Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2637-2642.doi: 10.3724/SP.J.1006.2024.44028

• RESEARCH NOTES • Previous Articles     Next Articles

Molecular pyramiding of insect and glyphosate-resistant genes and correlation analysis on economic traits of the pyramided lines in upland cotton

CHEN Xu-Sheng*(), ZHAO Liang, DI Jia-Chun   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2024-02-20 Accepted:2024-05-21 Online:2024-10-12 Published:2024-06-25
  • Contact: *E-mail: njcxs@126.com
  • Supported by:
    National Mojar Project for Developing New GM Crops “High Yield and High Efficiency Transgenic Cotton Genetically Modified Organism in the Lower Reaches of the Yangtze River”(2016ZX08005001-008)

Abstract:

Breeding cotton with simultaneous resistance to cotton bollworm and glyphosate can enhance the ability of resistance to insects and herbicides, reduce pest control and herbicide costs, and improve comprehensive economic productivity in cotton production. In this study, a hybrid population was developed using self-bred high-yield and high-quality upland cotton, domestic transgenic Bt cotton lines, and GR79+GAT transgenic upland cotton lines as parental hybrids. Non-glyphosate-resistant cotton seedlings were eliminated by applying 0.2% glyphosate in the seedling beds, and cotton plants were screened for resistance to cotton bollworm under field conditions without pest control. Specific primers were used in the laboratory to track the insect-resistant and glyphosate-resistant genes, and individual plants carrying the Bt and GR79+GAT genes were propagated into plant lines. Nine lines exhibiting resistance to both insects and glyphosate were obtained through field screening. Subsequently, the economic traits of the selected lines were compared and analyzed. Among these lines, strain BG-6 demonstrated the combined presence of insect-resistant and glyphosate-resistant genes, as well as higher lint yield and fiber quality. The fiber length, specific strength, and micronaire value of BG-6 were 30.9 cm, 30.1 cN tex-1, and 4.9, respectively. Correlation analysis between yield traits and fiber quality traits revealed a negative correlation between lint percentage and uniformity index (r = -0.838**), but no significant correlation was observed between other yield traits and fiber quality traits. In conclusion, our study successfully selected resistant cotton seedlings through glyphosate spraying in the seedling beds, identified resistant cotton plants under field conditions without pest control, detected two resistance genes using PCR in the laboratory, and evaluated high-yield and high-quality traits in the field. By following this approach, we achieved the pyramiding of multiple traits, including insect resistance, glyphosate resistance, and high-yield and high-quality characteristics, in the segregated progeny of comprehensive hybrid combinations.

Key words: upland cotton, Bt gene, GR79+GAT gene, yield traits, fiber quality, correlation analysis

Fig. 1

PCR identification of Bt gene M: marker; Lane 1 to 24 were single plants from segregation populations."

Fig. 2

PCR detection of GAT gene M: marker; Lane 1 to 24 were single plants from segregation populations."

Table 1

Yield traits of insect- and glyphosate-resistant upland cotton lines"

品系编号
Strain number
株高
Plant height
(cm)
果枝台数
Fruit branch
单株铃数
Boll number
单铃重
Boll weight (g)
大样衣分
Lint
percentage
(%)
籽棉产量
Seed cotton yield
(kg hm-2)
皮棉产量
Lint yield
(kg hm-2)
BG-1 109.45 13.8 28.8 7.4 40.8 3275.0 1336.3
BG-2 96.70 12.2 29.0 6.8 44.6 3220.0 1436.8
BG-3 101.80 14.5 33.1 6.3 42.1 3135.0 1321.1
BG-4 104.70 13.9 28.9 7.1 41.4 2815.0 1165.0
BG-5 115.35 14.7 34.9 6.7 41.8 4015.0 1680.0
BG-6 109.10 14.7 31.6 6.8 42.4 3760.0 1593.7
BG-7 95.75 14.2 30.0 6.8 40.7 2585.0 1052.6
BG-8 95.95 14.9 29.4 6.9 41.5 2880.0 1195.0
BG-9 101.20 13.2 29.2 6.4 44.2 2340.0 1035.0
平均值Mean value 103.3±6.9 14.0±0.9 30.5±2.2 6.8±0.3 42.2±1.4 3113.9±535.0 1312.8±226.5
极小值Minimal value 95.80 12.2 28.8 6.3 40.7 2340.0 1035.0
极大值Maximum value 115.40 14.9 34.9 7.4 44.6 4015.0 1680.0
变异系数Coefficient of variation 6.67 6.14 7.08 4.99 3.29 17.18 17.25

Table 2

Fiber quality of insect- and glyphosate-resistant upland cotton lines"

