Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2883-2895.doi: 10.3724/SP.J.1006.2024.34211

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of exogenous SA on physiological characteristics and stress-resistant gene expression of soybean under Cd stress

WANG Zi-Ran1(), LU Yi-Wei2, YANG Jing-Yi1, WANG Cheng-Long1, SONG Ya-Ping1, MA Jin-Hu3,*()   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Institute of Millet, Hebei Academy of Agricultural and Forestry Sciences / National Millet Improvement Center / Hebei Coarse Cereals Research Laboratory, Shijiazhuang 050035, Hebei, China
    3College of Innovation and Entrepreneurship, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2023-12-18 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-15
  • Contact: *E-mail: mjh109@126.com
  • Supported by:
    Key Research and Development Program of Shanxi Province(201803D221011-5)

Abstract:

This study investigated the impact of cadmium (Cd) stress on soybean seed germination and early seedling growth, and examined the potential alleviating effect of exogenous salicylic acid (SA). The experiment utilized the soybean variety ‘Zhonghuang 13’ and employed both paper germination and hydroponic methods. Various aspects including the antioxidant system, photosynthetic characteristics, nutrient absorption and transport, and stress resistance gene expression were analyzed under the influence of Cd and exogenous SA. Results showed that 2.5 μmol L-1 CdCl2 stress led to oxidative damage in soybean embryos and seedlings, hindering nutrient absorption and transport as well as reducing photosynthesis, consequently inhibiting seed germination and early seedling growth. However, the addition of 50 μmol L-1 SA mitigated the oxidative stress caused by Cd, resulting in reduced Cd accumulation, enhanced nutrient absorption, and improved photosynthesis. Specifically, under Cd stress, the application of SA decreased the levels of H2O2, O2-, and MDA in both leaves and roots, while also reducing Cd content in the leaves and increasing the contents of essential elements such as Ca, Cu, Fe, Mg, and Zn. Moreover, the net photosynthetic rate (Pn) and maximum photosynthetic efficiency of PSII (Fv/Fm) were significantly improved with SA treatment compared to Cd stress alone. Exogenous SA up-regulated the expression of antioxidant system genes in soybean seedlings while down-regulating the expression of Cd transporter genes DMT, IRT, and MT1. This led to an increase in antioxidant enzyme activity, a reduction in Cd absorption by seedlings, promotion of nutrient absorption and transport, enhancement of photosynthesis, and alleviation of stress damage caused by Cd during soybean seed germination and early seedling growth.

Key words: soybean, salicylic acid, cadmium stress, seed germination, seedling growth, gene expression

Table 1

Primers for qRT-PCR"

基因Gene name 正向引物Forward primer (5°-3°) 反向引物Reverse primer (5°-3°)
GmActin CAATCCCAAGGCCAACAGA ATGGCAGGCACATTGAAAGTC
GmSodb2 GCAACACAATTTGGTTCAGG AAGGAGGATTTGCTGCATTT
GmCAT1 AAGTGTGCCCATCACAACAATC AGAACGATCAGCCTGAGACC
GmPOD TGCTTTGTTCAAGGTTGTGA CTCAGGTCCAAATTGGTGAG
GmIRT TCTCCGTCACAACCCCAT CACCAGCACCCAAAAACA
GmDMT GAAGATAGTGGTGGTCGG TCTAAGTTTCCAGGGTCC
GmMT1 CGCTGAGAAGACAACCACAGAGAC CCACAGTTGCAGCCACCGTTC

Fig. 1

Effects of different concentrations of Cd2 + on the germination of soybean seeds 0: deionized water; 1: 1 μmol L-1 CdCl2; 2.5: 2.5 μmol L-1 CdCl2; 5: 5 μmol L-1 CdCl2; 10: 10 μmol L-1 CdCl2."

