Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1905-1913.doi: 10.3724/SP.J.1006.2022.11069

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Gene mapping of apical spikelet degeneration mutant asd1 in wheat

DU Qi-Di1,2(), GUO Hui-Jun2, XIONG Hong-Chun2, XIE Yong-Dun2, ZHAO Lin-Shu2, GU Jia-Yu2, ZHAO Shi-Rong2, DING Yu-Ping2, SONG Xi-Yun1, LIU Lu-Xiang2,*()   

  1. 1College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement / National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
  • Received:2021-08-06 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-13
  • Contact: LIU Lu-Xiang E-mail:duqididd@163.com;liuluxiang@caas.cn
  • Supported by:
    China Agriculture Research System(CARS-03);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202002)

Abstract:

The number of grains per spike is one of the three key factors for yield and production in wheat. It is helpful to cultivate high-yield wheat varieties to elaborate the regulation pathway of spike development. A stable mutant of apical spikelet degeneration (asd1) was derived by EMS treatment, the wheat variety Jing 411 was used as wild type. The mutant asd1 showed that the apical spikelets were significantly degenerated, the spike length was shortened by 40%, the number of spikelets per spike was reduced by 35%, the number of grains per spike was significantly reduced by 54%, and the plant height was also significantly reduced. A genetic segregation population, Jing 411 × asd1, was developed, and phenotypic performances of both F2 and F3 were investigated in field. It showed that the degeneration of apical spikelet was controlled by a recessive gene. Using Bulked Segregant Analysis (BSA) and exon capture, SNPs were obtained and 7 KASP markers were further developed. The target mutation gene was mapped on chromosome 7A and narrowed down to a 9.91 Mb region on 7AS, which represented a genetic distance of 17.62 cM. The region had not yet been reported in regulating spikelet development and the target mutant gene might be a novel gene that controls the development of spike morphology in wheat, which will bring new insights for further understanding of the genetic basis of spikelet development in wheat.

Key words: wheat, apical spikelet degeneration, genetic analysis, gene mapping

Fig. 1

Spikelet degeneration phenotype and spike length and plant of mutant asd1 (A)-(D) floret primordium differentiation until tetrad stage; bar: 1 mm. (E) booting stage; bar: 1 cm. (F) filling stage; bar: 2 cm. (G) plant height; bar: 15 cm. (H) spike length. (I) plant height. Wild type is on the left and mutant is on the right."

Fig. 2

Floral organ was degenerated in wheat mutant asd1 (A) apical spikelets of mutant and wild type from top to the eighth; (B) pollen viability through iodine-potassium iodide staining; (C) the number of spikelets; (D) grain number per spike."

Table S1

Phenotype of apical spikelet degeneration in segregation population of J411×asd1"