品系编号
Strain number
长度
Fiber length
(mm)
整齐度
Uniformity index
(%)
比强度
Specific strength
(cN tex-1)
马克隆值Micronaire value 伸长率
Elongation rate
(%)
BG-1 29.7 85.5 29.4 4.9 6.6
BG-2 28.7 84.4 27.4 5.1 6.5
BG-3 30.1 85.0 28.2 5.0 6.6
BG-4 28.5 85.2 28.8 5.3 6.5
BG-5 29.5 85.0 28.3 5.1 6.5
BG-6 30.9 85.0 30.1 4.9 6.6
BG-7 29.3 85.0 29.2 4.9 6.5
BG-8 29.4 84.9 28.3 5.3 6.6
BG-9 29.0 84.7 28.1 5.4 6.6
平均值Mean value 29.5±0.7 84.9±0.3 28.6±0.8 5.1±0.2 6.6±0.1
极小值Minimal value 28.5 84.4 27.4 4.9 6.5
极大值Maximum value 30.9 85.5 30.1 5.4 6.6
变异系数Coefficient of variation 2.5 0.4 2.8 3.4 0.8

Table 3

Correlation between yield traits and fiber quality traits of upland cotton lines"

性状
Trait
株高
Plant height
(cm)
果枝台数
Fruit branch
单株铃数
Boll number
单铃重
Boll weight
(g)
衣分
Lint
percentage
(%)
籽棉产量
Seed cotton yield
(kg hm-2)
皮棉产量
Lint yield
(kg hm-2)
长度 Fiber length (mm) 0.374 0.614 0.499 -0.175 -0.233 0.536 0.492
整齐度 Uniformity index (%) 0.545 0.579 0.098 0.521 -0.838** 0.187 0.029
断裂比强度Specific strength 0.400 0.537 0.021 0.413 -0.609 0.235 0.126
马克隆值Micronaire value -0.275 -0.152 -0.222 -0.270 0.365 -0.516 -0.458
伸长率Elongation rate (%) 0.029 0.279 -0.070 -0.160 0.026 -0.080 -0.087
[1] 郭三堆, 王远, 孙国清, 金石桥, 周焘, 孟志刚, 张锐. 中国转基因棉花研发应用二十年. 中国农业科学, 2015, 48: 3372-3387.
doi: 10.3864/j.issn.0578-1752.2015.17.005
Guo S D, Wang Y, Sun G Q, Jin S Q, Zhou T, Meng Z G, Zhang R. Twenty years of research and application of transgenic cotton in China. Sci Agric Sin, 2015, 48: 3372-3387 (in Chinese with English abstract).
[2] 郭三堆, 孙豹, 孟志刚, 张锐, 王远, 孙国清, 周焘. 转抗虫、抗除草剂基因棉花分子育种. 见: 中囯棉花学会2015年年会论文汇编, 2015. p 50.
Guo S D, Sun B, Meng Z G, Zhang R, Wang Y, Sun G Q, Zhou T. Molecular breeding of transgenic cotton with insect-resistant and herbicide-resistant genes. In: Chinese Cotton Society 2015 Annual Conference Papers Collection, 2015. p 50. (in Chinese).
[3] Liang C Z, Sun B, Meng Z G, Meng Z H, Wang Y, Sun G Q, Zhu T, Lu W, Zhang W, Malik W, Lin M, Zhang R, Guo S D. Co-expression of GR79 EPSPS and GAT yields herbicide-resistant cotton with low glyphosate residues. Plant Biotechnol J, 2017, 15: 1622-1629.
doi: 10.1111/pbi.12744 pmid: 28418615
[4] 陈旭升. 抗除草剂棉花研究进展. 江西农业学报, 2006, 18(1): 94-98.
Chen X S. Advance in research on cotton resistant to herbicides. Acta Agric Jiangxi, 2006, 18(1): 94-98 (in Chinese with English abstract).
[5] 李海强, 李号宾, 丁瑞丰, Ahtam U, 潘洪生, 徐遥, 王冬梅, 刘建. 转(Bt Cry1Ac + CP4 EPSPS)基因抗虫抗草甘膦棉花对草甘膦的耐受性研究. 环境昆虫学报, 2018, 40: 209-214.
Li H Q, Li H B, Ding R F, Ahtam U, Pan H S, Xu Y, Wang D M, Liu J. Effects of transgenic cotton expressing Bt Cry1Ac+ CP4EPSPS genes on glyphosate tolerance. J Environ Entomol, 2018, 40: 209-214 (in Chinese with English abstract).
[6] 周向阳, 赵亮, 狄佳春, 陈旭升. 2个抗虫棉的外源Bt基因分子鉴定及其染色体定位. 作物学报, 2019, 45: 1440-1445.
doi: 10.3724/SP.J.1006.2019.84167
Zhou X Y, Zhao L, Di J C, Chen X S. Molecular identification and chromosomal mapping of exogenous Bt gene in two insect- resistant cotton varieties. Acta Agron Sin, 2019, 45: 1440-1445 (in Chinese with English abstract).
[7] 赵龙飞, 赵亮, 狄佳春, 陈旭升. 陆地棉转GR79与GAT基因对草甘膦抗性的鉴定及其遗传规律分析. 江苏农业学报, 2019, 35: 531-536.
Zhao L F, Zhao L, Di J C, Chen X S. dentification and inheritance of glyphosate-resistant genes GR79 and GAT in upland cotton. Jiangsu J Agric Sci, 2019, 35: 531-536 (in Chinese with English abstract).
