Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2978-2990.doi: 10.3724/SP.J.1006.2023.24247

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification of potato (Solanum tuberosum L.) PAL gene family and its expression analysis in abiotic stress and tuber anthocyanin synthesis

ZHU Jin-Yong1(), LIU Zhen1, ZENG Yu-Ting2, LI Zhi-Tao1, CHEN Li-Min1, LI Hong-Yang1, SHI Tian-Bin1, ZHANG Jun-Lian3, BAI Jiang-Ping1, LIU Yu-Hui1,*()   

  1. 1College of Agronomy, Gansu Agricultural University / State Key Laboratory of Aridland Crop Science (Gansu Agricultural University) / Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2Institute of Vegetable Sciences, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, Tibet, China
    3College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-11-05 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-11
  • Supported by:
    National Natural Science Foundation of China(31860398);Science and Technology Program of Gansu Province(22JR5RA834);China Agriculture Research System of MOF and MARA(CARS-09-P14);State Key Laboratory of Aridland Crop Science of China(GSCS-2021-Z02);Fuxi Talent Project of Gansu Agricultural University(Gaufx-02Y04);Scientific Research Startup Funds for Openly-recruited Doctors Agricultural University(GAU-KYQD-2020-11)

Abstract:

The phenylalanine ammonia-lyase (PAL) is the rate limiting enzyme and key enzyme in phenylpropane metabolism pathway, which plays an important role in plant growth. In this study, a total of 8 gene family members (StPALs) in potato (Solanum tuberosum L.) were identified by BlastP and Hmmer 3.1 software, and their bioinformation were analyzed by the ExPASy, CELLO, PlantCARE, and other online tool. We analyzed the relative expression pattern of StPAL genes in different tissues of double monoploid (DM) potato, as well as under abiotic stresses by RNA-seq in Potato Genome Sequencing Consortium (PGSC) database. We performed RNA-seq on white, red, and purple tuber skin and flesh of three potato cultivars, and the relative expression levels of StPALs genes in different colors tubers (flesh) of three hybrid progeny potatoes were detected by qPCR. StPAL genes were distributed on chromosomes 3, 5, 9, and 10, and eight StPALs were closely related to tobacco (Nicotiana tabacum) PAL. The cis-acting elements revealed that the promoter regions of StPAL genes contained many elements, including light response, stress response to adversity, hormone response, growth and development, and transcription factor binding elements. The results showed that StPAL2 was specifically expressed in stolons, and StPAL3/5/8 were mainly expressed in tubers and stolons. The relative expression level of StPAL3 gene were down-regulated under mannitol treatment, and the relative expression levels of StPAL3 and StPAL8 genes were up-regulated under heat stress. The above results suggested that StPALs might be involved in the tuber growth and abiotic stress response. By transcriptomic and qPCR analysis, the relative expression levels of 5 StPAL genes (StPAL3/4/5/6/8) were up-regulated in the flesh of color potato, suggesting that they may participate in the biosynthesis of anthocyanins in flesh. These results provide a theoretical basis for further understanding the StPAL gene family and analyzing the function of StPALs in potato.

Key words: potato, PAL genes family, abiotic stress, anthocyanin biosynthesis, expression analysis

Fig. 1

Tubers of three potato varieties with different colors[35]"

Fig. 2

Potato tuber phenotype of three hybrid progenies"

Table 1

Primer for qPCR used in this study"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
StEF-1α GGTCGTGTTGAGACTGGTGTGATC GCTTCGTGGTGCATCTCTACAGAC
PG2021549 CTCACAGCAGGAAGGAATCCAAGC TGAAGTTCCGAGCAGTAAGAAGCC
PG0031457 CTCACAGCAGGAAGGAATCCAAGC GCTCGGCACTCTGAACATGGTTAG
PG0005492 ATCCGACTAGGTGGTGGTGAGATG ATCCAATCACTGCTCGCCTTGAC
PG0023458 CACAGCGTCTGGTGACTTGGTAC GCGTCCAACAGTTCTCCATTAGGC
PG1021549 CTGCTGAGGCTGTGGACATCTTG TTGGCTACTTGGCTTACGGTGTTC
PG2021564 TGGAACGGTCACTGCCTCAGG CACTAACACCAGCCACACGGAAC
PG0019386 ACTGCCTCGGGTGATCTTGTCC ACTAATACCAGCAACACGGAACGC
PG0031365 GCCGAAGGAAGGACTTGCTCTTG CGGGCTTTCCATTCATCACCTCAG