Table 2

Effects of different concentrations of Cd on the germination of soybean seeds"

Cd浓度
Cd concentration
(μmol L-1)
发芽率
Germination rate
(%)
发芽势
Sprouting potential
(%)
发芽指数
Germination index
根长
Root length
(cm)
活力指数
Vitality index
0 80.00±0.03 a 42.22±0.02 a 6.88±0.30 a 6.43±0.02 a 44.31±1.98 a
1.0 75.56±0.05 a 37.78±0.02 a 6.22±0.24 a 6.13±0.03 b 38.19±1.48 b
2.5 53.33±0.03 b 22.22±0.02 b 4.05±0.38 b 4.19±0.05 c 17.01±1.63 c
5.0 40.00±0.03 b 15.56±0.02 b 2.88±0.52 c 2.31±0.06 d 6.69±1.22 d
10.0 12.33±0.03 c 6.67±0.03 c 0.83±0.16 d 1.11±0.03 e 0.93±0.18 e

Fig. 2

Effects of different concentrations of SA on soybean seed germination under cadmium stress CK: deionized water; 0: 2.5 μmol L-1 CdCl2; 10: 2.5 μmol L-1 CdCl2+10 μmol L-1 SA; 50: 50 μmol L-1 SA; 100: 2.5 μmol L-1 CdCl2+100 μmol L-1 SA."

Table 3

Effects of different concentrations of SA on soybean seed germination under cadmium stress"

处理
Treatment (μmol L-1)
发芽率
Germination rate (%)
发芽势
Sprouting potential (%)
发芽指数
Germination index
根长
Root length (cm)
活力指数
Vitality index
CK 80.00±0.04 a 42.22±0.02 a 6.88±0.31 a 6.48±0.03 a 44.69±2.00 a
2.5 CdCl2 53.33±0.04 b 22.22±0.02 c 4.05±0.39 b 4.13±0.08 b 16.75±1.60 b
2.5 CdCl2+10 SA 48.89±0.02 b 17.18±0.02 c 3.72±0.11 b 4.22±0.06 b 15.71±0.46 b
2.5 CdCl2+50 SA 82.22±0.02 a 42.44±0.04 a 6.88±0.15 a 6.28±0.04 a 43.26±0.92 a
2.5 CdCl2+100 SA 55.56±0.06 b 26.67±0.04 b 4.11±0.40 b 3.85±0.11 c 15.83±1.54 b

Fig. 3

Effects of exogenous SA on active oxygen content of soybean seed embryos under Cd stress CK: control; Cd: 2.5 μmol L-1 CdCl2; Cd+SA: 2.5 μmol L-1 CdCl2+50 μmol L-1 SA; SA: 50 μmol L-1 SA. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 4

Effects of exogenous SA antioxidant enzyme system in soybean seed embryos under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 5

Effects of exogenous SA on the phenotype and dry weight of soybean seedlings under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 6

Effects of exogenous SA on leaf area and main root length of soybean seedlings under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 7

Effects of exogenous SA on active oxygen content of soybean seedlings under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 8

Effects of exogenous SA on antioxidant enzyme system in soybean seedlings under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 9

Effects of exogenous SA on the expression of antioxidant enzyme genes in soybean seedlings under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 10

Effects of exogenous SA on element content in soybean roots under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 11

Effects of exogenous SA on element content in soybean leaves under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 12

Effects of exogenous SA on the expression of transporter genes in soybean leaves under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 13

Effects of exogenous SA on photosynthetic characteristics of soybean seedlings under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

Fig. 14

Chlorophyll fluorescence diagram of soybean leaves under different treatments Treatments are the same as those given in Fig. 3."

Fig. 15

Effects of exogenous SA on chlorophyll fluorescence parameters of soybean seedlings under Cd stress Treatments are the same as those given in Fig. 3. Different letters within the same group indicate significant difference at the 5% probability level."

