Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (11): 3052-3064.doi: 10.3724/SP.J.1006.2025.54022

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Study on smart fertilizer recommendation methods based on yield response and agronomic efficiency for cotton

HALIHASHI Yibati1(), ZHANG Yan1,*(), LI Qing-Jun1, XU Xin-Peng2, HE Ping2   

  1. 1 Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences / Key Laboratory of Desert Oasis Crop Physiology, Ecology and Cultivation, Ministry of Agriculture and Rural Affairs, Urumqi 830091, Xinjiang, China
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2025-02-13 Accepted:2025-08-13 Online:2025-11-12 Published:2025-08-25
  • Contact: *E-mail: yanzhangxj@163.com
  • Supported by:
    National Agricultural Science and Technology Project “Smart Fertilization Project”(20221805);National Key Research and Development Program(2016YFD0200101);Open Project of the Key Laboratory of Crop Physiology, Ecology, and Tillage in Desert Oasis, Ministry of Agriculture and Rural Affairs(25107020-202104)

Abstract:

To address the low fertilizer use efficiency resulting from the lack of advanced fertilization recommendations and the widespread practice of improper fertilization in Xinjiang’s cotton production, this study established a large-scale nutrient management database based on 414 field fertilizer trials conducted from 1996 to 2019 across 21 major cotton-producing counties. The QUEFTS model was employed to simulate optimal nutrient requirements for cotton and to evaluate the relationships among indigenous soil nutrient supply, fertilizer agronomic efficiency, and crop yield response. Based on these analyses, a quantitative fertilization model was developed, and a field-specific Nutrient Expert (NE) decision support system was designed to suit the conditions of cotton production in Xinjiang. To validate the NE system, field experiments were conducted between 2017 and 2021 in major cotton-growing regions. Each experiment included six fertilization treatments: NE-recommended fertilization (NE); nitrogen (N), phosphorus (P), and potassium (K) omission treatments based on NE; farmer's practice (FP); and locally optimized soil test-based fertilization (ST). Data were collected on cotton yield, fertilizer use efficiency, and economic returns. Model simulations indicated that producing 1 ton of seed cotton requires 27.7 kg N, 6.2 kg P, and 29.3 kg K in above-ground biomass. The average yield responses to N, P2O5, and K2O applications were 1624, 1096, and 804 kg hm-2, respectively; corresponding relative yields were 0.7, 0.8, and 0.8; and agronomic efficiencies were 6.8, 8.5, and 16.7 kg kg-1, respectively. Field experiment results showed that the NE treatment applied 40.7%, 60.1%, and 10.7% less N, P, and K fertilizer, respectively, compared to FP, and 30.3% less N and 38.0% less P compared to ST. Compared to FP and ST, the NE treatment increased cotton yield by 365 kg hm-2 and 92 kg hm-2, respectively, and improved economic returns by 4302 yuan hm-2 and 1094 yuan hm-2. The recovery efficiencies of N, P, and K fertilizers under NE also improved by 18.8 and 11.8, 14.2 and 11.5, and 13.4 and 6.0 percentage points, respectively. Furthermore, the agronomic efficiencies of N and P increased by 3.5 kg kg-1 and 2.2 kg kg-1, and 7.2 kg kg-1 and 4.4 kg kg-1, respectively. In contrast, the agronomic efficiency of K under NE decreased by 1.6 kg kg-1 and 0.6 kg kg-1 compared to FP and ST, respectively. In conclusion, the intelligent, field-specific Nutrient Expert system developed based on yield response and agronomic efficiency offers a tailored fertilization strategy for individual plots. Multi-year, multi-location field experiments demonstrated that this approach optimizes nutrient input and balance, enhances cotton yield and fertilizer use efficiency, and improves economic returns. Therefore, the NE system represents an advanced and practical fertilization strategy for sustainable cotton production in Xinjiang.