单株
Plant
F2表型
Phenotype of F2
F2小穗数
Number of spikelet of F2
F3小穗数
Number of spikelet of F3
F3小穗数平均值±标准差
Average ± Standard Deviation
F3表型
Phenotype of F3
重复一
Repeat one
重复二
Repeat two
重复一
Repeat one
重复二
Repeat two
重复三
Repeat three
重复四
Repeat four
京411 W 20 22 19 17 19 18 18.3±0.96 W
京411 W 18 19 17 17 17 18 17.3±0.50 W
asd1 M 9 12 13 10 11 9 10.8±1.71 M
asd1 M 11 11 12 10 8 9 9.8±1.71 M
1 M 12 13 11 13 10 11 11.3±1.26 M
2 M 13 12 10 12 10 9 10.3±1.26 M
3 M 12 13 9 11 13 10 10.8±1.71 M
4 M 13 11 12 13 11 11 11.8±0.96 M
5 M 11 12 10 11 9 9 9.8±0.96 M
6 M 13 12 9 10 10 11 10.0±0.82 M
7 M 13 10 8 10 12 12 10.5±1.91 M
8 M 13 12 12 10 12 12 11.5±1.00 M
9 M 13 11 11 13 10 11 11.3±1.26 M
10 M 14 9 8 8 10 10 9.0±1.15 M
11 M 14 9 10 10 8 9 9.3±0.96 M
12 M 12 12 10 10 12 11 10.8±0.96 M
13 M 14 14 10 11 11 12 11.0±0.82 M
14 M 14 13 10 10 11 12 10.8±0.96 M
15 M 11 13 10 11 11 13 11.3±1.26 M
16 M 12 10 10 11 10 11 10.5±0.58 M
17 M 14 14 9 10 11 10 10.0±0.82 M
18 M 12 10 9 11 8 9 9.3±1.26 M
19 M 13 13 12 11 8 10 10.3±1.71 M
20 M 11 11 8 10 10 10 9.5±1.00 M
21 M 13 14 10 12 12 12 11.5±1.00 M
22 M 10 12 10 10 10 11 10.3±0.50 M
23 M 12 10 8 9 8 8 8.3±0.50 M
24 M 13 12 9 10 11 12 10.5±1.29 M
25 M 13 13 9 10 12 12 10.8±1.50 M
26 M 11 11 10 10 10 11 10.3±0.50 M
27 M 12 12 8 10 8 8 8.5±1.00 M
28 M 11 11 7 9 12 10 9.5±2.08 M
29 M 11 8 9 10 9 9 9.3±0.50 M
30 M 10 11 11 12 10 10 10.8±0.96 M
31 M 14 14 10 11 11 12 11.0±0.82 M
32 M 13 12 9 9 10 11 9.8±0.96 M
33 M 14 14 9 9 11 12 10.3±1.50 M
34 M 14 12 12 13 9 10 11.0±1.83 M
35 M 11 14 9 9 11 12 10.3±1.50 M
36 M 12 14 10 11 11 12 11.0±0.82 M
37 M 13 13 9 10 13 12 11.0±1.83 M
38 M 13 14 9 9 10 12 10.0±1.41 M
39 M 14 12 11 11 11 12 11.3±0.50 M
40 M 14 12 13 12 10 12 11.8±1.26 M
41 M 13 10 8 10 8 10 9.0±1.15 M
42 M 14 13 11 11 11 12 11.3±0.50 M
43 M 14 10 10 11 9 10 10.0±0.82 M
44 M 13 13 9 9 10 11 9.8±0.96 M
45 M 13 12 8 9 8 8 8.3±0.50 M
46 M 13 13 8 8 10 12 9.5±1.91 M
47 M 14 14 9 12 9 11 10.3±1.50 M
48 M 9 11 10 11 11 13 11.3±1.26 M
49 M 12 12 8 10 10 12 10.0±1.63 M
50 M 14 11 9 11 11 11 10.5±1.00 M
51 M 14 12 10 11 9 10 10.0±0.82 M
52 M 12 10 10 11 11 11 10.8±0.50 M
53 M 13 14 8 8 10 12 9.5±1.91 M
54 M 13 12 7 9 9 9 8.5±1.00 M
55 M 13 9 12 11 8 8 9.8±2.06 M
56 M 13 12 10 11 8 10 9.8±1.26 M
57 M 10 11 11 11 10 10 10.5±0.58 M
58 M 11 11 9 9 9 12 9.8±1.50 M
59 M 13 11 9 10 9 11 9.8±0.96 M
60 M 12 12 7 8 9 11 8.8±1.71 M
61 M 14 14 9 10 12 12 10.8±1.50 M
62 M 13 13 10 10 10 11 10.3±0.50 M
63 M 14 12 11 12 13 11 11.8±0.96 M
64 M 12 11 9 10 8 9 9.0±0.82 M
65 M 8 11 8 10 9 9 9.0±0.82 M
66 M 13 13 9 10 9 10 9.5±0.58 M
67 M 13 14 10 13 10 10 10.8±1.50 M
68 M 13 13 10 11 10 12 10.8±0.96 M
69 M 11 12 11 13 11 12 11.8±0.96 M
70 M 14 13 10 10 8 9 9.3±0.96 M
71 M 12 12 11 11 8 10 10.0±1.41 M
72 M 12 12 11 12 9 10 10.5±1.29 M
73 M 13 13 10 12 8 9 9.8±1.71 M
74 M 10 13 10 12 10 11 10.8±0.96 M
75 M 11 10 7 10 9 9 8.8±1.26 M
76 M 12 10 9 9 10 11 9.8±0.96 M
77 M 10 12 7 9 10 10 9.0±1.41 M
78 M 12 10 10 12 9 11 10.5±1.29 M
79 M 11 10 10 11 11 12 11.0±0.82 M
80 M 10 12 10 11 10 11 10.5±0.58 M
81 M 11 12 10 10 11 12 10.8±0.96 M
82 M 13 11 11 11 12 12 11.5±0.58 M
83 M 12 12 8 10 9 12 9.8±1.71 M
84 M 11 13 8 11 9 9 9.3±1.26 M
85 M 13 13 11 12 10 11 11.0±0.82 M
86 M 11 10 8 9 8 8 8.3±0.50 M