Table 2

Physicochemical properties and subcellular localization of StPAL genes family"

基因名称
Gene
name
氨基酸长度
Amino acid
length
相对分子量
Molecular
weight (kD)
等电点
Point
isoelectric (pI)
亚细胞定位
Subcellular
localization
染色体定位
Chromosome
localization
PG0031457, StPAL1 435 48.34 5.84 细胞质Cytoplasmic Chr03
PG0005492, StPAL2 667 73.69 5.41 细胞质Cytoplasmic Chr05
PG0023458, StPAL3 707 77.51 6.07 细胞质Cytoplasmic Chr05
PG2021549, StPAL4 391 43.55 6.62 细胞质Cytoplasmic Chr09
PG1021549, StPAL5 722 78.49 6.04 细胞质Cytoplasmic Chr09
PG2021564, StPAL6 719 78.23 6.15 细胞质Cytoplasmic Chr09
PG0019386, StPAL7 689 75.46 6.28 叶绿体Chloroplast Chr10
PG0031365, StPAL8 711 77.54 5.86 细胞质Cytoplasmic Chr10

Fig. 3

Phylogenetic tree of PALs proteins of different species The red circles represent StPALs, the green pentagrams represent AtPALs, and the green hexagons represent NtPALs."

Fig. 4

Evolutionary relationship, gene structure, and conserved motif of StPALs gene family A: StPALs evolutionary tree. B: the exon/intron structure of StPALs. The blue boxes represent exons, and the black lines of the same length represent introns. The upstream/downstream area is indicated by a red box. C: the distribution of conserved motifs in StPALs. Different colored boxes represent 10 motifs."

Fig. 5

Putative cis-acting regulatory elements in the StPAL gene promoters"

Fig. 6

Relative expression pattern of StPALs genes in different tissues (A), different abiotic stresses treatments (B), and different potato skins and flesh (C) A: the relative expression level of 8 StPALs is taken as the logarithm with base 2, and the color scale is plotted using the log2FPKM of each gene. B: in the three abiotic stresses (salt, mannitol, and heat stress), the ratio of treatment to control is used. The logarithm based on 2 was taken, and the color scale is drawn with log2FC. C: the ratio of color cultivar/white cultivar in different potato skins and meat, take the logarithm based on 2, and draw the color scale with log2FC. XDS, LTS, and HMS represent the potato skins of “Xindaping”, “Lingtianhongmei”, and “Heimeiren”, respectively. XDF, LTF, and HMF represent the potato fleshes of “Xindaping”, “Lingtianhongmei”, and “Heimeiren”, respectively."

Fig. 7

Relative expression pattern of eight StPAL genes in potato tuber (skin and flesh) with different colors The relative expression pattern of 8 StPAL genes in white and colored potato skins and flesh. XDS, LTS, and HMS represent the potato skins of “Xindaping”, “Lingtianhongmei”, and “Heimeiren”, respectively. XDF, LTF, and HMF represent the potato fleshes of “Xindaping”, “Lingtianhongmei”, and “Heimeiren”, respectively. Data are means (±SEs) from three independent biological replicates. Different letters above the bars denote significant difference at P < 0.05."

Fig. 8

Relative expression pattern of eight StPAL genes in potato flesh of three hybrid progenies (Y, R, P) The relative expression pattern of 8 StPAL genes in Y, R, and P flesh. Data are means (±SEs) from three independent biological replicates. Different letters above the bars denote significant difference at P < 0.05. Abbreviations are the same as given in Fig. 2."

