Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1894-1904.doi: 10.3724/SP.J.1006.2022.14114
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Sheng-Zhong1(), HU Xiao-Hui1, CI Dun-Wei1, YANG Wei-Qiang1, WANG Fei-Fei1, QIU Jun-Lan2, ZHANG Tian-Yu3, ZHONG Wen3, YU Hao-Liang4, SUN Dong-Ping4, SHAO Zhan-Gong5, MIAO Hua-Rong1,*(), CHEN Jing1,*()
[1] | FAO FAO Statistical Database. Rome, Italy. Available: http://faostat.fao.org. |
[2] | 禹山林. 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008. pp 55-58. |
Yu S L. Chinese Peanut Cultivars and Their Pedigrees. Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 55-58. (in Chinese) | |
[3] |
Mondal S, Badigannavar A M. Identification of major consensus QTLs for seed size and minor QTLs for pod traits in cultivated groundnut (Arachis hypogaea L.). 3 Biotech, 2019, 9: 347.
doi: 10.1007/s13205-019-1881-7 |
[4] | Patil V H. Genetic Studies in Groundnut (Arachis hypogaea L.). MS Thesis of Poona University, Poona, India, 1965. |
[5] | Jadhav G D, Shinde N N. Studies in groundnut (Arachis hypogaea). India J Agric Res, 1979, 13: 93-96. |
[6] |
Murthy T G K, Tiwari S P, Reddy P S. A linkage group for genes governing pod characters in peanut.v Euphytica, 1988, 39: 43-46.
doi: 10.1007/BF00025109 |
[7] | Manoharan V, Ramalingam R S. Inheritance of testa colour and pod reticulation in groundnut. Madras Agric J, 1992, 79: 646-648. |
[8] | 周金超, 杨鑫雷, 崔顺立, 侯名语, 陈焕英, 穆国俊, 刘立峰. 花生SSR标记与农艺性状的相关性. 作物学报, 2014, 40: 1197-1204. |
Zhou J C, Yang X L, Cui S L, Hou M Y, Chen H Y, Mu G J, Liu L F. Correlation between SSR markers and agronomic traits in peanut (Arachis hypogaea L.). Acta Agron Sin, 2014, 40: 1197-1204. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01197 |
|
[9] | 郭慧敏. 栽培种花生染色体片段置换系群体的构建及部分农艺性状QTL定位. 河北农业大学硕士学位论文,河北保定, 2014. |
Guo H M. Construction of Chromosome Segement Substitution Lines and QTLs Mapping for Agronomic Traits in Cultivated Peanut. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2014. (in Chinese with English abstract) | |
[10] | Hu W J, Zhang C, Jiang Y Q, Huang C L, Liu Q, Xiong L Z, Yang W N, Chen F. Nondestructive 3D image analysis pipeline to extract rice grain traits using X-ray computed tomography. Plant Phenomics, 2020, 2020: 1-12. |
[11] |
Su Y, Xiao L T. 3D visualization and volume-based quantification of rice chalkiness in vivo by using high resolution micro-CT. Rice, 2020, 13: 69.
doi: 10.1186/s12284-020-00429-w |
[12] | Dornbusch T, Wernecke P, Diepenbrock W. A method to extract morphological traits of plant organs from 3D point clouds as a database for an architectural plant model. Ecol Model, 2007, 200: 119-129. |
[13] |
Ivanov N, Boissard P, Chapron M, Andrieu B. Computer stereo plotting for 3-D reconstruction of a maize canopy. Agric For Meteorol, 1995, 75: 85-102.
doi: 10.1016/0168-1923(94)02204-W |
[14] |
Biskup B, Scharr H, Schurr U, Rascher U. A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ, 2007, 30: 1299-1308.
doi: 10.1111/j.1365-3040.2007.01702.x |
[15] | McCarthy C L, Hancock N H, Raine S R. Applied machine vision of plants: a review with implications for field deployment in automated farming operations. Intel Serv Robot, 2010, 3: 209-217. |
[16] |
Pound M P, French A P, Murchie E H, Pridmore P. Automated recovery of three-dimensional models of plant shoots from multiple color images. Plant Physiol, 2014, 166: 1688-1698.
doi: 10.1104/pp.114.248971 |
[17] | 胡鹏程, 郭焱, 李保国, 朱晋宇, 马韫韬. 基于多视角立体视觉的植株三维重建与精度评估. 农业工程学报, 2015, 31(11): 209-214. |
Hu P C, Guo Y, Li B G, Zhu J Y, Ma Y T. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method. TCSA Engin, 2015, 31(11): 209-214. (in Chinese with English abstract) | |
[18] |
Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Comput Vision, 2004, 60: 91-110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
[19] | 艾海舟, 兴军亮. 计算机视觉--算法与应用. 北京: 清华大学出版社, 2012. pp 237-290. |
Ai H Z, Xing J L. Computer Vision:Algorithms and Applications. Beijing: Tsinghua University Press, 2012. pp 237-290. (in Chinese) | |
[20] |
Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell, 2010, 32: 1362-1376.
doi: 10.1109/TPAMI.2009.161 |
[21] | Kazhdan M, Hoppe H. Screened poisson surface reconstruction. ACM Trans Graph, 2013, 32: 29. |
[22] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[23] |
Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a -0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020, 133: 37-49.
doi: 10.1007/s00122-019-03438-6 |
[24] |
Zhang S Z, Hu X H, Miao H R, Chu Y, Cui F G, Yang W Q, Wang C M, Shen Y, Xu T T, Zhao L B, Zhang J C, Chen J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol, 2019, 19: 537.
doi: 10.1186/s12870-019-2164-5 |
[25] | Silva L C, Wang S, Zeng Z B. Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol, 2012, 871: 75-119. |
[26] |
Voorrips R E. Mapchart: software for the graphical presentation of linkage map and QTL. J Hered, 2002, 93: 77-78.
pmid: 12011185 |
[27] | McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newl, 1997, 14: 11-13. |
[28] | Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, Lei Y, Liao B S, Huai D X, Wei W H, Jiang H F. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Plant, 2017, 37: 17. |
[29] |
Wang Z J, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827 |
[30] |
Hagiwara W E, Onishi K, Takamure O I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006, 150: 27-35.
doi: 10.1007/s10681-006-9085-8 |
[31] |
Balakrishnan D, Surapaneni M, Yadavalli V R, Addanki K R, Mesapogu S, Beerelli K, Neelamraju S. Detecting CSSLs and yield QTLs with additive, epistatic and QTL × environment interaction effects from Oryza sativa × O. nivara IRGC81832 cross. Sci Rep, 2020, 10: 7766.
doi: 10.1038/s41598-020-64300-0 pmid: 32385410 |
[32] |
Li Z K, Luo L J, Mei H W, Wang Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737-1753.
doi: 10.1093/genetics/158.4.1737 pmid: 11514459 |
[33] |
Carlbog O, Haley C S. Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004, 5: 618-625.
doi: 10.1038/nrg1407 |
[1] | XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220. |
[2] | HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264. |
[3] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
[4] | BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079. |
[5] | XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099. |
[6] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[7] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[8] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[9] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[10] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[11] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[12] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[13] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[14] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[15] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
|