87 M 12 12 10 10 11 12 10.8±0.96 M
88 M 14 12 8 8 11 10 9.3±1.50 M
89 M 12 14 12 13 10 12 11.8±1.26 M
90 M 12 11 9 10 8 9 9.0±0.82 M
91 M 14 13 10 11 10 11 10.5±0.58 M
92 M 14 13 14 18 16 16 16.0±1.63 H
93 M 13 11 9 10 11 12 10.5±1.29 M
94 M 11 13 8 8 10 11 9.3±1.50 M
95 M 11 12 10 11 8 10 9.8±1.26 M
96 M 13 11 7 7 8 11 8.3±1.89 M
97 M 12 11 9 10 11 12 10.5±1.29 M
98 M 12 11 10 10 9 9 9.5±0.58 M
99 M 13 13 11 11 8 10 10.0±1.41 M
100 M 12 13 11 11 10 10 10.5±0.58 M
101 M 12 12 10 11 8 10 9.8±1.26 M
102 M 14 10 9 9 9 11 9.5±1.00 M
103 M 10 10 10 11 11 13 11.3±1.26 M
104 M 13 10 8 10 8 9 8.8±0.96 M
105 M 13 10 7 8 11 11 9.3±2.06 M
106 M 11 9 10 11 7 8 9.0±1.83 M
107 M 11 13 10 11 9 10 10.0±0.82 M
108 M 10 10 10 10 8 8 9.0±1.15 M
109 M 12 14 6 8 11 11 9.0±2.45 M
110 M 12 12 10 11 10 10 10.3±0.50 M
111 M 12 12 9 10 8 9 9.0±0.82 M
112 M 10 10 8 9 9 10 9.0±0.82 M
113 M 12 11 11 12 10 11 11.0±0.82 M
114 M 11 11 11 12 11 11 11.3±0.50 M
115 M 11 12 11 12 8 8 9.8±2.06 M
116 M 13 12 10 11 9 10 10.0±0.82 M
117 M 10 11 10 11 10 11 10.5±0.58 M
118 M 11 11 10 11 6 9 9.0±2.16 M
119 M 13 14 8 9 8 9 8.5±0.58 M
120 M 10 12 10 10 10 12 10.5±1.00 M
121 M 14 14 8 9 8 9 8.5±0.58 M
122 M 11 9 11 12 10 11 11.0±0.82 M
123 M 10 8 8 8 8 9 8.3±0.50 M
124 M 12 11 10 10 8 9 9.3±0.96 M
125 M 13 13 10 11 9 9 9.8±0.96 M
126 M 10 12 10 11 10 10 10.3±0.50 M
127 M 13 12 10 12 10 11 10.8±0.96 M
128 M 11 10 10 12 10 10 10.5±1.00 M
129 M 13 12 10 11 9 11 10.3±0.96 M
130 M 12 12 9 11 11 12 10.8±1.26 M
131 M 14 14 8 10 9 11 9.5±1.29 M
132 M 14 11 10 10 9 10 9.8±0.50 M
133 M 11 12 11 12 9 9 10.3±1.50 M
134 M 12 11 9 10 8 8 8.8±0.96 M
135 M 10 11 8 10 8 8 8.5±1.00 M
136 M 13 13 10 10 8 10 9.5±1.00 M
137 M 12 14 11 12 12 12 11.8±0.50 M
138 M 9 12 10 11 11 11 10.8±0.50 M
139 M 12 11 8 11 9 12 10.0±1.83 M
140 M 10 11 10 10 8 9 9.3±0.96 M
141 M 13 12 10 11 9 10 10.0±0.82 M
142 M 14 11 10 11 9 10 10.0±0.82 M
143 M 12 13 10 11 9 10 10.0±0.82 M
144 M 10 11 6 6 11 8 7.8±2.36 M
145 M 14 13 10 11 6 9 9.0±2.16 M
146 M 11 13 11 12 9 10 10.5±1.29 M
147 M 12 12 13 12 10 12 11.8±1.26 M
148 M 14 13 11 9 9 11 10.0±1.15 M
149 M 13 12 9 11 10 10 10.0±0.82 M
150 M 12 14 9 8 8 8 8.3±0.50 M
151 M 12 12 9 10 10 11 10.0±0.82 M
152 M 14 11 6 11 8 9 8.5±2.08 M
153 M 14 11 9 11 8 9 9.3±1.26 M
154 M 12 9 5 10 8 8 7.8±2.06 M
155 M 12 13 10 11 8 9 9.5±1.29 M
156 M 13 13 8 10 9 8 8.8±0.96 M
157 M 11 10 10 10 7 10 9.3±1.50 M
158 M 11 12 8 8 8 8 8.0±0.00 M
159 M 12 12 10 10 9 10 9.8±0.50 M
160 M 11 12 11 10 9 9 9.8±0.96 M
161 M 10 11 10 11 8 9 9.5±1.29 M
162 M 14 13 8 11 7 10 9.0±1.83 M
163 M 12 12 9 10 10 11 10.0±0.82 M
164 M 14 11 7 9 7 9 8.0±1.15 M
165 M 13 15 17 15 14 15 15.3±1.26 H
166 M 10 10 10 12 10 10 10.5±1.00 M
167 M 11 10 10 11 6 8 8.8±2.22 M
168 M 11 13 9 10 10 11 10.0±0.82 M
169 M 10 8 7 9 10 12 9.5±2.08 M
170 M 11 13 11 12 9 9 10.3±1.50 M
171 M 14 12 8 10 9 10 9.3±0.96 M
172 M 11 13 10 10 9 9 9.5±0.58 M
173 M 14 11 12 11 12 12 11.8±0.50 M
174 M 12 14 12 12 10 11 11.3±0.96 M
175 M 14 14 9 9 11 12 10.3±1.50 M
176 M 13 14 10 10 10 10 10.0±0.00 M
177 M 10 12 8 10 8 9 8.8±0.96 M
178 M 8 11 8 9 8 9 8.5±0.58 M
179 M 10 9 8 9 8 9 8.5±0.58 M
180 M 11 10 7 8 8 10 8.3±1.26 M
181 M 13 12 9 10 9 9 9.3±0.50 M
182 M 11 13 8 9 11 11 9.8±1.50 M
183 M 12 13 11 12 12 13 12.0±0.82 M