[1] 黄小贞, 赵德刚. 植物苯丙氨酸解氨酶表达调控机理的研究进展. 贵州农业科学, 2017, 45(4): 16-20.
Huang X Z, Zhao D G. Research progress in regulation and control mechanism of phenylalanine ammonia lyase in plants. Guizhou Agric Sci, 2017, 45(4): 16-20 (in Chinese with English abstract).
[2] 冯凯, 陈颖, 刘瑞, 马娟娟, 赵斌. 银杏类黄酮代谢研究进展. 西南林业大学学报(自然科学版), 2022, 42(1): 178-188.
Feng K, Chen Y, Liu R, Ma J J, Zhao B. Advances in flavonoid metabolism of Ginkgo biloba. J Southwest For Univ (Nat Sci Edn), 2022, 42(1): 178-188 (in Chinese with English abstract).
[3] Vanholme R, Demedts B B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol, 2010, 153: 895-905.
doi: 10.1104/pp.110.155119 pmid: 20472751
[4] 赵秀林, 王富荣, 徐凌云, 何华平, 臧程, 金伟. 红肉桃果实发育过程中色素含量及PAL活性的变化. 食品工业科技, 2012, 33(12): 125-127.
Zhao X L, Wang F R, Xu L Y, He H P, Zang C, Jin W. Changes of pigments content and PAL activity of blood-flesh peach during fruit development. Sci Technol Food Ind, 2012, 33(12): 125-127 (in Chinese with English abstract).
[5] Jiang Y M, Joyce D C. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul, 2003, 39: 171-174.
doi: 10.1023/A:1022539901044
[6] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析. 作物学报, 2022, 48: 1669-1682.
doi: 10.3724/SP.J.1006.2022.14111
Li J Y, Li H Y, Ye G J, Su W, Sun H H, Wang J. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period. Acta Agron Sin, 2022, 48: 1669-1682 (in Chinese with English abstract).
[7] 李进步, 方丽平, 张亚楠, 杨卫娟, 郭庆, 李雷, 毕彩丽, 杨荣志. 棉花抗蚜性与苯丙氨酸解氨酶活性的关系. 应用昆虫学报, 2008, 45: 422-425.
Li J B, Fang L P, Zhang Y N, Yang W J, Guo Q, Li L, Bi C L, Yang R Z. The relationship between the resistance of cotton against cotton aphid, Aphis gossypii, and the activity of phenylalanine ammonia-lyase. Chin J Appl Entomol, 2008, 45: 422-425 (in Chinese with English abstract).
[8] Chen Y P, Li F J, Tian L, Huang M C, Deng R F, Li X L, Chen W, Wu P Z, Li M R, Jiang H W, Wu G J. The phenylalanine ammonia lyase gene LjPAL1 is involved in plant defense responses to pathogens and plays diverse roles in Lotus japonicus-rhizobium symbioses. Mol Plant Microbe Int, 2017, 30: 739-753.
doi: 10.1094/MPMI-04-17-0080-R
[9] Pan Q H, Zhan J C, Liu H T, Zhang J H, Chen J Y, Wen P F, Huang W D. Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Sci, 2006, 171: 226-233.
doi: 10.1016/j.plantsci.2006.03.012
[10] 王改利, 魏忠, 贺少轩, 周雪洁, 梁宗锁. 土壤干旱胁迫对酸枣叶片黄酮类代谢及某些生长和生理指标的影响. 植物资源与环境学报, 2011, 20(3): 1-8.
Wang G L, Wei Z, He S X, Zhou X J, Liang Z S. Effects of drought stress in soil on flavonoids metabolism in leaf and some growth and physiological indexes of Ziziphus jujuba var. spinosa. J Plant Resour Environ, 2011, 20(3): 1-8 (in Chinese with English abstract).
[11] 宋晓敏, 吕晓杰, 邱智敏, 邢建宏, 陈世品, 谭芳林, 陈伟. 红树植物秋茄类黄酮代谢及其抗氧化活性对高盐胁迫的响应. 西北植物学报, 2016, 36: 2461-2468.
Song X M, Lyu X J, Qiu Z M, Xing J H, Chen S P, Tan F L, Chen W. Flavonoid metabolism and antioxidant activity in response to salt stress in mangrove Kandelia candel. Acta Bot Boreali-Occident Sin, 2016, 36: 2461-2468 (in Chinese with English abstract).
[12] Peng R H, Yao Q H, Xiong A S, Fan H Q, Li X, Peng Y L. Ubiquitin-conjugating enzyme (E2) confers rice UV protection through phenylalanine ammonia-lyase gene promoter unit. Acta Bot Sin, 2003, 45: 1351-1358.
