Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1905-1913.doi: 10.3724/SP.J.1006.2022.11069
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
DU Qi-Di1,2(), GUO Hui-Jun2, XIONG Hong-Chun2, XIE Yong-Dun2, ZHAO Lin-Shu2, GU Jia-Yu2, ZHAO Shi-Rong2, DING Yu-Ping2, SONG Xi-Yun1, LIU Lu-Xiang2,*()
[1] | 余泽高, 许立俊. 小麦穗部性状间的相关及穗粒数改良途径的研究. 湖北农业科学, 2002, (6): 38-40. |
Yu Z G, Xu L J. Analysis of correlation of spike-section characteristics and way of reform kernel number in wheat. Hubei Agric Sci, 2002, (6): 38-40. | |
[2] | 王兆龙, 曹卫星, 戴廷波. 小麦穗粒数形成的基因型差异及增粒途径分析. 作物学报, 2001, 27: 236-242. |
Wang Z L, Cao W X, Dai T B. Genotypic differences in formation of kernel number per spike and analysis of improvement approaches in wheat. Acta Agron Sin, 2001, 27: 236-242. | |
[3] |
Zhang B, Liu X, Xu W N, Chang J Z, Li A, Mao X G, Zhang X Y, Jing R L. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci Rep, 2015, 5: 12211.
doi: 10.1038/srep12211 pmid: 26197925 |
[4] | 徐伟娜. 小麦穗发育相关基因TaSPL20的生物学功能分析. 中国农业科学院硕士学位论文,北京, 2017. |
Xu W N. Biological Function of Ear Development Related Gene TaSPL20 from Wheat (Triticum aestivum L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2017. | |
[5] |
Zhang B, Xu W N, Liu X, Mao X G, Li A, Wang J Y, Chang X P, Zhang X Y, Jing R L. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP box genes governing yield-related traits in hexaploid wheat. Plant Physiol, 2017, 174: 1177-1191.
doi: 10.1104/pp.17.00113 pmid: 28424214 |
[6] |
Wang Y G, Yu H P, Tian C H, Sajjad M, Gao C X, Tong Y P, Wang X F, Jiao Y L. Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol, 2017, 175: 746-757.
doi: 10.1104/pp.17.00694 |
[7] |
Oxana D, Caroline P, Richard S, Petr M, Ekaterina B, Florent M, Audrey C, Nobuyoshi W, Elisa P, Nadine G, Véronique G, Charles P, Yuriy L O, Alexander A K, Hélène B, Elena S, Lyudmila L, Jerome S. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol, 2015, 167: 189-199.
doi: 10.1104/pp.114.250043 |
[8] |
Li Y P, Li L, Zhao M C, Guo L, Guo X X, Zhao D, Batool A, Dong B D, Xu H X, Cui S J, Zhang A M, Fu X D, Li J M, Jing R L, Liu X G. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J, 2021, 19: 1141-1154.
doi: 10.1111/pbi.13535 |
[9] |
Dixon L E, Greenwood J R, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain S M, Boden S A. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell, 2018, 30: 563-581.
doi: 10.1105/tpc.17.00961 |
[10] |
Boden S A, Cavanagh C, Cullis B R, Ramm K, Greenwood J, Finnegan E J, Trevaskis B, Swain S M. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plant, 2015, 1: 14016.
doi: 10.1038/nplants.2014.16 |
[11] |
Okada T, Jayasinghe J E A R M, Eckermann P, Watson-Haigh N S, Warner P, Hendrikse Y, Baes M, Tucker E J, Laga H, Kato K, Albertsen M, Wolters P, Fleury D, Baumann U, Whitford R. Effects of Rht-B1and Ppd-D1 loci on pollinator traits in wheat. Theor Appl Genet, 2019, 132: 1965-1979.