184 M 14 13 8 9 10 11 9.5±1.29 M
185 M 11 12 10 11 12 12 11.3±0.96 M
186 M 10 11 12 13 12 13 12.5±0.58 M
187 M 11 12 9 10 8 8 8.8±0.96 M
188 M 11 11 10 11 9 10 10.0±0.82 M
189 M 13 14 6 8 9 8 7.8±1.26 M
190 M 14 14 9 10 6 8 8.3±1.71 M
191 M 12 10 8 8 8 8 8.0±0.00 M
192 M 13 11 7 9 8 9 8.3±0.96 M
193 M 12 11 9 9 9 10 9.3±0.50 M
194 M 12 10 8 9 8 9 8.5±0.58 M
195 M 8 11 6 7 6 7 6.5±0.58 M
196 M 13 12 8 9 8 9 8.5±0.58 M
197 M 12 12 9 9 10 11 9.8±0.96 M
198 M 14 12 9 10 10 11 10.0±0.82 M
199 M 11 13 11 11 8 9 9.8±1.50 M
200 M 12 12 9 9 6 8 8.0±1.41 M
201 M 9 10 11 11 10 11 10.8±0.50 M
202 M 6 8 9 10 8 9 9.0±0.82 M
203 M 12 10 10 11 10 11 10.5±0.58 M
204 M 13 13 13 13 13 13 13.0±0.00 M
205 M 14 12 9 10 11 12 10.5±1.29 M
206 M 12 12 12 12 12 12 12.0±0.00 M
207 M 14 11 11 12 10 11 11.0±0.82 M
208 M 13 10 11 10 10 11 10.5±0.58 M
209 M 13 11 8 10 9 10 9.3±0.96 M
210 M 10 12 10 10 11 11 10.5±0.58 M
211 M 14 14 12 12 10 11 11.3±0.96 M
212 M 13 14 9 11 9 11 10.0±1.15 M
213 M 12 13 10 11 9 10 10.0±0.82 M
214 M 10 11 9 9 8 9 8.8±0.50 M
215 M 14 11 11 11 10 10 10.5±0.58 M
216 M 14 11 8 8 7 8 7.8±0.50 M
217 M 13 11 11 12 10 11 11.0±0.82 M
218 M 12 14 9 10 10 10 9.8±0.50 M
219 M 11 13 8 9 8 8 8.3±0.50 M
220 M 12 11 11 12 8 9 10.0±1.83 M
221 M 13 14 10 11 9 10 10.0±0.82 M
222 M 13 14 9 9 9 10 9.3±0.50 M
223 M 13 10 8 9 9 10 9.0±0.82 M
224 M 14 12 9 10 9 10 9.5±0.58 M
225 M 14 12 7 8 8 8 7.8±0.50 M
226 M 12 13 11 7 10 10 9.5±1.73 M
227 M 15 15 15 14 17 15 15.3±1.26 H
228 M 14 14 9 9 8 9 8.8±0.50 M
229 M 11 14 9 10 9 10 9.5±0.58 M
230 M 8 11 8 8 10 12 9.5±1.91 M
231 M 14 12 7 8 8 9 8.0±0.82 M
232 M 9 10 9 11 9 10 9.8±0.96 M
233 M 10 12 8 10 10 11 9.8±1.26 M
234 M 14 11 8 9 10 10 9.3±0.96 M
235 M 14 12 8 9 8 9 8.5±0.58 M
236 M 14 13 8 9 8 9 8.5±0.58 M
237 M 11 9 9 9 7 9 8.5±1.00 M
238 M 11 12 11 11 8 9 9.8±1.50 M
239 M 11 14 9 10 9 11 9.8±0.96 M
240 M 14 14 15 15 18 14 15.5±1.73 H
241 M 11 11 8 10 7 8 8.3±1.26 M
242 M 14 12 10 11 9 11 10.3±0.96 M
243 M 13 14 9 10 11 11 10.3±0.96 M
244 M 10 10 8 10 10 10 9.5±1.00 M
245 M 11 10 9 10 10 10 9.8±0.50 M
246 M 10 10 8 9 10 11 9.5±1.29 M
247 M 11 10 6 10 10 10 9.0±2.00 M
248 M 9 9 9 9 8 9 8.8±0.50 M
249 M 14 13 9 11 10 10 10.0±0.82 M
250 M 14 11 8 9 9 10 9.0±0.82 M
251 M 13 11 11 11 9 9 10.0±1.15 M
252 M 12 12 6 7 7 8 7.0±0.82 M
253 M 9 12 8 9 11 12 10.0±1.83 M
254 M 12 12 8 10 8 9 8.8±0.96 M
255 M 13 11 10 10 9 10 9.8±0.50 M
256 M 13 11 9 10 9 10 9.5±0.58 M
257 M 12 12 10 10 9 10 9.8±0.50 M
258 M 10 10 7 8 7 8 7.5±0.58 M
259 M 14 12 8 10 9 10 9.3±0.96 M
260 M 11 12 8 8 8 9 8.3±0.50 M
261 M 12 10 8 9 10 11 9.5±1.29 M
262 M 10 11 9 9 8 8 8.5±0.58 M
263 M 10 11 7 8 10 11 9.0±1.83 M
264 M 12 10 8 8 9 10 8.8±0.96 M
265 M 13 11 8 10 8 8 8.5±1.00 M
266 M 11 11 9 9 9 9 9.0±0.00 M
267 M 11 14 9 10 10 10 9.8±0.50 M
268 M 13 10 7 8 11 11 9.3±2.06 M
269 M 12 11 9 10 9 9 9.3±0.50 M
270 M 11 13 9 9 9 9 9.0±0.00 M
271 M 8 11 7 8 6 9 7.5±1.29 M
272 M 12 12 8 10 10 11 9.8±1.26 M
273 M 11 12 7 9 9 11 9.0±1.63 M
274 M 12 13 10 10 8 8 9.0±1.15 M
275 M 12 13 8 8 8 9 8.3±0.50 M
276 M 13 13 15 13 18 15 15.3±2.06 H
277 M 13 13 14 14 18 16 15.5±1.91 H
278 M 12 10 9 9 9 10 9.3±0.50 M
279 M 12 13 9 10 7 9 8.8±1.26 M
280 M 14 12 9 10 10 10 9.8±0.50 M
281 M 12 11 9 10 8 8 8.8±0.96 M
282 M 13 12 9 9 9 10 9.3±0.50 M