Key words: cotton, QUEFTS model, Nutrient Expert system, yield, agronomic efficiency, fertilizer use efficiency

Table 1

Application rates of N、P2O5、K2O under Nutrient Expert (NE), farmer’s practice (FP), and locally optimized recommendation"

年份
Year
地点
Site
施氮量
N application rate (kg hm-2)
施磷量
P2O5 application rate (kg hm-2)
施钾量
K2O application rate (kg hm-2)
NE FP ST NE FP ST NE FP ST
2017 昌吉CJ1 200 345 300 150 173 173 60 75 60
昌吉CJ2 200 345 300 150 173 173 60 75 60
阿瓦提AWT1 270 510 300 150 240 180 120 30 90
2018
昌吉CJ3 210 260 300 100 201 173 90 75 60
阿瓦提AWT1 161 357 210 115 240 180 110 30 90
2019
昌吉CJ3 225 345 300 81 173 173 86 75 60
阿瓦提AWT1 240 510 300 88 240 180 98 30 90
2020
昌吉CJ4 219 328 150 90 310 275 115 112 142
昌吉CJ5 222 328 150 90 310 275 86 112 142
阿瓦提AWT2 230 440 345 95 240 173 75 38 65
库尔勒KEL 260 592 453 164 458 230 120 188 33
尉犁YL 245 434 442 113 371 159 110 113 75
巴楚BC 239 342 392 109 345 173 80 0 42
沙湾SW 251 268 340 159 290 225 134 146 112
2021
沙雅SY1 253 305 495 95 335 100 60 160 105
沙雅SY2 247 503 495 70 474 100 60 393 105

Fig. 1

Simulated optimal nutrient uptake for cotton in Xinjiang under different potential yields using the QUEFTS model Black straight lines at the top and bottom represent the maximum accumulation boundary line and the maximum dilution boundary line, respectively. The red, green, and purple curves correspond to potential yields of 4000, 6000, and 8000 kg hm-2, respectively. The yellow circles represent the nutrient absorption corresponding to the yield in the database."

Fig. 2

Distribution of yield response in cotton"

Fig. 3

Distribution of relative yield in cotton"

Fig. 4

Distribution of agronomic efficiency in cotton"

Fig. 5

Relationship between yield response and agronomic efficiency in cotton"

Table 2

Fertilizer application rates for cotton under different fertilization methods"

处理
Treatment
施氮量 N rate (kg hm-2) 施磷量 P2O5 rate (kg hm-2) 施钾量 K2O rate (kg hm-2)
平均值 Mean 范围 Range 平均值 Mean 范围 Range 平均值 Mean 范围 Range
NE 230 b 161-270 114 c 70-164 92 a 60-134
FP 388 a 260-592 286 a 173-474 103 a 0-393
ST 330 a 150-495 184 b 100-275 83 a 33-142

Fig. 6

Seed cotton yield and economic benefits under different fertilization methods Treatments are the same as those given in Table 1. Different lowercase letters indicate significant differences between treatments (P < 0.05). The solid line in the center of the box plot represents the median, while the dotted line represents the mean. The top and bottom edges of the box represent the top and bottom 25% of the data, with the top and bottom ‘hats’ of the box representing the 90th and 10th percentiles of the values, respectively."

Fig. 7

Fertilizer use efficiency in cotton under different fertilization methods Treatments are the same as those given in Table 1. Different lowercase letters indicate significant differences between treatments (P < 0.05). The solid line in the center of the box plot represents the median, while the dotted line represents the mean. The top and bottom edges of the box represent the top and bottom 25% of the data, with the top and bottom ‘hats’ of the box representing the 90th and 10th percentiles of the values, respectively."