doi: 10.1007/s00122-019-03329-w |
[12] | 周丽敏. 小麦穗发育异常相关基因 TaSDA1的定位研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2016. |
Zhou L M. Mapping Research of TASDA1 Gene of Triricum aestivum Spike Development Atrophy1. MS Thesis of Northwest A&F University of Agriculture and Forestry, Yangling, Shaanxi, China, 2016. | |
[13] | 蒋方山, 郭营, 许云峰, 李瑞军, 李斯深. EMS诱变的小麦基部小穗不孕突变体的鉴定与小穗形态发育. 麦类作物学报, 2008, 28: 249-253. |
Jiang F S, Guo Y, Xu Y F, Li R J, Li S S. Identification of a distal spikelet sterility mutant in wheat and spikelet morphological development. J Triticeae Crops, 2008, 28: 249-253. | |
[14] | 顾晶晶. 小麦穗发育突变体SMS1的鉴定和基因定位. 河南农业大学硕士学位论文,河南郑州, 2017. |
Gu J J. Identification and Genetic Mapping of a Sterile and Malformed Spike 1 Gene in Common Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017. | |
[15] |
Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci USA, 2019, 116: 5182-5187.
doi: 10.1073/pnas.1815465116 |
[16] |
Xia C, Zhang L C, Zou C, Gu Y Q, Duan J L, Zhao G Y, Wu J J, Liu Y, Fang X H, Gao L F, Jiao Y N, Sun J Q, Pan Y H, Liu X, Jia J Z, Kong X Y. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun, 2017, 8:15407.
doi: 10.1038/ncomms15407 |
[17] |
Ni F, Qi J, Hao Q Q, Bo L, Luo M C, Wang Y, Chen F J, Wang S Y, Zhang C Z, Epstein L, Zhao X Y, Wang H G, Zhang X S, Chen C X, Sun L Z, Fu D L. Wheat Ms2encodes for an orphan protein that confers male sterility in grass species. Nat Commun, 2017, 8: 15121.
doi: 10.1038/ncomms15121 |
[18] | 翟虎渠, 刘秉华. 矮败小麦创制与应用. 中国农业科学, 2009, 42: 4127-4131. |
Zhai H Q, Liu B H. The innovation of dwarf male sterile wheat and its application in wheat breading. Sci Agric Sin, 2009, 42: 4127-4131. | |
[19] |
Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100 |
[20] |
Li C X, Lin H Q, Chen A, Lau M, Jernstedt J, Dubcovsky J. Wheat VRN1, FUL2 and FUL3play critical and redundant roles in spikelet development and spike determinacy. Development, 2019, 146: dev175398.
doi: 10.1242/dev.175398 |
[21] |
Jill C P, Elizabeth A K. Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics, 2006, 174: 421-437.
doi: 10.1534/genetics.106.057125 |
[22] | Sun C F, Niu Y C, Ye X, Dong J J, Hu W S, Zeng Q K, Chen Z H, Tian Y Y, Zhang J, Lu M X. Development of a high-density linkage map and mapping of the three-pistil gene (Pis1) in wheat using GBS markers. BMC Gnomics, 2017, 18: 567. |
[23] |
Zou C, Wang P X, Xu Y B. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J, 2016, 14: 1941-1955.
doi: 10.1111/pbi.12559 |
[24] |
Robert K, Nicholas B, Ricardo R G, Jane A C, Archana P, Keywan H P, Cristobal U, Andrew L P. Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One, 2015, 10: e0137549.
doi: 10.1371/journal.pone.0137549 |
[25] |
Yao Z, You F M, N' Diaye A, Knox R E, McCartney C, Hiebert C W, Pozniak C, Xu W. Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinformatics, 2020, 21: 360.
doi: 10.1186/s12859-020-03704-1 |
[26] |
Hill J T, Demarest B L, Bisgrove B W, Bushra G, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 |
[27] | 张顺麟. 冬小麦淀粉合成关键基因TaSSIVb特性分析与等位变异挖掘. 中国农业科学院硕士学位论文,北京, 2019. |
Zhang S L. Characterization of Starch Synthesis Key Gene TaSSIVb and Mining of its Mutation Alleles in Winter Wheat. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2019. | |
[28] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[29] |
Koji M, Shigeo T, Hironori K, Yasunari O. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J, 2002, 29: 169-181.