Table 1

Chi square analysis of segregating individuals in F2 and F3 population of J411×asd1"

世代
Generation
表型
Phenotype
观察值
Observed count
(O)
期望值
Expected count
(E)
(O-E)2/E χ2 P (df=1)
F2 退化表型 Degenerative phenotype 281 296 0.76 1.01 0.315
非退化表型Nondegenerative phenotype 902 887 0.25
合计 Total 1183 1183 1.01
F3 退化表型 Degenerative phenotype 276 296 1.35 3.15 0.076
非退化表型Nondegenerative phenotype 927 887 1.80
合计 Total 1183 1183 3.15

Table S2

SNPs between parents and bulks of J411×asd1"

染色体
Chr.
SNP统计
Number of SNPs
双亲间SNP
SNPs between parents
F2子代SNP
SNPs between F2 bulks
双亲与子代间综合SNP
SNPs between parents and bulks
SNP分布
Distribution of SNPs
1A 713 445 184 34 均匀分布 Uniform distribution
1B 954 581 283 43 均匀分布 Uniform distribution
1D 478 368 111 29 均匀分布 Uniform distribution
2A 847 570 235 60 均匀分布 Uniform distribution
2B 1035 633 325 54 均匀分布 Uniform distribution
2D 768 542 232 39 均匀分布 Uniform distribution
3A 769 517 194 39 均匀分布 Uniform distribution
3B 1060 648 343 85 均匀分布 Uniform distribution
3D 567 389 191 39 均匀分布 Uniform distribution
4A 776 516 215 43 均匀分布 Uniform distribution
4B 600 395 171 36 均匀分布 Uniform distribution
4D 449 332 96 20 均匀分布 Uniform distribution
5A 764 499 195 34 均匀分布 Uniform distribution
5B 974 622 323 57 均匀分布 Uniform distribution
5D 557 392 135 37 均匀分布 Uniform distribution
6A 654 426 200 23 均匀分布 Uniform distribution
6B 1023 604 293 53 均匀分布 Uniform distribution
6D 429 314 104 39 均匀分布 Uniform distribution
7A 1089 681 370 87 富集于染色体短臂末端Enriched at the end of 7AS
7B 909 535 283 39 均匀分布 Uniform distribution
7D 762 581 151 42 均匀分布 Uniform distribution

Fig. 3

Major mutant gene of asd1 was located on chromosome 7AS (A) ED correlation. (B) SNPs in 0-60 Mb region of chromosome 7A."

Table S3

The sequence information of KASP markers"

标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
SP1 TCCAGCAAGTTGTAATCTGCATG CTGACCGTCCGTCCCCTA
TCCAGCAAGTTGTAATCTGCATA
SP2 CAGTGTCCTCGAGCTGCG ATGGCAAAAACGTAACGACC
CAGTGTCCTCGAGCTGCA
SP3 CCGTGTGCATCGACAAGCTG TGGGACGTGAAAGTGGTCGT
CCGTGTGCATCGACAAGCTA
SP4 CCTGAGCAGTATCTTTCCATCTTT TCTGCCAAGACAAGAATGCA
CCTGAGCAGTATCTTTCCATCTTC
SPT82 GGTCTCGGACATGAGCTTCTCG CCGACGAGTTCATCTCCTCCT
GGTCTCGGACATGAGCTTCTCA
SP6 GTGAGGTCGCTGAACTTGC CCGGTACCTCATCGAGTACAG
GTGAGGTCGCTGAACTTGT
SP7 GCCCTAACCTCCCCTGGC CTTTGTGCGTGGCTGATG
GCCCTAACCTCCCCTGGT

Fig. 4

Genetic linkage map on chromosome 7A by KASP markers (A) genetic map of mutant gene, and the orange line represents the location of the predicted target gene. (B) LOD curve detected based on spikelet apical degeneration phenotype of J411×asd1 F2 population."