[1] 李有宝, 王曼曼, 吕博, 于寒松. 乡村振兴背景下主产区大豆生产效率比较分析. 大豆科学, 2024, 43: 120-128.
Li Y B, Wang M M, Lyu B, Yu H S. Comparative analysis of soybean production efficiency in the main production areas in the context of rural revitalization. Soybean Sci, 2024, 43: 120-128 (in Chinese with English abstract).
[2] 陈世宝, 王萌, 李杉杉, 郑涵, 雷小琴, 孙晓艺, 王立夫. 中国农田土壤重金属污染防治现状与问题思考. 地学前缘, 2019, 26(6): 35-41.
doi: 10.13745/j.esf.sf.2019.8.6
Chen S B, Wang M, Li S S, Zheng H, Lei X Q, Sun X Y, Wang L F. Current situation and problems of prevention and control of heavy metal pollution in farmland soil in China. Geol Frontier, 2019, 26(6): 35-41 (in Chinese).
[3] Gu C S, Yang Y H, Shao Y F, Wu K W, Liu Z L. The effects of exogenous salicylic acid on alleviating cadmium toxicity in Nymphaea tetragona Georgi. S Afr N J Bot, 2018, 114: 267-271.
[4] 刘佳丽. 重金属镉对大豆种子萌发与幼苗生长的影响. 农业技术与装备, 2023, (12): 13-15.
Liu J L. Effects of cadmium on seed germination and seedling growth of soybean. Agric Technol Equip, 2023, (12): 13-15 (in Chinese with English abstract).
[5] 刘晓庆, 陈华涛, 张红梅, 张智民, 陈新. 不同品种大豆幼苗对镉胁迫的响应. 江西农业学报, 2017, 29(3): 14-17.
Liu X Q, Chen H T, Zhang H M, Zhang Z M, Chen X. Response of different varieties of soybean seedlings to cadmium stress. Jiangxi Agric J, 2017, 29(3): 14-17 (in Chinese with English abstract).
[6] Shute T, Macfie S M. Cadmium and zinc accumulation in soybean: a threat to food safety. Sci Total Environ, 2006, 371: 63-73.
[7] Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot, 2020, 175: 104040.
[8] 李彩霞, 李鹏, 苏永发, 郑普勤, 张芬琴, 张勇. 水杨酸对镉胁迫下玉米幼苗质膜透性和保护酶活性的影响. 植物生理学通讯, 2006, 42(5): 84-86.
Li C X, Li P, Su Y F, Zheng P Q, Zhang F Q, Zhang Y. Effects of salicylic acid on membrane permeability and protective enzyme activities of maize seedlings under cadmium stress. Plant Physiol Commun, 2006, 42(5): 84-86 (in Chinese with English abstract).
[9] Noriega G, Caggiano E, Lecube M L, Cruz D S, Batlle A, Tomaro M, Balestrasse K B. The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals, 2012, 25: 1155-1165.
doi: 10.1007/s10534-012-9577-z pmid: 22886388
[10] Bai X, Dong Y, Kong J, Xu L, Liu S. Effects of application of salicylic acid alleviates cadmium toxicity in perennial ryegrass. Plant Growth Regul, 2015, 75: 695-706.
[11] Shakirova F M, Allagulova C R, Maslennikova D R, Klyuchnikova E O, Avalbaev A M, Bezrukova M V. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot, 2016, 122: 19-28.
[12] Drazic G, Mihailovic N. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci, 2005, 168: 511-517.
[13] Gong H, Zhu X, Chen K, Wang S, Zhang C. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci, 2005, 169: 313-321.
[14] Yang Y, Liu Q, Wang G X, Wang X D, Guo J Y. Germination, osmotic adjustment, and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress. New For, 2010, 39: 231-243.
[15] Elstner E F, Heupel A. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta, 1976, 130: 175-180.
doi: 10.1007/BF00384416 pmid: 24424595
[16] Patterson B D, Macrae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem, 1984, 139: 487-492.
doi: 10.1016/0003-2697(84)90039-3 pmid: 6476384
[17] Gu R, Zhou Y, Song X, Xu S, Zhang X, Lin H, Xu S, Zhu S. Effects of temperature and salinity on Ruppia sinensis seed germination, seedling establishment, and seedling growth. Mar Pollut Bull, 2018, 134: 177-185.
[18] 吴鹏, 周青. 大豆种子萌发对镉胁迫响应的观察. 大豆科学, 2009, 28: 853-855.