[1] Yibati H, Zhang Y, Li Q J, Xu X P, He P. Estimation of cotton nutrient uptake based on the QUEFTS model in Xinjiang. Agronomy, 2022, 12: 1427.
[2] Wu W, Ma B L. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ, 2015, 512/513: 415-427.
[3] Zhang F S, Chen X P, Vitousek P. An experiment for the world. Nature, 2013, 497: 33-35.
[4] 张福锁. 测土配方施肥技术. 北京: 中国农业大学出版社, 2011.
Zhang F S. Soil Testing and Fertilization Recommendation. Beijing: China Agricultural University Press, 2011 (in Chinese).
[5] 危常州, 候振安, 雷咏雯, 朱和明, 张福锁, 鲍柏杨, 郭琛, 王桂花. 不同地理尺度下综合施肥模型的建模与验证. 植物营养与肥料学报, 2005, 11: 13-20.
Wei C Z, Hou Z A, Lei Y W, Zhu H M, Zhang F S, Bao B Y, Guo C, Wang G H. Modeling and validation of transfer model covering different geographical scale. Plant Nutr Fert Sci, 2005, 11: 13-20 (in Chinese with English abstract).
[6] Sherene T, Santhi R, Kavimani R, Bharathi Kumar K. Integrated fertilizer prescriptions for transgenic cotton hybrids under rainfed situation through inductive cum targeted yield model on vertisol. Commun Soil Sci Plant Anal, 2016, 47: 1951-1960.
[7] Shadrach F D, Kandasamy G, Neelakandan S, Lingaiah T B. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula). Sci Rep, 2023, 13: 14108.
doi: 10.1038/s41598-023-41120-6 pmid: 37644146
[8] 彭懿, 杨国江, 国秀丽, 王晓凤, EREL Ran, 冯固. 基于输入-输出平衡的施磷方法可实现作物高产和磷肥高效--以新疆水肥一体化棉花体系为例. 土壤学报, 2023, 60: 1480-1492.
Peng Y, Yang G J, Guo X L, Wang X F, EREL R, Feng G. Input-output balance-based P fertilization approach for achieving target crop yield and high P use efficiency: a case study of cotton (Gossypium hirsutum L.) with mulched fertigation. Acta Pedol Sin, 2023, 60: 1480-1492 (in Chinese with English abstract).
[9] 何萍, 金继运, Mirasol Pampolino, Adrian Johnston. 基于作物产量反应和农学效率的推荐施肥方法. 植物营养与肥料学报, 2012, 18: 499-505.
He P, Jin J Y, Pampolino M, Johnston A. Approach and decision support system based on crop yield response and agronomic efficiency. Plant Nutr Fert Sci, 2012, 18: 499-505 (in Chinese with English abstract).
[10] Janssen B H, Guiking F C T, van der Eijk D, Smaling E M A, Wolf J, van Reuler H. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma, 1990, 46: 299-318.
[11] 何萍, 徐新朋, 丁文成, 周卫. 基于作物产量反应和农学效率的智能化推荐施肥原理与实践. 植物营养与肥料学报, 2023, 29: 1181-1189.
He P, Xu X P, Ding W C, Zhou W. Principles and practices of intelligent fertilizer recommendation based on yield response and agronomic efficiency. J Plant Nutr Fert, 2023, 29: 1181-1189 (in Chinese with English abstract).
[12] Dobermann A, Witt C, Dawe D, Abdulrachman S, Gines H C, Nagarajan R, Satawathananont S, Son T T, Tan P S, Wang G H, et al. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res, 2002, 74: 37-66.
[13] Dobermann A, Witt C, Abdulrachman S, Gines H C, Nagarajan R, Son T T, Tan P S, Wang G H, Chien N V, Thoa V T K, et al. Estimating indigenous nutrient supplies for site-specific nutrient management in irrigated rice. Agron J, 2003, 95: 924-935.
[14] Chuan L M, He P, Pampolino M F, Johnston A M, Jin J Y, Xu X P, Zhao S C, Qiu S J, Zhou W. Establishing a scientific basis for fertilizer recommendations for wheat in China: yield response and agronomic efficiency. Field Crops Res, 2013, 140: 1-8.
[15] Witt C, Dobermann A, Abdulrachman S, Gines H C, Wang G H, Nagarajan R, Satawatananont S, Son T T, Tan P S, Van Tiem L, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res, 1999, 63: 113-138.