[1] 余泽高, 许立俊. 小麦穗部性状间的相关及穗粒数改良途径的研究. 湖北农业科学, 2002, (6): 38-40.
Yu Z G, Xu L J. Analysis of correlation of spike-section characteristics and way of reform kernel number in wheat. Hubei Agric Sci, 2002, (6): 38-40.
[2] 王兆龙, 曹卫星, 戴廷波. 小麦穗粒数形成的基因型差异及增粒途径分析. 作物学报, 2001, 27: 236-242.
Wang Z L, Cao W X, Dai T B. Genotypic differences in formation of kernel number per spike and analysis of improvement approaches in wheat. Acta Agron Sin, 2001, 27: 236-242.
[3] Zhang B, Liu X, Xu W N, Chang J Z, Li A, Mao X G, Zhang X Y, Jing R L. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci Rep, 2015, 5: 12211.
doi: 10.1038/srep12211 pmid: 26197925
[4] 徐伟娜. 小麦穗发育相关基因TaSPL20的生物学功能分析. 中国农业科学院硕士学位论文,北京, 2017.
Xu W N. Biological Function of Ear Development Related Gene TaSPL20 from Wheat (Triticum aestivum L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2017.
[5] Zhang B, Xu W N, Liu X, Mao X G, Li A, Wang J Y, Chang X P, Zhang X Y, Jing R L. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP box genes governing yield-related traits in hexaploid wheat. Plant Physiol, 2017, 174: 1177-1191.
doi: 10.1104/pp.17.00113 pmid: 28424214
[6] Wang Y G, Yu H P, Tian C H, Sajjad M, Gao C X, Tong Y P, Wang X F, Jiao Y L. Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol, 2017, 175: 746-757.
doi: 10.1104/pp.17.00694
[7] Oxana D, Caroline P, Richard S, Petr M, Ekaterina B, Florent M, Audrey C, Nobuyoshi W, Elisa P, Nadine G, Véronique G, Charles P, Yuriy L O, Alexander A K, Hélène B, Elena S, Lyudmila L, Jerome S. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol, 2015, 167: 189-199.
doi: 10.1104/pp.114.250043
[8] Li Y P, Li L, Zhao M C, Guo L, Guo X X, Zhao D, Batool A, Dong B D, Xu H X, Cui S J, Zhang A M, Fu X D, Li J M, Jing R L, Liu X G. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J, 2021, 19: 1141-1154.
doi: 10.1111/pbi.13535
[9] Dixon L E, Greenwood J R, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain S M, Boden S A. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell, 2018, 30: 563-581.
doi: 10.1105/tpc.17.00961
[10] Boden S A, Cavanagh C, Cullis B R, Ramm K, Greenwood J, Finnegan E J, Trevaskis B, Swain S M. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plant, 2015, 1: 14016.
doi: 10.1038/nplants.2014.16
[11] Okada T, Jayasinghe J E A R M, Eckermann P, Watson-Haigh N S, Warner P, Hendrikse Y, Baes M, Tucker E J, Laga H, Kato K, Albertsen M, Wolters P, Fleury D, Baumann U, Whitford R. Effects of Rht-B1and Ppd-D1 loci on pollinator traits in wheat. Theor Appl Genet, 2019, 132: 1965-1979.
doi: 10.1007/s00122-019-03329-w
[12] 周丽敏. 小麦穗发育异常相关基因 TaSDA1的定位研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2016.
Zhou L M. Mapping Research of TASDA1 Gene of Triricum aestivum Spike Development Atrophy1. MS Thesis of Northwest A&F University of Agriculture and Forestry, Yangling, Shaanxi, China, 2016.
[13] 蒋方山, 郭营, 许云峰, 李瑞军, 李斯深. EMS诱变的小麦基部小穗不孕突变体的鉴定与小穗形态发育. 麦类作物学报, 2008, 28: 249-253.
Jiang F S, Guo Y, Xu Y F, Li R J, Li S S. Identification of a distal spikelet sterility mutant in wheat and spikelet morphological development. J Triticeae Crops, 2008, 28: 249-253.
[14] 顾晶晶. 小麦穗发育突变体SMS1的鉴定和基因定位. 河南农业大学硕士学位论文,河南郑州, 2017.
Gu J J. Identification and Genetic Mapping of a Sterile and Malformed Spike 1 Gene in Common Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017.
[15] Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci USA, 2019, 116: 5182-5187.
doi: 10.1073/pnas.1815465116
[16] Xia C, Zhang L C, Zou C, Gu Y Q, Duan J L, Zhao G Y, Wu J J, Liu Y, Fang X H, Gao L F, Jiao Y N, Sun J Q, Pan Y H, Liu X, Jia J Z, Kong X Y. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun, 2017, 8:15407.
doi: 10.1038/ncomms15407
[17] Ni F, Qi J, Hao Q Q, Bo L, Luo M C, Wang Y, Chen F J, Wang S Y, Zhang C Z, Epstein L, Zhao X Y, Wang H G, Zhang X S, Chen C X, Sun L Z, Fu D L. Wheat Ms2encodes for an orphan protein that confers male sterility in grass species. Nat Commun, 2017, 8: 15121.
doi: 10.1038/ncomms15121
[18] 翟虎渠, 刘秉华. 矮败小麦创制与应用. 中国农业科学, 2009, 42: 4127-4131.