Wu P, Zhou Q. Response of soybean seed germination to cadmium stress. Soybean Sci, 2009, 28: 853-855 (in Chinese with English abstract).
[19] 任艳芳, 何俊瑜, 黄天兴, 罗辛灵. 外源水杨酸对镉毒害下莴苣种子萌发的缓解效应. 华北农学报, 2009, 24 (增刊2): 121-125.
Ren Y F, He J Y, Huang T X, Luo X L. Mitigation effect of exogenous salicylic acid on lettuce seed germination under cadmium toxicity. Acta Agric Boreali-Sin, 2009, 24(S2) : 121-125 (in Chinese with English abstract).
[20] Xu N, Sui X, Chen Z, Niu J P, Guo Z P, Wang Q Z. Seed soaking with salicylic acid improves alfalfa (Medicago sativa L.) germination by involving the antioxidation system. Acta Physiol Plant, 2023, 45: 128.
[21] Kovacik J, Gruz J, Backor M, Strnad M, Repcak M. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep, 2009, 28: 135-143.
[22] Pasternak T, Groot E P, Kazantsev F V, Teale W, Omelyanchuk N, Kovrizhnykh V, Palme K, Mironova V V. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol, 2019, 180: 1725-1739.
doi: 10.1104/pp.19.00130 pmid: 31036755
[23] 王鹏, 杨奥军, 冯志进, 王婷, 金梓浩, 王芳, 彭云玲. 外源5-ALA对干旱胁迫下玉米幼苗生长的缓解效应及抗氧化酶基因表达的影响. 干旱地区农业研究, 2022, 40(4): 1-9.
Wang P, Yang A J, Feng Z J, Wang T, Jin Z H, Wang F, Peng Y L. Effects of exogenous 5-ALA on growth of maize seedlings and expression of antioxidant enzyme genes under drought stress. Agric Res Arid Area, 2022, 40(4): 1-9 (in Chinese with English abstract)
[24] Pawlak S, Firych A, Rymer K, Deckert J. Cu, Zn-superoxide dismutase is differently regulated by cadmium and lead in roots of soybean seedlings. Acta Physiol Plant, 2009, 31: 741-747.
[25] 胡龙兴. 草坪草抗旱生理及相关基因的分析. 上海交通大学博士学位论文, 上海, 2010.
Hu L X. Analysis of Drought Resistance Physiology and Related Genes in Turfgrass. PhD Dissertation of Shanghai Jiaotong University, Shanghai, China, 2010 (in Chinese with English abstract).
[26] Wang S, Dai H, Skuza L, Chen Y, Wei S. Difference in Cd2+ flux around the root tips of different soybean (Glycine max L.) cultivars and physiological response under mild cadmium stress. Chemosphere, 2022, 297: 134120.
[27] Faraz A, Faizan M, Sami F, Siddiqui H, Hayat S. Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J Plant Growth Regul 2020, 39: 641-655.
[28] Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol Environ Saf, 2019, 172: 317-325.
[29] Bashir W, Anwar S, Zhao Q, Hussain I, Xie F. Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicol Environ Saf, 2019, 175: 90-101.
[30] 陈镔, 谭淑端, 董方旭, 杨雨婷. 重金属对植物的毒害及植物对其毒害的解毒机制. 江苏农业科学, 2019, 47(4): 34-38.
Chen B, Tan S D, Dong F X, Yang Y T. Toxicity of heavy metals to plants and the detoxification mechanism of plants to their toxicity. Jiangsu Agric Sci, 2019, 47(4): 34-38 (in Chinese).
[31] 杨菲, 唐明凤, 朱玉兴. 水稻对镉的吸收和转运的分子机理. 杂交水稻, 2015, 30(3): 2-8.
Yang F, Tang M F, Zhu Y X. Molecular mechanism of cadmium uptake and transport in rice. Hybrid Rice, 2015, 30(3): 2-8 (in Chinese).
[32] Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa N K. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav, 2011, 6: 1813-1816.
doi: 10.4161/psb.6.11.17587 pmid: 22067109
[33] Kaiser B N, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day D A. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J, 2003, 35: 295-304.
doi: 10.1046/j.1365-313x.2003.01802.x pmid: 12887581
[34] Barberon M, Dubeaux G, Kolb C, Isono E, Zelazny E, Vert G. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci USA, 2014, 111: 8293-8298.
doi: 10.1073/pnas.1402262111 pmid: 24843126
[35] Connolly E L, Fett J P, Guerinot M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 2002, 14: 1347-1357.