[13] Koukol J, Conn E E. The metabolism of aromatic compounds in higher plans: IV.Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem, 1961, 236: 2692-2698.
doi: 10.1016/S0021-9258(19)61721-7
[14] Huang J L, Gu M, Lai Z B, Fan B F, Shi K, Zhou Y H, Yu J Q, Chen Z X. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 2010, 153: 1526-1538.
doi: 10.1104/pp.110.157370
[15] Olsen K M, Lea U S, Slimestad R, Verheul M, Lillo C. Differential expression of four Arabidopsis PAL genes; PAL1and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol, 2008, 165: 1491-1499.
doi: 10.1016/j.jplph.2007.11.005
[16] 李元, 高潇潇, 高召华, 何永美, 陈建军, 祖艳群. UV-B辐射和稻瘟病菌胁迫对水稻幼苗苯丙氨酸解氨酶活性和类黄酮含量的影响. 中国生态农业学报, 2010, 18: 856-860.
Li Y, Gao X X, Gao Z H, He Y M, Chen J J, Zu Y Q. Effect of enhanced UV-B radiation and inoculated blast isolate (Magnaporthe grisea) on phenylalanine ammonial-yase activity and flavonoid content in seedlings of two rice cultivars. Chin J Eco-Agric, 2010, 18: 856-860 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2010.00856
[17] Han W, Wang M H. Phenylalanine ammonia-lyase gene (NtPAL4) induced by abiotic stresses in tobacco (Nicotiana tabacum). Korean J Plant Res, 2010, 23: 535-540.
[18] 杨会晓, 孙媛媛, 贾彩红, 金志强, 徐碧玉, 王卓. 香蕉苯丙氨酸解氨酶基因家族的全基因组鉴定及表达分析. 热带作物学报, 2019, 40: 1949-1957.
Yang H X, Sun Y Y, Jia C H, Jin Z Q, Xu B Y, Wang Z. Identification and expression analysis of phenylalanine ammonia-lyase gene family in banana. Chin J Trop Crops, 2019, 40: 1949-1957 (in Chinese with English abstract).
[19] 张丽之, 樊胜, 安娜, 左希亚, 高彩, 张东, 韩明玉. 苹果全基因组PAL基因家族成员的鉴定及表达分析. 浙江农业学报, 2018, 30: 2031-2043.
doi: 10.3969/j.issn.1004-1524.2018.12.07
Zhang L Z, Fan S, An N, Zuo X Y, Gao C, Zhang D, Han M Y. Identification and expression analysis of PAL gene family in apple. Acta Agric Zhejiangensis, 2018, 30: 2031-2043 (in Chinese with English abstract).
[20] Stokstad E. The new potato. Science, 2019, 363: 574-577.
doi: 10.1126/science.363.6427.574 pmid: 30733400
[21] Cho K, Cho K S, Sohn H B, Ha I J, Hong S Y, Lee H, Kim Y M, Nam M H. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J Exp Bot, 2016, 67: 1519-1533.
doi: 10.1093/jxb/erv549 pmid: 26733692
[22] Brown C R, Wrolstad R, Durst R, Yang C P, Clevidence B. Breeding studies in potatoes containing high concentrations of anthocyanins. Am J Potato Res, 2003, 800: 241-250.
[23] Davies K M, Albert N W, Schwinn K E. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol, 2012, 39: 619-638.
doi: 10.1071/FP12195 pmid: 32480814
[24] Muhlemann J K, Younts T L B, Muday G K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc Natl Acad Sci USA, 2018, 115: E11188-E11197.
[25] Bhat R, Stamminger R. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice. Food Sci Technol Int, 2015, 21: 354-363.
doi: 10.1177/1082013214536708 pmid: 24867944
[26] Castellarin S D, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Gaspero G D. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ, 2007, 30: 1381-1399.
doi: 10.1111/j.1365-3040.2007.01716.x pmid: 17897409
[27] Christie P J, Alfenito M R, Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 1994, 194: 541-549.
doi: 10.1007/BF00714468
[28] Igwe E O, Charlton K E, Roodenrys S, Kent K, Fanning K, Netzel M E. Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: a pilot crossover dose-timing study. Nutr Res, 2017, 47: 28-43.