Zhai H Q, Liu B H. The innovation of dwarf male sterile wheat and its application in wheat breading. Sci Agric Sin, 2009, 42: 4127-4131.
[19] Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100
[20] Li C X, Lin H Q, Chen A, Lau M, Jernstedt J, Dubcovsky J. Wheat VRN1, FUL2 and FUL3play critical and redundant roles in spikelet development and spike determinacy. Development, 2019, 146: dev175398.
doi: 10.1242/dev.175398
[21] Jill C P, Elizabeth A K. Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics, 2006, 174: 421-437.
doi: 10.1534/genetics.106.057125
[22] Sun C F, Niu Y C, Ye X, Dong J J, Hu W S, Zeng Q K, Chen Z H, Tian Y Y, Zhang J, Lu M X. Development of a high-density linkage map and mapping of the three-pistil gene (Pis1) in wheat using GBS markers. BMC Gnomics, 2017, 18: 567.
[23] Zou C, Wang P X, Xu Y B. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J, 2016, 14: 1941-1955.
doi: 10.1111/pbi.12559
[24] Robert K, Nicholas B, Ricardo R G, Jane A C, Archana P, Keywan H P, Cristobal U, Andrew L P. Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One, 2015, 10: e0137549.
doi: 10.1371/journal.pone.0137549
[25] Yao Z, You F M, N' Diaye A, Knox R E, McCartney C, Hiebert C W, Pozniak C, Xu W. Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinformatics, 2020, 21: 360.
doi: 10.1186/s12859-020-03704-1
[26] Hill J T, Demarest B L, Bisgrove B W, Bushra G, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112
[27] 张顺麟. 冬小麦淀粉合成关键基因TaSSIVb特性分析与等位变异挖掘. 中国农业科学院硕士学位论文,北京, 2019.
Zhang S L. Characterization of Starch Synthesis Key Gene TaSSIVb and Mining of its Mutation Alleles in Winter Wheat. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2019.
[28] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[29] Koji M, Shigeo T, Hironori K, Yasunari O. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J, 2002, 29: 169-181.
doi: 10.1046/j.0960-7412.2001.01203.x
[30] 李存东, 曹卫星, 戴廷波, 严美春, 王兆龙. 小麦小花原基分化和退化的动态模式与特征. 中国农业科学, 1999, 32(5): 98-100.
Li C D, Cao W X, Dai T B, Yan M L, Wang Z L. Study on dynamic models and characteristics of floret primordium differentiation and degeneration in wheat. Sci Agric Sin, 1999, 32(5): 98-100.
[31] Kuzay S, Xu Y F, Zhang J L, Katz A, Pearce S, Su Z Q, Fraser M, Anderson J A, Brown-Guedira G, Witt N D, Haugrud A P, Faris J D, Akhunov E, Bai G H, Dubcovsky J. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet, 2019, 132: 2689-2705.
doi: 10.1007/s00122-019-03382-5
[32] Corsi B, Obinu L, Zanella C M, Cutrupi S, Day R, Geyer M, Lillemo M, Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hart L, Cockram J. Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theor Appl Genet, 2021, 134: 1435-1454.
doi: 10.1007/s00122-021-03781-7
[33] Tang Y L, Li J, Wu Y Q, Wei H T, Li C S, Yang W Y, Chen F. Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat-derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. J Integr Agric, 2011, 10: 1665-1680.
[34] Jantasuriyarat C, Vales M I, C Watson J W, Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 108: 261-273.
pmid: 13679977
[35] 宋全昊, 刘路平, 李法计, 田芳慧, 孙道杰. 小麦穗部发育多效基因的遗传分析与基因定位. 西北植物学报, 2013, 33: 643-648.
Song Q H, Liu L P, Li F J, Tian F H, Sun D J. Genetic analysis and gene mapping of the spike development pleiotropic gene in wheat. Acta Bot Boreali-Occident Sin, 2013, 33: 643-648.
[36] Tomio T, Kenji N, Kazuko M, Tatsuro H. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet, 2010, 120: 875-893.
doi: 10.1007/s00122-009-1218-8 pmid: 20151298
[37] Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J I, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J, 2012, 69: 168-180.
doi: 10.1111/j.1365-313X.2011.04781.x
[38] Huang L J, Hua K, Xu R, Zeng D L, Wang R C, Dong G J, Zhang G Z, Lu X L, Fang N, Wang D K, Duan P G, Zhang B L, Liu Z P, Li N, Luo Y H, Qian Q, Yao S G, Li Y H. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell, 2021, 33: 1212-1228.
doi: 10.1093/plcell/koab041
[39] Akiko Y, Yoshihiro O, Hidemi K, Fumio T S, Hiro Y H. ABERRANT SPIKELET and PANICLE1, encoding a TOPLESS- related transcriptional corepressor, is involved in the regulation of meristem fate in rice. Plant J, 2021, 70: 327-339.