doi: 10.1105/tpc.001263 pmid: 12084831
[36] Pagani M A, Tomas M, Carrillo J, Bofill R, Capdevila M, Atrian S, Andreo C S. The response of the different soybean metallothionein isoforms to cadmium intoxication. J Inorg Biochem, 2012, 117: 306-315.
doi: 10.1016/j.jinorgbio.2012.08.020 pmid: 23073037
[37] 宋雅娟, 陈斌, 冷艳, 李师翁. 外源eBL对镉胁迫下绿豆幼苗叶片矿质元素吸收及镉积累的影响. 兰州交通大学学报, 2022, 41(2): 137-142.
Song Y J, Chen B, Leng Y, Li S W. Effects of exogenous eBL on mineral element absorption and cadmium accumulation in mungbean seedlings under cadmium stress. J Lanzhou Jiaotong Univ, 2022, 41(2): 137-142 (in Chinese with English abstract).
[38] Zeng P, Guo Z, Xiao X, Peng C, Liu L, Yan D, He Y. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil. Ecotoxicol Environ Saf, 2020, 189: 109973.
[39] 王小红, 郭军康, 贾红磊, 李艳萍, 吕欣, 任倩. 外源水杨酸缓解镉对番茄毒害作用的研究. 农业环境科学学报, 2019, 38: 2705-2714.
Wang X H, Guo J K, Jia H L, Li Y P, Lyu X, Ren Q. Study on the effect of exogenous salicylic acid on alleviating cadmium toxicity to tomato. J Agric Environ Sci, 2019, 38: 2705-2714 (in Chinese with English abstract).
[40] Zhang Z W, Deng Z L, Tao Q, Peng H Q, Wu F, Fu Y F, Yang X Y, Xu P Z, Li Y, Wang C Q, Chen Y E, Yuan M, Lan T, Tang X Y, Chen G D, Zeng J, Yuan S. Salicylate and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea. Chemosphere 2022, 292: 133466.
[41] Haider F U, Cao L Q, Coulter J A, Cheema S A, Jun W, Zhang R, Ma W J, Farooq M. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf, 2021, 211: 111887.
[42] 田露丹, 樊文华, 刘奋武, 于敏敏, 王改玲, 孟庆慧. 施硅对镉胁迫下生育前期水稻生长及其植株体内抗氧化酶活性的影响. 土壤通报, 2023, 54: 1176-1185.
Tian L D, Fan W H, Liu F W, Yu M M, Wang G L, Meng Q H. Effects of silicon application on growth and antioxidant enzyme activities of rice at early growth stage under cadmium stress. Chin J Soil Bull, 2023, 54: 1176-1185 (in Chinese).
[43] 王瑞波. 水杨酸对镉胁迫小麦叶绿素荧光参数的影响. 生物技术通报, 2017, 33(7): 96-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2016-1188
Wang R B. Effect of salicylic acid on chlorophyll fluorescence parameters of wheat under cadmium stress. Bioltechnol Bull, 2017, 33(7): 96-99 (in Chinese with English abstract).
[44] Alyemeni M N, Ahanger M A, Wijaya L, Alam P, Bhardwaj R, Ahmad P. Correction to: Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma, 2018, 255: 985-986.
[45] Zhang Y, Xu S, Yang S, Chen Y. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma, 2015, 252: 911-924.
[1] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[2] SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186.
[3] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[4] LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130.
[5] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[6] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[7] LI Xiao-Fei, GAO Hua-Wei, GUANG Hui, SHI Yu-Xin, GU Yong-Zhe, QI Zhao-Ming, QIU Li-Juan. Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1699-1709.
[8] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[9] ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235.
[10] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[11] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
[12] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[13] WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819.
[14] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[15] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!