doi: S0271-5317(17)30482-7 pmid: 29241576
[29] Bontempo P, Masi L D, Carafa V, Rigano D, Scisciola L, Iside C, Grassi R, Molinari A M, Aversano R, Nebbioso A, Carputo D, Altucci L. Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L. “Vitelotte”. J Funct Foods, 2015, 19: 584-593.
doi: 10.1016/j.jff.2015.09.063
[30] Zhou F, Wang T, Zhang BL, Zhao HF. Addition of sucrose during the blueberry heating process is good or bad? Evaluating the changes of anthocyanins/anthocyanidins and the anticancer ability in HepG-2 cells. Food Res Int, 2018, 107: 509-517.
doi: S0963-9969(18)30161-3 pmid: 29580514
[31] 郭英男, 刘月扬, 马静雨, 张敬, 马鑫彤, 张馨月, 刘建雨, 姚娜, 刘秀明, 李海燕. 红花PAL家族全基因组分析及其在悬浮细胞中的表达. 中草药, 2021, 52: 3362-3372.
Guo Y N, Liu Y Y, Ma J Y, Zhang J, Ma X T, Zhang X Y, Liu J Y, Yao N, Liu X M, Li H Y. Genome analysis of PAL gene family from Flos carthami and its expression in suspension cells. Chin Trad Herb Drugs, 2021, 52: 3362-3372 (in Chinese with English abstract).
[32] 李雨哲, 邢淋雪, 刘梦洁, 刘苏瑶, 鲍梦楠, 刘震. 棉花苯丙氨酸解氨酶基因家族的生物信息学分析. 棉花学报, 2021, 33(1): 66-74.
Li Y Z, Xing L X, Liu M J, Liu S Y, Bao M N, Liu Z. Bioinformatics analysis of the phenyla lanine ammonia lyase (PAL) gene family in cotton. Cott Sci, 2021, 33(1): 66-74 (in Chinese with English abstract).
[33] 孙润泽, 张雪, 成果, 李强, 朱燕溶, 陈武, 潘秋红, 段长青, 王军. 葡萄苯丙氨酸解氨酶基因家族的全基因组鉴定及表达分析. 植物生理学报, 2016, 52: 195-208.
Sun R Z, Zhang X, Cheng G, Li Q, Zhu Y R, Chen W, Pan Q H, Duan C Q, Wang J. Genome-wide characterization and expression analysis of the phenylalanine ammonia-lyase gene family in grapevine (Vitis vinifera L.). Acta Phytophysiol Sin, 2016, 52: 195-208 (in Chinese with English abstract).
[34] 吴远航, 刘秦, 刘攀道, 郭鹏飞, 李敏, 蒋凌雁, 罗丽娟. 木薯苯丙氨酸解氨酶基因的克隆及其对低温胁迫的响应. 热带作物学报, 2019, 40: 483-489.
Wu Y H, Liu Q, Liu P D, Guo P F, Li M, Jiang L Y, Luo L J. Cloning of cassava phenylalanine ammonia lyase genes and their responses to low temperature stress. Chin J Trop Crops, 2019, 40: 483-489 (in Chinese with English abstract).
[35] Liu Z, Li Y M, Zhu J Y, Ma W J, Li Z T, Bi Z Z, Sun C, Bai J P, Zhang J L, Liu Y H. Genome-wide identification and analysis of the NF-Y gene family in potato (Solanum tuberosum L.). Front Genet, 2021, 12: e739989.
[36] Wong J H, Namasivayam P, Abdullah M P. The PAL2 promoter activities in relation to structural development and adaptation in Arabidopsis thaliana. Planta, 2012, 235: 267-277.
doi: 10.1007/s00425-011-1506-9
[37] Gasteiger E, Hoogland C, Gattiker A, Duvaud S E, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker J M, eds. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, 2005. pp 571-607.
[38] Yu C S, Chen Y C, Lu C H, Hwang J K. Prediction of protein subcellular localization. Proteins, 2006, 64: 643-651.
doi: 10.1002/prot.21018
[39] Reichert A I, He X Z, Dixon R A. Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J, 2009, 424: 233-242.
doi: 10.1042/BJ20090620
[40] 曾嘉丽, 欧阳林娟, 刘家林, 贺浩华, 朱昌兰, 彭小松, 贺晓鹏, 傅军如, 陈小荣, 边建民, 徐杰, 孙晓棠, 周大虎, 胡丽芳. 水稻PAL基因的全基因组分析及胁迫表达研究. 基因组学与应用生物学, 2018, 37: 3881-3888.
Zeng J L, Ou-Yang L J, Liu J L, He H H, Zhu C L, Peng X S, He X P, Fu J R, Chen X R, Bian J M, Xu J, Sun X T, Zhou D H, Hu L F. Whole genome analysis and stress expression research of PAL gene in rice. Genomics Appl Biol, 2018, 37: 3881-3888 (in Chinese with English abstract).