doi: 10.1111/j.1365-313X.2011.04872.x
[40] Heng Y Q, Wu C Y, Long Y, Luo S, Ma J, Chen J, Liu J F, Zhang H, Ren Y L, Wang M, Tan J J, Zhu S S, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Cheng Z J, Wan J M. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018, 30: 889-906.
doi: 10.1105/tpc.17.00998
[41] Wang Q L, Sun A Z, Chen S T, Chen L S, Guo F Q. SPL6 represses signaling outputs of ER stress in control of panicle cell death in rice. Nat Plant, 2018, 4: 280-288.
doi: 10.1038/s41477-018-0131-z
[42] Zafar S A, Patil S B, Uzair M, Fang J J, Zhao J F, Guo T T, Yuan S J, Uzair M, Luo Q, Shi J X, Schreiber L, Li X Y. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytol, 2020, 225: 356-375.
doi: 10.1111/nph.16133
[43] Jose F G, Behzad T, Zoe A W. Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol, 2015, 57: 876-891.
doi: 10.1111/jipb.12425
[44] Liu Z, Lin S, Shi J X, Yu J, Zhu L, Yang X J, Zhang D B, Liang W Q. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. Plant J, 2017, 91: 263-277.
doi: 10.1111/tpj.13561
[1] ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227.
[2] TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bing-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254.
[3] FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314.
[4] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[5] LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399.
[6] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat  [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[7] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[8] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[9] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[10] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[11] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[12] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[13] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[14] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[15] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Qiu Zhaofeng; Zhai Liye. THE ESTIMATION FOR SURFACE AREA OF SPIKE AND AWN OF THE COMMON WHEAT[J]. Acta Agron Sin, 1985, 11(02): 138 .
[2] XIE Li-Hong;YANG Shi-Hua;CHEN Neng;DUAN Bin-Wu;ZHU Zhi-Wei;LIAO Xi-Yuan. Cooked Rice Texture and Starch RVA Properties for Indica Rice under Different Ecological Conditions[J]. Acta Agron Sin, 2006, 32(10): 1479 -1484 .
[3] SHI Hong-Ru;ZHANG Wen-Zhong;XIE Wen-Xiao;YANG Qing;ZHANG Zhen-Yu;HAN Ya-Dong;XU Zheng-Jin;CHEN Wen-Fu. Analysis of Matter Production Characteristics under Different Nitrogen Application Patterns of Japonica Super Rice in North China[J]. Acta Agron Sin, 2008, 34(11): 1985 -1993 .
[4] XING Li-Ping;WANG Hua-Zhong;JIANG Zheng-Ning;NI Jin-Long;CAO Ai-Zhong;YU Ling;CHEN Pei-Du. Transformation of Wheat Thaumatin-Like Protein Gene and Diseases Resistance Analysis of the Transgenic Plants[J]. Acta Agron Sin, 2008, 34(03): 349 -354 .
[5] XIA Jiu-Cheng;YANG Ke-Cheng;ZHANG Huai-Yu. Effects of Population Improvement by Mass Selection on the Tropical Maize Population MW964[J]. Acta Agron Sin, 2004, 30(10): 980 -989 .
[6] Lin zhonghui;Mo Xingguo;Xiang Yueqing. Research Advances on Crop Growth Models[J]. Acta Agron Sin, 2003, 29(05): 750 -758 .
[7] Zhang Xiaoming, Shi Chunhai, HISAMITSU Horiuchi, KATSURA Tomita Bao Genliang, Feng Shuiying, Ye Shenghai. The Differences of Grain Amylose Contents in Different Panicle Parts of Japonica Rice Variety[J]. Acta Agronomica Sinica, 2002, 28(01): 99 -103 .
[8]

ZHOU Dong-Qin;ZHU Yan;TIAN Yong-Chao;YAO Xia;CAO Wei-Xing

. Monitoring Leaf Nitrogen Accumulation with Canopy Spectral Reflectance in Rice

[J]. Acta Agron Sin, 2006, 32(09): 1316 -1322 .
[9] FANG Dong;LÜ Jun-Hong;GUO Wang-Zhen;ZHANG Tian-Zhen. Cloning and Mapping of a New MYB Transcription Factor (GhTF1) in Cotton[J]. Acta Agron Sin, 2008, 34(02): 207 -211 .
[10] Yang Xiuhong, Wu Zongpu, Zhang Guodong. Correlations between Characteristics of Roots and Those of Aerial Parts of Soybean Varieties[J]. Acta Agronomica Sinica, 2002, 28(01): 72 -75 .