doi: 10.1046/j.0960-7412.2001.01203.x |
[30] | 李存东, 曹卫星, 戴廷波, 严美春, 王兆龙. 小麦小花原基分化和退化的动态模式与特征. 中国农业科学, 1999, 32(5): 98-100. |
Li C D, Cao W X, Dai T B, Yan M L, Wang Z L. Study on dynamic models and characteristics of floret primordium differentiation and degeneration in wheat. Sci Agric Sin, 1999, 32(5): 98-100. | |
[31] |
Kuzay S, Xu Y F, Zhang J L, Katz A, Pearce S, Su Z Q, Fraser M, Anderson J A, Brown-Guedira G, Witt N D, Haugrud A P, Faris J D, Akhunov E, Bai G H, Dubcovsky J. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet, 2019, 132: 2689-2705.
doi: 10.1007/s00122-019-03382-5 |
[32] |
Corsi B, Obinu L, Zanella C M, Cutrupi S, Day R, Geyer M, Lillemo M, Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hart L, Cockram J. Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theor Appl Genet, 2021, 134: 1435-1454.
doi: 10.1007/s00122-021-03781-7 |
[33] | Tang Y L, Li J, Wu Y Q, Wei H T, Li C S, Yang W Y, Chen F. Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat-derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. J Integr Agric, 2011, 10: 1665-1680. |
[34] |
Jantasuriyarat C, Vales M I, C Watson J W, Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 108: 261-273.
pmid: 13679977 |
[35] | 宋全昊, 刘路平, 李法计, 田芳慧, 孙道杰. 小麦穗部发育多效基因的遗传分析与基因定位. 西北植物学报, 2013, 33: 643-648. |
Song Q H, Liu L P, Li F J, Tian F H, Sun D J. Genetic analysis and gene mapping of the spike development pleiotropic gene in wheat. Acta Bot Boreali-Occident Sin, 2013, 33: 643-648. | |
[36] |
Tomio T, Kenji N, Kazuko M, Tatsuro H. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet, 2010, 120: 875-893.
doi: 10.1007/s00122-009-1218-8 pmid: 20151298 |
[37] |
Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J I, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J, 2012, 69: 168-180.
doi: 10.1111/j.1365-313X.2011.04781.x |
[38] |
Huang L J, Hua K, Xu R, Zeng D L, Wang R C, Dong G J, Zhang G Z, Lu X L, Fang N, Wang D K, Duan P G, Zhang B L, Liu Z P, Li N, Luo Y H, Qian Q, Yao S G, Li Y H. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell, 2021, 33: 1212-1228.
doi: 10.1093/plcell/koab041 |
[39] |
Akiko Y, Yoshihiro O, Hidemi K, Fumio T S, Hiro Y H. ABERRANT SPIKELET and PANICLE1, encoding a TOPLESS- related transcriptional corepressor, is involved in the regulation of meristem fate in rice. Plant J, 2021, 70: 327-339.
doi: 10.1111/j.1365-313X.2011.04872.x |
[40] |
Heng Y Q, Wu C Y, Long Y, Luo S, Ma J, Chen J, Liu J F, Zhang H, Ren Y L, Wang M, Tan J J, Zhu S S, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Cheng Z J, Wan J M. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018, 30: 889-906.
doi: 10.1105/tpc.17.00998 |
[41] |
Wang Q L, Sun A Z, Chen S T, Chen L S, Guo F Q. SPL6 represses signaling outputs of ER stress in control of panicle cell death in rice. Nat Plant, 2018, 4: 280-288.
doi: 10.1038/s41477-018-0131-z |
[42] |
Zafar S A, Patil S B, Uzair M, Fang J J, Zhao J F, Guo T T, Yuan S J, Uzair M, Luo Q, Shi J X, Schreiber L, Li X Y. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytol, 2020, 225: 356-375.
doi: 10.1111/nph.16133 |
[43] |
Jose F G, Behzad T, Zoe A W. Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol, 2015, 57: 876-891.
doi: 10.1111/jipb.12425 |
[44] |
Liu Z, Lin S, Shi J X, Yu J, Zhu L, Yang X J, Zhang D B, Liang W Q. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. Plant J, 2017, 91: 263-277.
doi: 10.1111/tpj.13561 |
[1] | ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227. |
[2] | TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bing-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254. |
[3] | FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314. |
[4] | CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350. |
[5] | LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399. |
[6] | WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408. |
[7] | WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133. |
[8] | FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770. |
[9] | HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842. |
[10] | LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786. |
[11] | WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729. |
[12] | ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760. |
[13] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[14] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[15] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
|