Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Genome-wide association study of yield components using a 40K SNP array and identification of a stable locus for boll weight in upland cotton (Gossypium hirsutum L.)

LI Yi-Qian2,XU Shou-Zhen1,LIU Ping1,MA Qi1,XIE Bin1,CHEN Hong1,*   

  1. 1 Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China; 2 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2024-12-03 Revised:2025-04-27 Accepted:2025-04-27 Published:2025-05-14
  • Supported by:
    This study was supported by the Science and Technology Innovation 2023-Major Project (2023ZD0404106).

Abstract:

Cotton yield is primarily determined by key yield components, including boll number per plant, boll weight, and lint percentage. Understanding the genetic basis of these traits is essential for advancing molecular breeding strategies. In this study, a natural population of 612 upland cotton (Gossypium hirsutum L.) accessions was genotyped using a 40K SNP array based on liquid-phase probe hybridization technology. Phenotypic data for boll number per plant, boll weight, lint percentage, and seed cotton yield were collected across five different environments. A genome-wide association study (GWAS) identified six significant loci: two associated with boll number per plant (on chromosomes A03 and A05), one with boll weight (on chromosome A07), one with lint percentage (on chromosome D01), and two with seed cotton yield (on chromosomes A05 and D07). Notably, a stable QTL located between 89.01 and 90.45 Mb on chromosome A07 was consistently associated with boll weight across all five environments (P=5.3646×10?8). Haplotype analysis of this region revealed two major haplotypes, with accessions carrying the favorable haplotype exhibiting a significant increase in boll weight of 0.64 g. By integrating whole-genome resequencing and transcriptome data, seven candidate genes were identified within this region, and a key SNP variant was pinpointed for potential use in molecular marker development. These findings enhance our understanding of the genetic architecture of cotton yield traits and offer valuable molecular resources for high-yield cotton breeding programs.

Key words: upland cotton, yield components, GWAS, boll weight, high-yield breeding

[1] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739–748. 

[2] Lam H M, Xu X, Liu X, Chen W B, Yang G H, Wong F L, Li M W, He W M, Qin N, Wang B, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053–1059. 

[3] Fang L, Wang Q, Hu Y, Jia Y H, Chen J D, Liu B L, Zhang Z Y, Guan X Y, Chen S Q, Zhou B L, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet, 2017, 49: 1089–1098. 

[4] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018, 50: 803–813. 

[5] Han Z G, Chen H, Cao Y W, He L, Si Z F, Hu Y, Lin H, Ning X Z, Li J L, Ma Q, et al. Genomic insights into genetic improvement of upland cotton in the world’s largest growing region. Ind Crops Prod, 2022, 183: 114929. 

[6] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127. 

[7] Si Z F, Jin S K, Li J, Y Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation, and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629. 

[8] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537. 

[9] Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348–354. 

[10] Wang M J, Tu L L, Lin M, Lin Z X, Wang P C, Yang Q Y, Ye Z X, Shen C, Li J Y, Zhang L, et al. Asymmetric subgenome selection and Cis-regulatory divergence during cotton domestication. Nat Genet, 2017, 49: 579–587. 

[11] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224–229. 

[12] Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet, 2021, 53: 1385–1391. 

[13] Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 2015, 4: 7. 

[14] Wang K, Li M Y, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010, 38: e164. 

[15] Dai F, Chen J D, Zhang Z Q, Liu F J, Li J, Zhao T, Hu Y, Zhang T Z, Fang L. COTTONOMICS: a comprehensive cotton multi-omics database. Database, 2022, 2022: baac080. 

[16] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X X, Wu J Y, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524–530.

[17] Li Y Q, Si Z F, Wang G P, Shi Z L, Chen J W, Qi G A, Jin S K, Han Z G, Gao W H, Tian Y, et al. Genomic insights into the genetic basis of cotton breeding in China. Mol Plant, 2023, 16: 662–677. 

[18] Zhang Y Y, Zhou F W, Wang H, Chen Y N, Yin T M, Wu H T. Genome-wide comparative analysis of the fasciclin-like Arabinogalactan proteins (FLAs) in Salicacea and identification of secondary tissue development-related genes. Int J Mol Sci, 2023, 24: 1481. 

[19] Cagnola J I, Dumont de Chassart G J, Ibarra S E, Chimenti C, Ricardi M M, Delzer B, Ghiglione H, Zhu T, Otegui M E, Estevez J M, et al. Reduced expression of selected fasciclin-like Arabinogalactan protein genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds. Plant Cell Environ, 2018, 41: 661–674. 

[20] Feraru E, Feraru M I, Moulinier-Anzola J, Schwihla M, Ferreira Da Silva Santos J, Sun L, Waidmann S, Korbei B, Kleine-Vehn J. PILS proteins provide a homeostatic feedback on auxin signaling output. Development, 2022, 149: dev200929.

[1] MENG Zi-Zhen, LIU Chen, SHENG Qian-Nan, XIONG Zhi-Hao, FANG Ya-Ting, ZHAO Jian, YU Qiu-Hua, WANG Kun-Kun, LI Xiao-Kun, REN Tao, LU Jian-Wei. Effects of nitrogen, phosphorus, and potassium fertilizer application on the yield increase of winter oilseed rape and the degree of yield reduction due to freezing stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1037-1049.
[2] XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585.
[3] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[4] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[5] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[6] ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235.
[7] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[8] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[9] CHEN Xu-Sheng, ZHAO Liang, DI Jia-Chun. Molecular pyramiding of insect and glyphosate-resistant genes and correlation analysis on economic traits of the pyramided lines in upland cotton [J]. Acta Agronomica Sinica, 2024, 50(10): 2637-2642.
[10] LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218.
[11] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[12] TANG Yu-Feng, YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen. Genome-wide identification and functional analysis of SGR gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1829-1842.
[13] LIU Jia, GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin, and WU Bi-Hua. Genome-wide association study for agronomic traits in common wheat lines derived from wild emmer wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1184-1196.
[14] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[15] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!