[8] Hanson W D. The breakup of initial linkage blocks under selected mating systems. Genetics, 1959, 44: 857-868.
doi: 10.1093/genetics/44.5.857 pmid: 17247864
[9] Miller P A, Rawlings J O. Breakup of initial linkage blocks through intermating in a cotton breeding population. Crop Sci, 1967, 7: 199-204.
[10] Meredith W R Jr, Bridge R R. Breakup of linkage blocks in cotton’ G. hirsutum L. Crop Sci, 1971, 11: 695-697.
[11] Culp T W, Harrell D C, Kerr T. Some genetic implications in the transfer of high fiber strength genes to upland cotton. Crop Sci, 1979, 19: 481-484.
[12] 匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱. 单粒棉花种子DNA快速提取方法. 分子植物育种, 2010, 8: 827-831.
Kuang M, Yang W H, Xu H X, Wang Y Q, Zhou D Y, Feng X A. A rapid method of DNA extraction from single cotton seed. Mol Plant Breed, 2010, 8: 827-831 (in Chinese with English abstract).
[13] 王奕海, 谢家建, 张永军, 王锡锋, 彭于发. 一种检测抗虫棉中不同Bt基因表达盒结构的PCR方法. 农业生物技术学报, 2009, 17: 914-919.
Wang Y H, Xie J J, Zhang Y J, Wang X F, Peng Y F. A PCR method to detect different Bt gene expression cassettes in transgenic Bt cotton. J Agric Biotechnol, 2009, 17: 914-919 (in Chinese with English abstract).
[14] 郭三堆, 孙豹, 张锐, 孟志刚, 孙国清, 林敏, 陆伟. 一种含有草甘膦抗性基因的表达载体及其应用. 中国专利: 201410204703.6, 2014-05-15.
Guo S D, Sun B, Zhang R, Meng Z G, Sun G Q, Lin M, Lu W. An expression vector containing glyphosate resistance gene and its application. Chinese patent: 201410204703.6, 2014-05-15 (in Chinese).
[15] 张军, 武耀廷, 郭旺珍, 张天真. 棉花微卫星标记的 PAGE/银染快速检测. 棉花学报, 2000, 12: 267-269.
Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci, 2000, 12: 267-269 (in Chinese with English abstract).
[16] Comai L, Facciotti D, Hiatt W R, Thompson G, Rose R E, Stalker D M. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature, 1985, 317: 741-744.
[17] Comai L, Sen L, Stalker D. An altered AroA gene product confers resistance to the herbicide glyphosate. Science, 1983, 221: 370-371.
pmid: 17798892
[18] Pline W A, Wilcut J W, Duke S O, Edmisten K L, Wells R. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J Agric Food Chem, 2002, 50: 506-512.
[19] Cerny R E, Bookout J T, CaJacob C A, Groat J R, Hart J L, Heck G R, Huber S A, Listello J, Martens A B, Oppenhuizen M E. Development and characterization of a cotton (Gossypium hirsutum L.) event with enhanced reproductive resistance to glyphosate. Crop Sci, 2010, 50: 1375-1384.
[20] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定. 作物学报, 2021, 47: 789-798.
doi: 10.3724/SP.J.1006.2021.04169
Li J H, Duan Q, Shi M T, Wu L M, Liu H, Lin Y J, Wu G B, Fan C C, Zhou Y M. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance. Acta Agron Sin, 2021, 47: 789-798 (in Chinese with English abstract).
[21] Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Fincher K, Hallas L. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Curr Top Plant Physiol, 1992, 7: 139-145.
[22] Castle L A, Siehl D L, Gorton R, Patten P A, Chen Y H, Bertain S, Cho H J, Duck N, Wong J, Liu D. Discovery and directed evolution of a glyphosate tolerance gene. Science, 2004, 304: 1151-1154.
doi: 10.1126/science.1096770 pmid: 15155947
[23] 赵福永, 谢龙旭, 田颖川, 徐培林. 抗草甘膦基因aroAM12及抗虫基因Bts1m的转基因棉株. 作物学报, 2005, 31: 108-113.
Zhao F Y, Xie L X, Tian Y C, Xu P L. Glyphosate-resistant and bollworm-resistant transgenic cotton plants with the aroAM12 and Bts1m genes. Acta Agron Sin, 2005, 31: 108-113 (in Chinese with English abstract).