[41] 张晨, 臧颖, 许倩, 郑兆娟, 欧阳嘉. 毛果杨苯丙氨酸解氨酶活性比较及肉桂酸制备. 南京林业大学学报(自然科学版), 2020, 44(1): 97-104.
Zhang C, Zang Y, Xu Q, Zhen Z J, Ou-Yang J. Comparison on activities of phenylalanine ammonia-lyase from Populus trichocarpa and its application in trans-cinnamic acid production. J Nanjing For Univ (Nat Sci Edn), 2020, 44(1): 97-104 (in Chinese with English abstract).
[42] 侯鹏, 梁冬, 张卫国, 郭长军, 张小明, 程章, 张淑珍, 李冬梅, 李文滨, 张大勇. 苯丙氨酸解氨酶基因家族在大豆中的时空表达研究. 作物杂志, 2016, (2): 57-62.
Hou P, Liang D, Zhang W G, Gou Z J, Zhang X M, Cheng Z, Zhang S Z, Li W B, Zhang D Y. Study on temporospatial expression of PAL gene family in soybean. Crops, 2016, (2): 57-62 (in Chinese with English abstract).
[43] Hall B G. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol, 2013, 30: 1229-1235.
doi: 10.1093/molbev/mst012 pmid: 23486614
[44] Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W F, William S N. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
doi: 10.1093/nar/gkp335
[45] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026 (in Chinese with English abstract).
[46] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis- acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[47] Tang X, Zhang N, Si H J, Calderón-Urrea A. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods, 2017, 13: 85.
doi: 10.1186/s13007-017-0238-7 pmid: 29075311
[48] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[49] Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189-195.
doi: 10.1038/nature10158
[50] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[51] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10
[52] Cochrane F C, Davin L B, Lewis N G. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry, 2004, 65: 1557-1564.
doi: 10.1016/j.phytochem.2004.05.006 pmid: 15276452
[53] Ohl S, Hedrick S A, Chory J, Lamb C J. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell, 1990, 6: 837-848.
[54] Baucher M, Halpin C, Petit-Conil M, Boerjan W. Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol, 2003, 38: 305-350.
doi: 10.1080/10409230391036757
[55] Meer I M V D, Stam M E, Tunen A J V, Mol J N M, Stuitje A R. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell, 1992, 4: 253-262.
doi: 10.1105/tpc.4.3.253 pmid: 1498595
[56] Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 347-369.
doi: 10.1146/arplant.1989.40.issue-1
[57] Dehghan S, Sadeghi M, Pöppel A, Fischer R, Lakes-Harlan R, Kavousi H R, Vilcinskas A, Rahnamaeian M. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep, 2014, 34: e00114.
doi: 10.1042/BSR20140026
[58] 宋婕. 丹参苯丙氨酸解氨酶基因 (SmPAL1)的克隆及其功能初探. 陕西师范大学硕士学位论文,陕西西安, 2007.
Song J. Molecular Cloning of a Phenylalanine Ammonia-lyase Gene (SmPALl) from Salvia miltiorrhiza and the Primary Study on Its Function. MS Thesis of Shaanxi Normal University, Xi’an, Shaanxi, China, 2007 (in Chinese with English abstract).
[59] Ritter H, Schulz G E. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell, 2004, 16: 3426-3436.
doi: 10.1105/tpc.104.025288 pmid: 15548745
[60] 苏文华, 张光飞, 李秀华, 欧晓昆. 植物药材次生代谢产物的积累与环境的关系. 中草药, 2005, (9): 139-142.
Su W H, Zhang G F, Li X H, Ou X K. Relationship between accumulation of secondary metabolism in medicinal plant and envi ronmental condition. Chin Tradit Herbal Drugs, 2005, (9): 139-142 (in Chinese with English abstract).