[16] Pushpalatha R, Byju G. QUEFTS model, a tool for site-specific nutrient management of crops: a review. Commun Soil Sci Plant Anal, 2022, 53: 2339-2352.
[17] Xu X P, He P, Yang F Q, Ma J C, Pampolino M F, Johnston A M, Zhou W. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crops Res, 2017, 206: 33-42.
[18] Schut A G T, Giller K E. Soil-based, field-specific fertilizer recommendations are a pipe-dream. Geoderma, 2020, 380: 114680.
[19] 辛承松, 董合忠. 滨海盐碱地棉花施肥的原理与技术. 中国棉花, 2012, 39(2): 6-11.
doi: 10.11963/issn.1000-632X.20120202
Xin C S, Dong H Z. Principle and technology for cotton fertilization in coastal saline soils. China Cotton, 2012, 39(2): 6-11 (in Chinese with English abstract).
[20] 李鹏程, 董合林, 王润珍, 刘爱忠, 刘爱珍, 李如义. 不同早、中熟基因型棉花品种的干物质积累及养分吸收规律研究. 中国土壤与肥料, 2012, (2): 23-26.
Li P C, Dong H L, Wang R Z, Liu A Z, Liu A Z, Li R Y. Study on the rule of dry matter accumulation and nutrient absorption of different earliness and medium maturing genotypes cultivars of upland cotton. Soil Fert Sci China, 2012, (2): 23-26 (in Chinese with English abstract).
[21] 郭仁松, 魏红国, 富艳荣, 张巨松, 田立文, 林涛. 南疆超高产棉花干物质积累分配与养分吸收运移特征的研究. 新疆农业科学, 2011, 48: 410-418.
Guo R S, Wei H G, Fu Y R, Zhang J S, Tian L W, Lin T. Study on dry matter accumulate or distribution and nutrient absorption or transfer of super high-yield cotton in south Xinjiang. Xinjiang Agric Sci, 2011, 48: 410-418 (in Chinese with English abstract).
[22] 张学昕, 刘淑英, 王平, 周丽萍. 不同氮磷钾配施对棉花干物质积累、养分吸收及产量的影响. 西北农业学报, 2012, 21(8): 107-113.
Zhang X X, Liu S Y, Wang P, Zhou L P. Effects of different fertilizations on cotton dry matter accumulation, nutrients uptake and yield. Acta Agric Boreali-Occident Sin, 2012, 21(8): 107-113 (in Chinese with English abstract).
[23] 周桂生, 翟富燕, 陆世渊, NIMIR A E, 徐庆龙. 低密高氮条件下留叶枝对棉花产量和养分吸收的影响. 扬州大学学报(农业与生命科学版), 2013, 34(4): 50-55.
Zhou G S, Zhai F Y, Lu S Y, Nimir A E, Xu Q L. Effects of vegetative branch retention on seed cotton yield and nutrient absorption under low planting densities and high nitrogen applying rates. J Yangzhou Univ (Agric Life Sci Edn), 2013, 34(4): 50-55 (in Chinese with English abstract).
[24] Alderman P D. A comprehensive R interface for the DSSAT cropping systems model. Comput Electron Agric, 2020, 172: 105325.
[25] Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, et al. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron, 2003, 18: 267-288.
[26] Black C A. Soil Fertility Evaluation and Control. New York: CRC Press, 2013. pp 342-392.
[27] Karlen D L, Kovar J L, Cambardella C A, Colvin T S. Thirty-year tillage effects on crop yield and soil fertility indicators. Soil Tillage Res, 2013, 130: 24-41.
[28] Slattery R A, Ainsworth E A, Ort D R. A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap. J Exp Bot, 2013, 64: 3723-3733.
doi: 10.1093/jxb/ert207 pmid: 23873996
[29] Pearce A W, Slaton N A, Lyons S E, Bolster C H, Bruulsema T W, Grove J H, Jones J D, McGrath J M, Miguez F E, Nelson N O, et al. Defining relative yield for soil test correlation and calibration trials in the Fertilizer Recommendation Support Tool. Soil Sci Soc Am J, 2022, 86: 1338-1353.
[30] Antille D L, Moody P W. Nitrogen use efficiency indicators for the Australian cotton, grains, sugar, dairy and horticulture industries. Environ Sustain Indic, 2021, 10: 100099.
[31] 梁涛, 陈轩敬, 赵亚南, 黄兴成, 李鸿, 石孝均, 张跃强. 四川盆地水稻产量对基础地力与施肥的响应. 中国农业科学, 2015, 48: 4759-4768.
doi: 10.3864/j.issn.0578-1752.2015.23.017