[24] 陈旭升, 华国雄. 陆地棉高产优质育种选择策略:最佳籽指选择. 见:第三届全国青年遗传育种学术会文集. 北京: 中国农业科技出版社, 1994. pp 518-519.
Chen X S, Hua G X. Selection strategy of upland cotton breeding for high yield and quality:optimum seed index selection. In: Proceedings of the 3rd National Youth Genetic and Breeding Society. Beijing: China Agricultural Science and Technology Press, 1994. pp 518-519 (in Chinese).
[25] 易成新, 汪业春, 郭旺珍, 朱协飞, 张天真. 陆地棉分子标记辅助轮回选择聚合育种研究: IV. 纤维比强度选择效果及对其他品质性状的影响. 作物学报, 2004, 30: 680-685.
Yi C X, Wang Y C, Guo W Z, Zhu X F, Zhang T Z. Pyramid breeding by marker-assisted recurrent selection in upland cotton: IV. MAS efficiency for fiber strength and effects on other fiber qualities. Acta Agron Sin, 2004, 30: 680-685 (in Chinese with English abstract).
[26] 杨雪峰, 宋维富, 刘东军, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏, 白光宇, 孙雪松, 王晓楠. Glu-D1dWx-B1b基因聚合在强筋小麦育种中的利用. 麦类作物学报, 2023, 43: 545-550.
Yang X F, Song W F, Liu D J, Zhao L J, Song Q J, Zhang C L, Xin W L, Xiao Z M, Bai G Y, Sun X S, Wang X N. Utilization of Glu-D1d and Wx-B1b gene pyramiding in strong gluten wheat breeding programmes. J Triticeae Crops, 2023, 43: 545-550 (in Chinese with English abstract).
[1] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[2] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[3] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[4] SHANG Hong-Yan, PU Jing, KE Hui-Feng, GU Qi-Shen, SUN Zheng-Wen, YANG Jun, WANG Guo-Ning, ZHANG Yan, LU Huai-Yu, XU Dong-Yong, WU Li-Qiang, MA Zhi-Ying, WANG Xing-Fen, WU Jin-Hua. Genetic diversity analysis and evaluation of domestic and international cotton germplasm resources under different planting environments [J]. Acta Agronomica Sinica, 2024, 50(10): 2528-2537.
[5] ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41.
[6] LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218.
[7] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[8] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[9] MENG Lu, DU Ming-Wei, LI Fang, QI Hai-Kun, LU Zheng-Ying, XU Dong-Yong, LI Cun-Dong, ZHANG Ming-Cai, TIAN Xiao-Li, LI Zhao-Hu. Relationship between cotton population, maturity, and the efficacy of harvest aids under high-density planting conditions in Central Hebei province, China [J]. Acta Agronomica Sinica, 2023, 49(4): 1028-1038.
[10] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[11] JIANG Xiao, XU Jing, PAN Li-Juan, CHEN Na, WANG Tong, JIANG Xiao-Dong, YIN Xiang-Zhen, YANG Zhen, YU Shan-Lin, CHI Xiao-Yuan. Peanut yield-related traits and meteorological factors correlation analysis in multiple environments [J]. Acta Agronomica Sinica, 2023, 49(11): 3110-3121.
[12] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[13] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[14] WANG Ye, LIU Zhao, XIAO Shuang, LI Fang-Jun, WU Xia, WANG Bao-Min, TIAN Xiao-Li. Effects of PSAG12-IPT gene expression on leaf senescence, yield, and fiber quality in cotton [J]. Acta Agronomica Sinica, 2021, 47(11): 2111-2120.
[15] TIAN Jing-Shan, ZHANG Xu-Yi, WANG Wen-Min, YANG Yan-Long, SUI Long-Long, ZHANG Peng-Peng, ZHANG Ya-Li, ZHANG Wang-Feng, GOU Ling. A method of defoliant application based on fiber damage and boll growth period of machine-harvested cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1388-1397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!