu B. Computer stereo plotting for 3-D reconstruction of a maize canopy. Agric For Meteorol, 1995, 75: 85-102.
doi: 10.1016/0168-1923(94)02204-W
[14] Biskup B, Scharr H, Schurr U, Rascher U. A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ, 2007, 30: 1299-1308.
doi: 10.1111/j.1365-3040.2007.01702.x
[15] McCarthy C L, Hancock N H, Raine S R. Applied machine vision of plants: a review with implications for field deployment in automated farming operations. Intel Serv Robot, 2010, 3: 209-217.
[16] Pound M P, French A P, Murchie E H, Pridmore P. Automated recovery of three-dimensional models of plant shoots from multiple color images. Plant Physiol, 2014, 166: 1688-1698.
doi: 10.1104/pp.114.248971
[17] 胡鹏程, 郭焱, 李保国, 朱晋宇, 马韫韬. 基于多视角立体视觉的植株三维重建与精度评估. 农业工程学报, 2015, 31(11): 209-214.
Hu P C, Guo Y, Li B G, Zhu J Y, Ma Y T. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method. TCSA Engin, 2015, 31(11): 209-214. (in Chinese with English abstract)
[18] Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Comput Vision, 2004, 60: 91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
[19] 艾海舟, 兴军亮. 计算机视觉--算法与应用. 北京: 清华大学出版社, 2012. pp 237-290.
Ai H Z, Xing J L. Computer Vision:Algorithms and Applications. Beijing: Tsinghua University Press, 2012. pp 237-290. (in Chinese)
[20] Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell, 2010, 32: 1362-1376.
doi: 10.1109/TPAMI.2009.161
[21] Kazhdan M, Hoppe H. Screened poisson surface reconstruction. ACM Trans Graph, 2013, 32: 29.
[22] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[23] Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a -0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020, 133: 37-49.
doi: 10.1007/s00122-019-03438-6
[24] Zhang S Z, Hu X H, Miao H R, Chu Y, Cui F G, Yang W Q, Wang C M, Shen Y, Xu T T, Zhao L B, Zhang J C, Chen J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol, 2019, 19: 537.
doi: 10.1186/s12870-019-2164-5
[25] Silva L C, Wang S, Zeng Z B. Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol, 2012, 871: 75-119.
[26] Voorrips R E. Mapchart: software for the graphical presentation of linkage map and QTL. J Hered, 2002, 93: 77-78.
pmid: 12011185
[27] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newl, 1997, 14: 11-13.
[28] Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, Lei Y, Liao B S, Huai D X, Wei W H, Jiang H F. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Plant, 2017, 37: 17.
[29] Wang Z J, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827
[30] Hagiwara W E, Onishi K, Takamure O I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006, 150: 27-35.
doi: 10.1007/s10681-006-9085-8
[31] Balakrishnan D, Surapaneni M, Yadavalli V R, Addanki K R, Mesapogu S, Beerelli K, Neelamraju S. Detecting CSSLs and yield QTLs with additive, epistatic and QTL × environment interaction effects from Oryza sativa × O. nivara IRGC81832 cross. Sci Rep, 2020, 10: 7766.
doi: 10.1038/s41598-020-64300-0 pmid: 32385410
[32] Li Z K, Luo L J, Mei H W, Wang Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737-1753.
doi: 10.1093/genetics/158.4.1737 pmid: 11514459
[33] Carlbog O, Haley C S. Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004, 5: 618-625.
doi: 10.1038/nrg1407
[1] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[2] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[3] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[4] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[5] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[6] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[7] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[8] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[11] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[12] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[13] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[14] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[15] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[2] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[3] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[4] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[5] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[6] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[7] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[8] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[9] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .
[10] LIU Shan-Shan;TIAN Fu-Dong;GAO Li-Hui;WANG Zhi-Kun;GE Yu-Jun;DIAO Gui-Zhu;LI Wen-Bin;. Effect of Subunit Composition of 7S Globulin on Soybean Quality Cha- racteristics[J]. Acta Agron Sin, 2008, 34(05): 909 -913 .