Liang T, Chen X J, Zhao Y N, Huang X C, Li H, Shi X J, Zhang Y Q. Response of rice yield to inherent soil productivity of paddies and fertilization in Sichuan basin. Sci Agric Sin, 2015, 48: 4759-4768 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.23.017
[32] 马伟栋, 陈英花, 王飞, 危常州. 新疆耕地土壤氮磷钾养分供应量分析. 新疆农业科学, 2022, 59: 1401-1408.
doi: 10.6048/j.issn.1001-4330.2022.06.011
Ma W D, Chen Y H, Wang F, Wei C Z. Study on the supply of nitrogen, phosphorus and potassium nutrients of arable land in Xinjiang. Xinjiang Agric Sci, 2022, 59: 1401-1408 (in Chinese with English abstract).
doi: 10.6048/j.issn.1001-4330.2022.06.011
[33] 汤明尧, 沈重阳, 张炎, 闫翠侠, 傅国海. 新疆棉花化肥利用效率研究. 中国土壤与肥料, 2022, (4): 161-168.
Tang M Y, Shen Z Y, Zhang Y, Yan C X, Fu G H. Investigation of fertilizer use efficiency for cotton in Xinjiang. Soil Fert Sci China, 2022, (4): 161-168 (in Chinese with English abstract).
[34] 吕宁, 祝宏辉, 程文明. 农业化肥减量及生物肥料替代可行性研究——来自新疆棉区调查数据的实证. 地理研究, 2022, 41: 1459-1480.
doi: 10.11821/dlyj020210997
Lyu N, Zhu H H, Cheng W M. Feasibility study on reduction of agricultural chemical fertilizer and substitution of bio-fertilizer: an empirical study of cotton survey data in Xinjiang. Geogr Res, 2022, 41: 1459-1480 (in Chinese with English abstract).
doi: 10.11821/dlyj020210997
[35] 李继福, 何俊峰, 陈佛文, 谭京红, 吴启侠, 万鹏. 中国棉花生产格局与施肥研究现状: 基于CNKI数据计量分析. 中国棉花, 2019, 46(4): 17-24.
doi: 10.11963/1000-632X.ljfljf.20190402
Li J F, He J F, Chen F W, Tan J H, Wu Q X, Wan P. Status of cotton planting and fertilization research in China: based on CNKI data analysis. China Cotton, 2019, 46(4): 17-24 (in Chinese with English abstract).
[36] Luo H H, Wang Q, Zhang J K, Wang L S, Li Y B, Yang G Z. Minimum fertilization at the appearance of the first flower benefits cotton nutrient utilization of nitrogen, phosphorus and potassium. Sci Rep, 2020, 10: 6815.
doi: 10.1038/s41598-020-63692-3 pmid: 32321988
[37] 朱倩倩, 武雪萍, 张淑香, 许咏梅, 吉丽丽. 化肥减量有机替代对新疆滴灌棉花产量及土壤养分的影响. 新疆农业科学, 2020, 57: 2135-2143.
doi: 10.6048/j.issn.1001-4330.2020.11.022
Zhu Q Q, Wu X P, Zhang S X, Xu Y M, Ji L L. Effects of reducing chemical fertilizer and organic fertilizer supplement on the yield and soil nutrient of drip irrigation cotton in Xinjiang. Xinjiang Agric Sci, 2020, 57: 2135-2143.
[38] Marimuthu S, Surendran U, Subbian P. Productivity, nutrient uptake and post-harvest soil fertility as influenced by cotton-based cropping system with integrated nutrient management practices in semi-arid tropics. Arch Agron Soil Sci, 2014, 60: 87-101.
[39] Wang X S, Deng Z, Zhang W Z, Meng Z J, Chang X, Lyu M C. Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS One, 2017, 12: e0169029.
[40] Dong H Z, Li W J, Eneji A E, Zhang D M. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Res, 2012, 126: 137-144.
[41] Luo Z, Liu H, Li W P, Zhao Q, Dai J L, Tian L W, Dong H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res, 2018, 218: 150-157.
[42] 赵欢, 张萌, 刘海, 肖厚军, 秦松, 崔宏浩, 郑常祥, 祝云芳. 新型肥料对贵州黄壤区玉米干物质积累、养分吸收及氮素利用率的影响. 西南农业学报, 2017, 30: 1390-1395.
Zhao H, Zhang M, Liu H, Xiao H J, Qin S, Cui H H, Zheng C X, Zhu Y F. Effects of different new Fertilizers on dry matter accumulation, nutrient absorption and nitrogen use efficiency of corn planted on yellow soil in Guizhou. Southwest China J Agric Sci, 2017, 30: 1390-1395 (in Chinese with English abstract).
[43] Tang H Y, Yang G Z, Zhang X L, Siddique K. Improvement of fertilizer N recovery by allocating more N for later application in cotton (Gossypium hirsutum L.). Int J Basic Appl Sci, 2014, 12: 32-37.
[44] Yang G Z, Chu K Y, Tang H Y, Nie Y C, Zhang X L. Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split. J Integr Agric, 2013, 12: 999-1007.
[45] Huo W G, Peng Y, Maimaitiaili B, Batchelor W D, Feng G. Phosphorus fertilizer recommendation based on minimum soil surplus for cotton growing in salt-affected soils. Field Crops Res, 2023, 291: 108799.
[46] Hussain M, Tariq A F, Nawaz A, Nawaz M, Sattar A, Ul-Allah S, Wakeel A. Efficacy of fertilizing method for different potash sources in cotton (Gossypium hirsutum L.) nutrition under arid climatic conditions. PLoS One, 2020, 15: e0228335.
[47] 夏颖, 姜存仓, 陈防, 鲁剑巍, 李小坤, 郝艳淑. 棉花钾营养与钾肥施用的研究进展. 华中农业大学学报, 2010, 29: 658-663.
Xia Y, Jiang C C, Chen F, Lu J W, Li X K, Hao Y S. Review on potassium nutrient and potassium fertilizer application of cotton. J Huazhong Agric Univ, 2010, 29: 658-663 (in Chinese with English abstract).
[48] 李书田, 邢素丽, 张炎, 崔荣宗. 钾肥用量和施用时期对棉花产量品质和棉田钾素平衡的影响. 植物营养与肥料学报, 2016, 22: 111-121.
Li S T, Xing S L, Zhang Y, Cui R Z. Effects of potassium fertilizer application rate and timing on cotton yield, quality, and potassium balance in cotton fields. Plant Nutr Fert Sci, 2016, 22: 111-121 (in Chinese with English abstract).
[1] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[2] GUO Bao-Wei, WANG Wang, WANG Kai, WANG Yan, ZENG Xin, JING Xiu, WANG Jing, NI Xin-Hua, XU Ke, ZHANG Hong-Cheng. Population dynamic characteristics and formation mechanisms of super high-yielding of two types of glutinous rice in the middle and lower reaches of the Yangtze Rive [J]. Acta Agronomica Sinica, 2025, 51(9): 2433-2453.
[3] FU Jiang-Peng, LIU Fa-Cai, YAN Bao-Qin, WANG Yong-Dong, LI Li-Li, WEI Wei, ZHOU Ying-Xia. Effect of replacing common urea with controlled-release fertilizer on dry matter accumulation, partitioning, yield, and quality of sorghum in dryland farming [J]. Acta Agronomica Sinica, 2025, 51(9): 2501-2513.
[4] ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500.
[5] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[6] FAN You-Zhong, WANG Xian-Ling, WANG Zong-Kai, WANG Chun-Yun, WANG Tian-Yao, XIE Jie, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHOU Guang-Sheng. Effects of straw incorporation combined with nitrogen management on photosynthetic efficiency and yield of rapeseed following rice [J]. Acta Agronomica Sinica, 2025, 51(8): 2139-2151.
[7] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[8] LI Yi-Qian, XU Shou-Zhen, LIU Ping, MA Qi, XIE Bin, CHEN Hong. Genome-wide association study of yield components using a 40K SNP array and identification of a stable locus for boll weight in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2025, 51(8): 2128-2138.
[9] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[10] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[11] WAN Shu-Bo, ZHANG Jia-Lei, GAO Hua-Xin, WANG Cai-Bin. Advances and prospects of high-yield peanut cultivation in China [J]. Acta Agronomica Sinica, 2025, 51(7): 1703-1711.
[12] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[13] DONG Wei-Jin, ZHANG Ya-Feng, LI Qi-Yun, LU Yang, ZHANG Zheng-Kun, SUI Li. Effects of Beauveria bassiana colonization on maize growth and yield under elevated CO2 concentration [J]. Acta Agronomica Sinica, 2025, 51(7): 1874-1886.
[14] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[15] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!