[61] Sun M Y, Gu X D, Fu H W, Zhang L, Chen R Z, Cui L, Zheng L H, Zhang D W, Tian J K. Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innov Food Sci Emerg, 2010, 11: 672-676.
doi: 10.1016/j.ifset.2010.08.006
[62] Shin Y, Liu R H, Nock J F, Holliday D, Watkins C B. Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biol Technol, 2007, 45: 349-357.
doi: 10.1016/j.postharvbio.2007.03.007
[63] Solar A, Colarič M, Usenik V, Stampar F. Seasonal variations of selectedflavonoids, phenolic acids and quinones in annual shoots of commonwalnut (Juglans regia L). Plant Sci, 2006, 170: 453-461.
doi: 10.1016/j.plantsci.2005.09.012
[64] Agrawal A A. Macroevolution of plant defense strategies. Trends Ecol Evol, 2007, 22: 103-109.
pmid: 17097760
[65] 顾永华, 冯煦, 夏冰. 水分胁迫对茅苍术根茎生长及挥发油含量的影响. 植物资源与环境学报, 2008, 17(3): 23-27.
Gu Y H, Feng X, Xia B. Effect of water stress on growth and essential oil content of Atractylodes lancea rhizome. J Plant Resour Environ, 2008, 17(3): 23-27 (in Chinese with English abstract).
[66] 郭伟, 于立河. 盐碱胁迫对小麦幼苗根系活力和苯丙氨酸解氨酶活性的影响. 作物杂志, 2012, (1): 31-34.
Gou W, Yu L H. Effects of salinity-alkalinity stress on root activity and phenylalanine ammonia-lyase activity of wheat seedlings. Crops, 2012, (1): 31-34 (in Chinese with English abstract).
[67] Chen J Y, He L H, Jiang Y M, Wang Y, Joyce D C, Ji Z L, Lu W J. Role of phenylalanine ammonia-lyase in heat pretreatment- induced chilling tolerance in banana fruit. Physiol Planta, 2010, 132: 318-328.
doi: 10.1111/ppl.2008.132.issue-3
[68] Chen X J, Wang P J, Gu M Y, Hou B H, Zhang C R, Zheng Y C, Sun Y, Jin S, Ye N X. Identification of PAL genes related to anthocyanin synthesis in tea plants and its correlation with anthocyanin content. Acta Hortic Sin, 2022, 8: 381-394.
[69] Gómez-Martínez H, Gil-Muñoz F, Bermejo A, Zuriaga E, Badenes M L. Insights of phenolic pathway in fruits: transcriptional and metabolic profiling in apricot (Prunus armeniaca). Int J Mol Sci, 2021, 22: 3411.
doi: 10.3390/ijms22073411
[70] 李云萍, 郭晋雅, 高峰. 紫心甘薯花青素积累与PAL活性的关系. 西南大学学报(自然科学版), 2010, 32(2): 68-72.
Li Y P, Guo J Y, Gao F. The relationship between anthocyanidin acumulation and phenylalnine ammonialyase activity in purple- fleshed sweet potato [Ipomoea batatas (L.)Lam.]. J Southwest Univ (Nat Sci Edn), 2010, 32(2): 68-72 (in Chinese with English abstract).
[1] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[2] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[3] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[4] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[5] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[6] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[7] ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870.
[8] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[9] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[10] SUO Hai-Cui, LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo. Functional analysis of StZIP12 in regulating potato Zn uptake [J]. Acta Agronomica Sinica, 2023, 49(7): 1994-2001.
[11] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[12] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[13] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[14] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[15] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .