Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2625-2636.doi: 10.3724/SP.J.1006.2024.42004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of planting uniformity with machine on yield construction and quality formation of rice

TANG Cheng-Han**(), CHEN Hui-Zhe**, YE Tian-Cheng, ZHANG Yu-Ping, XIANG Jing, ZHANG Yi-Kai, WANG Zhi-Gang, WANG Ya-Liang*()   

  1. China National Rice Research Institute / State Key Laboratory of Rice Biology and Breeding, Hangzhou 311400, Zhejiang, China
  • Received:2024-01-17 Accepted:2024-05-21 Online:2024-10-12 Published:2024-06-06
  • Contact: *E-mail: wangyaliang@caas.cn
  • About author:**(Contributed equally to this work)
  • Supported by:
    National Key Research and Development Program of China(2023YFD2301304);National Key Research and Development Program of China(2023YFD2301404);National Key Research and Development Program of China(2022YFD2300700)

Abstract:

Planting uniformity plays a crucial role in determining the yield and quality of rice. This experiment aimed to elucidate the mechanism behind the simultaneous improvement of uniformity, yield, and quality. Three varieties were used in the study: Yongyou 1540 (indica-japonica hybrid rice), Zhehexiang 2 (inbred japonica rice), and Huazheyou 210 (hybrid indica rice). Four treatments with varying planting uniformity were established: T1 (drill sowing, planting uniformity of 65%-75%), T2 (broadcast sowing, planting uniformity of 45%-55%), T3 (manual simulated mechanical rice transplanting, planting uniformity of 100%), and T4 (manual simulated mechanical rice transplanting, planting uniformity of 50%). The study compared and analyzed the dynamic changes in tiller number, leaf area photosynthetic efficiency, dry matter accumulation and transport, yield formation, and rice quality across different planting uniformity groups. The results showed as follows: (1) Enhanced planting uniformity increased the number of productive tillers by promoting tillering. The average number of tillers at the tillering peak stage was highest in T3, followed by T1, T2, and T4, with a consistent trend across different varieties. (2) Enhanced planting uniformity led to an increase in population leaf area index, particularly in the highly effective leaf area index of the top three leaves at the heading stage. Additionally, improved uniformity enhanced dry matter accumulation and facilitated its transportation. Dry matter accumulation at maturity followed the order T3 > T1 > T2 > T4, with consistent trends observed among different varieties. However, there was no significant difference between T2 and T4. The effect of uniformity on stem sheath material movement during the filling stage varied among varieties, with no significant differences found between T1, T2, and T4. (3) The number of grains per panicle did not significantly differ under different uniformity treatments. However, high planting uniformity resulted in a more uniform distribution of grains on primary and secondary branches. (4) Increased yield in high uniformity populations was primarily attributed to the effective panicle number, with consistent trends observed among different varieties. The average yield of T3 was 8.16%, 15.41%, and 15.61% higher than that of T1, T2, and T4, respectively. (5) Improving planting uniformity increased the brown rice rate, milled rice rate, head rice rate, and protein content, while decreasing chalkiness and chalky rice rate. These findings indicate that improving planting uniformity can promote tillering, increase leaf area index and dry matter accumulation, enhance effective panicle number, and ultimately improve yield and milled rice rate, as well as rice quality to some extent. The experimental results highlight the potential of precision sowing machines to improve rice yield and quality by enhancing planting uniformity.

Key words: rice, planting uniformity, sowing method, yield, rice quality

Fig. 1

Comparison of rice tillering dynamics under different planting uniformity treatments A: YY1540; B: ZHX2; C: HZY210; T1: drill sowing, planting uniformity 65%-75%; T2: broadcast sowing, planting uniformity 45%-55%; T3: manual simulated mechanical rice transplanting, planting uniformity 100%; T4: manual simulated mechanical rice transplanting, planting uniformity 50%; TP, 20 d-ATP, PT, BT, HD represent five different growth stages: transplanting, 20 d after transplanting, peak tillering, booting and heading, respectively; different lowercase letters indicate significant differences at the 0.05 probability level among different treatments at the same growth stage."

Fig. 2

Comparison of population uniformity dynamics under different planting uniformity treatments A: YY1540; B: ZHX2; C: HZY210; T1: drill sowing, planting uniformity 65%-75%; T2: broadcast sowing, planting uniformity 45%-55%; T3: manual simulated mechanical rice transplanting, planting uniformity 100%; T4: manual simulated mechanical rice transplanting, planting uniformity 50%; TP, 20 d-ATP, PT, BT, HD represent five different growth stages: transplanting, 20 d after transplanting, peak tillering, booting and heading, respectively; different lowercase letters indicate significant differences at the 0.05 probability level among different treatments at the same growth stage."

Table 1

Comparison of LAI in critical growth period and high effective LAI at heading under different planting uniformity treatments"

品种
Variety
处理
Treatment
叶面积指数Leaf area index (LAI)
分蘖盛期
Peak tillering
孕穗期
Booting
抽穗期
Heading
成熟期
Maturity
抽穗期高效叶面积指数
High effective LAI at heading
甬优1540
YY1540
T1 1.78±0.04 b 4.09±0.09 b 5.70±0.26 b 2.06±0.06 b 3.08±0.16 b
T2 1.53±0.03 c 3.92±0.09 c 5.10±0.17 d 1.83±0.04 d 2.81±0.07 d
T3 1.92±0.02 a 4.22±0.07 a 6.34±0.08 a 2.26±0.06 a 3.48±0.04 a
T4 1.54±0.04 c 3.92±0.14 c 5.36±0.15 c 1.92±0.06 c 2.93±0.04 c
浙禾香2号
ZHX2
T1 1.85±0.05 b 3.52±0.08 b 4.64±0.14 b 1.82±0.03 b 2.16±0.03 b
T2 1.85±0.05 b 3.41±0.11 c 4.27±0.13 c 1.68±0.06 c 2.05±0.05 c
T3 1.94±0.04 a 3.66±0.04 a 5.00±0.05 a 1.96±0.05 a 2.43±0.05 a
T4 1.83±0.03 b 3.41±0.09 c 4.24±0.15 c 1.66±0.06 c 2.05±0.05 c
华浙优210
HZY210
T1 2.19±0.05 b 4.63±0.11 b 6.16±0.17 b 2.06±0.06 b 4.04±0.12 b
T2 2.13±0.05 bc 4.44±0.09 c 5.80±0.22 c 1.94±0.09 c 3.87±0.13 c
T3 2.28±0.04 a 4.97±0.12 a 6.61±0.12 a 2.21±0.07 a 4.49±0.04 a
T4 2.09±0.08 c 4.39±0.12 c 5.61±0.17 c 1.88±0.06 c 3.73±0.12 d
方差分析(F值) ANOVA (F-value)
品种Variety (V) 706.614** 779.075** 575.264** 132.484** 2870.707**
处理Treatment (T) 103.281** 58.765** 137.564** 124.599** 171.571**
品种 × 处理 V × T 19.875** 3.934** 3.750** 2.826* 7.097**

Table 2

Comparison of dry matter weight and harvest index in critical growth period under different planting uniformity treatments"

品种
Variety
处理
Treatment
地上部干物质总质量Total dry matter for aboveground parts (kg hm-2) 收获指数
Harvest index
(%)
分蘖盛期
Peak tillering
孕穗期
Booting
抽穗期
Heading
成熟期
Maturity
甬优1540
YY1540
T1 1793.90±47.32 b 5210.78±146.78 b 13,270.22±359.86 b 19,433.78±390.65 b 47.41±0.93 b
T2 1677.78±58.23 c 4947.33±144.90 c 12,437.48±384.97 c 18,029.85±441.43 d 47.24±1.27 b
T3 1952.31±26.24 a 5532.72±98.88 a 14,148.41±243.26 a 20,290.09±429.29 a 50.55±0.55 a
T4 1678.32±58.60 c 4877.13±145.35 c 12,656.55±307.68 c 18,661.73±381.18 c 47.20±0.95 b
浙禾香2号
ZHX2
T1 1934.63±58.15 a 4605.71±107.94 ab 10,088.61±283.67 b 18,096.52±480.97 b 46.28±1.59 a
T2 1886.27±52.06 a 4475.56±176.17 bc 10,022.92±142.67 bc 16,574.13±444.60 c 46.72±2.04 a
T3 1942.21±35.21 a 4732.78±54.03 a 10,543.10±131.52 a 18,828.34±100.75 a 46.17±1.28 a
T4 1895.65±44.60 a 4364.09±107.06 d 9777.92±308.51 c 16,278.11±316.14 c 46.25±1.69 a
华浙优210
HZY210
T1 2272.71±45.39 a 5231.48±134.20 a 12,117.38±331.51 ab 18,027.45±330.49 b 43.77±1.72 a
T2 2308.41±62.50 a 4980.76±124.28 b 11,912.91±323.62 bc 16,712.27±536.09 c 44.46±0.86 a
T3 2305.55±45.77 a 5295.08±111.22 a 12,334.68±176.90 a 19,282.16±247.49 a 44.56±0.70 a
T4 2294.60±27.47 a 4783.73±178.42 c 11,415.78±344.83 c 16,479.81±432.05 c 44.41±1.29 a
方差分析(F值) ANOVA (F-value)
品种Variety (V) 747.603** 147.751** 660.554** 128.283** 50.140**
处理Treatment (T) 20.866** 53.462** 46.868** 152.769** 3.461*
品种 × 处理 V × T 12.675** 2.585* 6.624** 3.430** 3.233**

Table 3

Comparison of weight per stem sheath in critical growth period and apparent output rate under different planting uniformity treatments"

品种
Variety
处理
Treatment
单茎茎鞘重Weight per stem sheath (g) 表观输出率
Apparent output rate (%)
分蘖盛期
Peak tillering
孕穗期
Booting
抽穗期
Heading
成熟期
Maturity
甬优1540
YY1540
T1 0.269±0.006 b 1.42±0.03 b 4.43±0.11 a 2.99±0.09 a 32.42±0.68 b
T2 0.264±0.007 b 1.32±0.03 c 4.19±0.13 b 2.83±0.08 b 32.29±0.74 b
T3 0.354±0.005 a 1.57±0.02 a 4.55±0.09 a 2.96±0.05 a 35.20±0.68 a
T4 0.264±0.012 b 1.30±0.03 c 4.26±0.13 b 2.87±0.08 b 32.09±0.46 b
浙禾香2号
ZHX2
T1 0.339±0.007 b 1.18±0.04 a 3.36±0.07 b 2.60±0.06 b 22.66±0.71 a
T2 0.337±0.008 b 1.14±0.01 ab 3.28±0.11 b 2.54±0.07 bc 23.25±0.65 a
T3 0.354±0.006 a 1.18±0.02 a 3.53±0.03 a 2.71±0.03 a 23.22±0.51 a
T4 0.335±0.011 b 1.13±0.03 b 3.25±0.10 b 2.48±0.07 c 22.55±0.29 a
华浙优210
HZY210
T1 0.323±0.006 b 1.07±0.02 a 2.15±0.05 ab 1.56±0.04 a 27.66±0.43 a
T2 0.324±0.011 b 1.02±0.03 b 2.11±0.04 b 1.49±0.04 b 27.96±0.75 a
T3 0.341±0.004 a 1.09±0.03 a 2.18±0.03 a 1.57±0.03 a 27.95±0.62 a
T4 0.296±0.011 c 0.95±0.02 c 1.95±0.07 c 1.39±0.04 c 27.88±0.55 a
方差分析(F值) ANOVA (F-value)
品种Variety (V) 293.065** 1195.862** 3861.795** 3779.254** 1663.554**
处理Treatment (T) 112.909** 114.860** 34.734** 31.927** 17.262**
品种 × 处理 V × T 45.445** 26.272** 2.459* 2.957* 10.408**

Table 4

Comparison of panicle-spikelet structures under different planting uniformity treatments"

品种
Variety
处理
Treatment
一次枝梗 Primary branches 二次枝梗 Secondary branches
枝梗数
No. of branches
着粒数
No. of grains
着粒数的均匀度
Uniformity of grains (%)
枝梗数
No. of branches
着粒数
No. of grains
着粒数的均匀度
Uniformity of grains (%)
甬优1540
YY1540
T1 21.28±0.42 a 13.51±0.40 a 71.84±1.67 b 54.35±1.52 a 3.25±0.15 a 75.08±2.34 b
T2 20.83±0.77 a 13.72±0.58 a 65.91±2.65 d 53.95±0.81 a 3.33±0.13 a 72.85±2.31 b
T3 20.82±0.84 a 13.29±0.26 a 76.15±1.35 a 53.19±1.77 a 3.23±0.12 a 79.16±1.24 a
T4 21.09±0.37 a 13.60±0.26 a 68.57±2.16 c 53.35±1.79 a 3.30±0.09 a 74.97±2.54 b
浙禾香2号
ZHX2
T1 15.03±0.22 a 12.19±0.34 a 70.71±1.67 b 31.32±1.03 a 3.04±0.10 a 78.51±2.24 ab
T2 15.15±0.72 a 12.35±0.48 a 67.11±2.04 c 31.01±0.69 a 3.02±0.15 a 74.05±2.25 c
T3 15.23±0.21 a 12.04±0.32 a 74.06±1.42 a 31.08±0.60 a 2.98±0.04 a 80.83±1.80 a
T4 15.24±0.31 a 12.32±0.25 a 68.62±1.92 bc 30.98±1.00 a 3.06±0.16 a 76.29±1.77 bc
华浙优210
HZY210
T1 13.12±0.36 a 12.16±0.36 a 76.70±1.26 b 31.98±0.63 a 3.15±0.12 a 82.79±1.90 b
T2 13.06±0.36 a 12.09±0.41 a 66.65±2.03 d 32.10±1.08 a 3.14±0.09 a 79.78±1.99 c
T3 13.29±0.45 a 11.97±0.23 a 81.20±1.17 a 32.15±0.56 a 3.07±0.06 a 86.75±1.64 a
T4 12.93±0.38 a 12.22±0.58 a 72.23±1.92 c 32.04±0.79 a 3.16±0.11 a 81.98±0.92 b
方差分析(F值) ANOVA (F-value)
品种Variety (V) 1652.673** 98.323** 35.769** 3199.652** 28.837** 89.394**
处理Treatment (T) 0.219 2.139 111.443** 0.595 1.642 36.207**
品种 × 处理 V × T 0.889 0.214 5.231** 0.475 0.264 0.471

Table 5

Comparation of grain yield and its components under different planting uniformity treatments"

品种
Variety
处理
Treatment
有效穗数
No. of productive panicles (×104 hm-2)
每穗粒数
Spikelets per
panicle
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
产量
Yield
(t hm-2)
甬优1540
YY1540
T1 186.40±3.71 b 292.46±6.56 a 82.88±1.68 a 22.80±0.67 a 9.22±0.20 b
T2 171.33±2.55 c 292.38±5.66 a 81.35±1.87 a 22.84±0.64 a 8.58±0.28 d
T3 202.69±2.55 a 294.41±3.62 a 82.44±2.00 a 23.00±0.73 a 10.18±0.13 a
T4 183.22±5.17 b 292.53±5.63 a 81.89±2.90 a 23.08±0.82 a 8.91±0.28 c
浙禾香2号
ZHX2
T1 239.51±4.29 b 184.73±5.68 a 86.16±1.78 b 23.94±0.22 a 8.33±0.09 b
T2 225.35±5.19 c 183.94±5.38 a 83.49±1.27 c 23.96±0.25 a 7.70±0.28 c
T3 248.51±3.71 a 184.42±3.65 a 88.50±1.33 a 24.31±0.34 a 8.80±0.21 a
T4 218.43±5.63 d 184.22±5.40 a 83.50±1.29 c 24.07±0.36 a 7.57±0.14 c
华浙优210
HZY210
T1 282.79±6.14 b 161.50±4.74 a 83.26±1.87 ab 24.18±0.17 b 7.89±0.22 b
T2 274.24±8.32 bc 160.56±4.91 a 80.76±2.28 c 23.75±0.13 c 7.47±0.20 c
T3 292.26±3.91 a 162.03±3.03 a 84.30±1.75 a 24.63±0.27 a 8.50±0.20 a
T4 268.82±9.50 c 158.19±3.98 a 81.03±1.92 bc 23.90±0.20 c 7.29±0.23 c
方差分析(F值) ANOVA (F-value)
品种Variety (V) 51.895** 4858.771** 22.864** 50.088** 296.188**
处理Treatment (T) 7.130** 0.519 12.234** 3.285* 135.375**
品种 × 处理 V × T 17.715** 0.222 1.715 1.122 3.402**

Table 6

Comparison of rice quality under different planting uniformity treatments"

品种
Variety
处理
Treatment
糙米率
Brown rice rate (%)
精米率
Milled rice
rate (%)
整精米率
Head rice
rate (%)
垩白米率
Chalky rice rate (%)
垩白度
Chalkiness degree
直链淀粉含量
Amylose
content (%)
蛋白质含量
Protein
content (%)
甬优1540
YY1540
T1 81.26±0.19 b 72.83±0.65 ab 56.44±0.22 b 24.60±0.81 b 6.64±0.41 b 13.52±0.09 a 7.99±0.41 b
T2 81.00±0.70 b 72.32±0.47 b 55.93±0.41 c 25.68±1.06 a 7.11±0.11 a 13.53±0.10 a 7.68±0.31 c
T3 81.86±0.52 a 73.16±0.37 a 56.90±0.36 a 23.66±0.56 c 6.58±0.38 b 13.60±0.10 a 8.64±0.40 a
T4 81.24±0.31 b 72.24±0.45 b 55.63±0.32 c 24.86±0.68 b 6.97±0.33 a 13.54±0.07 a 7.89±0.11 b
浙禾香2号
ZHX2
T1 80.47±0.57 b 71.40±0.41 b 58.49±0.52 b 22.33±0.72 b 5.53±0.11 b 10.57±0.06 a 9.03±0.13 b
T2 80.28±0.54 b 71.32±0.49 b 58.16±0.42 b 22.37±1.06 b 5.80±0.15 a 10.55±0.07 a 8.64±0.33 c
T3 81.11±0.38 a 72.74±0.30 a 59.09±0.44 a 22.18±0.98 b 5.17±0.15 c 10.58±0.06 a 9.35±0.20 a
T4 79.96±0.56 b 71.23±0.79 b 58.22±0.34 b 23.42±1.10 a 5.91±0.16 a 10.54±0.09 a 8.46±0.33 c
华浙优210
HZY210
T1 81.53±0.57 b 71.93±0.45 ab 57.46±0.19 b 31.08±2.45 a 7.41±0.26 ab 15.31±0.05 a 9.00±0.22 b
T2 81.62±0.50 b 71.53±0.54 ab 57.35±0.48 b 31.48±2.06 a 7.66±0.56 ab 15.37±0.09 a 8.27±0.26 c
T3 82.39±0.73 a 72.42±0.51 a 58.53±0.28 a 30.53±1.75 a 7.29±0.13 b 15.34±0.08 a 9.81±0.54 a
T4 81.34±0.51 b 71.15±1.42 b 57.59±0.65 b 31.48±1.85 a 7.61±0.52 a 15.28±0.05 a 8.75±0.16 c
方差分析(F值) ANOVA (F-value)
品种Variety (V) 37.499** 36.420** 195.248** 496.794** 450.591** 23213.382** 62.459**
处理Treatment (T) 8.503** 11.513** 25.718** 6.196** 22.479** 1.696 38.860**
品种 × 处理 V × T 1.029 0.525 1.554 0.719 1.219 0.668 3.900**
[1] 曾波. 近30年来我国水稻主要品种更新换代历程浅析. 作物杂志, 2018, (3): 1-7.
Zeng B. Analysis on the upgrading process of major rice varieties in China in recent 30 years. Crops, 2018, (3): 1-7 (in Chinese with English abstract).
[2] 王小慧, 姜雨林, 刘洋, 卢捷, 尹小刚, 史磊刚, 黄晶, 褚庆全, 陈阜. 基于县域单元的我国水稻生产时空动态变化. 作物学报, 2018, 44: 1704-1712.
doi: 10.3724/SP.J.1006.2018.01704
Wang X H, Jiang Y L, Liu Y, Lu J, Yin X G, Shi L G, Huang J, Chu Q Q, Chen F. Spatio-temporal changes of rice production in China based on county unit. Acta Agron Sin, 2018, 44: 1704-1712 (in Chinese with English abstract).
[3] 孟轶, 翁文安, 陈乐, 胡群, 邢志鹏, 魏海燕, 高辉, 黄山, 廖萍, 张洪程. 节水灌溉对水稻产量和品质影响的荟萃分析. 中国农业科学, 2022, 55: 2121-2134.
doi: 10.3864/j.issn.0578-1752.2022.11.004
Meng Y, Weng W A, Chen L, Hu Q, Xing Z P, Wei H Y, Gao H, Huang S, Liao P, Zhang H C. Effects of water-saving irrigation on grain yield and quality: a meta-analysis. Sci Agric Sin, 2022, 55: 2121-2134 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.11.004
[4] 邢志鹏, 朱明, 吴培, 钱海军, 曹伟伟, 胡雅杰, 郭保卫, 魏海燕, 许轲, 霍中洋, 戴其根, 张洪程. 稻麦两熟制条件下钵苗机插方式对不同类型水稻品种米质的影响. 作物学报, 2017, 43: 581-595.
doi: 10.3724/SP.J.1006.2017.00581
Xing Z P, Zhu M, Wu P, Qian H J, Cao W W, Hu Y J, Guo B W, Wei H Y, Xu K, Huo Z Y, Dai Q G, Zhang H C. Effect of mechanical transplanting with pothole seedlings on grain quality of different types of rice in rice-wheat rotation system. Acta Agron Sin, 2017, 43: 581-595 (in Chinese with English abstract).
[5] 李泽华, 马旭, 李秀昊, 陈林涛, 李宏伟, 袁志成. 水稻栽植机械化技术研究进展. 农业机械学报, 2018, 49(5): 1-20.
Li Z H, Ma X, Li X H, Chen L T, Li H W, Yuan Z C. Research progress of rice transplanting mechanization. Trans CSAM, 2018, 49(5): 1-20 (in Chinese with English abstract).
[6] 张桥, 向开宏, 孙永健, 武云霞, 郭长春, 唐源, 刘芳艳, 马均. 不同育秧方式下播种量和插秧机具对水稻产量及群体质量的影响. 核农学报, 2020, 34: 2595-2606.
doi: 10.11869/j.issn.100-8551.2020.11.2595
Zhang Q, Xiang K H, Sun Y J, Wu Y X, Guo C C, Tang Y, Liu F Y, Ma J. Effects of seeding amount and transplanting machines on rice yield and population quality under different seedling raising methods. Acta Agric Nucl Sin, 2020, 34: 2595-2606 (in Chinese with English abstract).
[7] 徐一成, 朱德峰, 赵匀, 陈惠哲. 超级稻精量条播与撒播育秧对秧苗素质及机插效果的影响. 农业工程学报, 2009, 25(1): 99-103.
Xu Y C, Zhu D F, Zhao Y, Chen H Z. Effects of broadcast sowing and precision drilling of super rice seed on seedling quality and effectiveness of mechanized transplanting. Trans CSAE, 2009, 25(1): 99-103 (in Chinese with English abstract).
[8] 胡雅杰, 邢志鹏, 龚金龙, 刘国涛, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 沙安勤, 周有炎, 罗学超, 刘国林. 钵苗机插水稻群体动态特征及高产形成机制的探讨. 中国农业科学, 2014, 47: 865-879.
doi: 10.3864/j.issn.0578-1752.2014.05.004
Hu Y J, Xing Z P, Gong J L, Liu G T, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Sha A Q, Zhou Y Y, Luo X C, Liu G L. Study on population characteristics and formation mechanisms for high yield of pot-seedling mechanical transplanting rice. Sci Agric Sin, 2014, 47: 865-879 (in Chinese with English abstract).
[9] 宋云生, 张洪程, 戴其根, 杨大柳, 郭保卫, 朱聪聪, 霍中洋, 许轲, 魏海燕, 胡加敏, 吴爱国, 蒋晓鸿. 水稻机栽钵苗单穴苗数对分蘖成穗及产量的影响. 农业工程学报, 2014, 30(10): 37-47.
Song Y S, Zhang H C, Dai Q G, Yang D L, Guo B W, Zhu C C, Huo Z Y, Xu K, Wei H Y, Hu J M, Wu A G, Jiang X H. Effect of rice potted-seedlings per hole by mechanical transplanting on tillers emergence, panicles formation and yield. Trans CSAE, 2014, 30(10): 37-47 (in Chinese with English abstract).
[10] 杜永林, 缪学宽, 李刚华, 张俊, 王绍华, 刘正辉, 唐设, 丁艳锋. 江苏机插水稻大面积均衡增产共性特征分析. 作物学报, 2014, 40: 2183-2191.
doi: 10.3724/SP.J.1006.2014.02183
Du Y L, Miao X K, Li G H, Zhang J, Wang S H, Liu Z H, Tang S, Ding Y F. Common characteristics of balanced yield increase in a large area of mechanical transplanted rice in Jiangsu province. Acta Agron Sin, 2014, 40: 2183-2191 (in Chinese with English abstract).
[11] 张丽华, 马瑞昆, 贾秀领, 姚艳荣, 杨利华, 张全国. 植株田间分布均匀度对夏玉米植株性状、田间光照和杂草的影响. 玉米科学, 2010, 18(6): 73-77.
Zhang L H, Ma R K, Jia X L, Yao Y R, Yang L H, Zhang Q G. Effects of uniformity of plant distribution on plant characters, light conditions and weeds in summer maize field. J Maize Sci, 2010, 18(6): 73-77 (in Chinese with English abstract).
[12] Zhang Y, Kong P L, Wang F, Zhao L M, Qian K Y, Zhang Y D, Fan X R. Effects of carbon and nitrogen fertilisers on rice quality of the OsNRT2.3b-overexpressing line. Agriculture, 2022, 12: 802.
[13] Zhao C, Gao Z J, Liu G M, Chen Y, Ni W, Lu J M, Shi Y, Qian Z H, Wang W L, Huo Z Y. Combining controlled-release urea and normal urea to improve the yield, nitrogen use efficiency, and grain quality of single season late japonica rice. Agronomy, 2023, 13: 276-276.
[14] 韩超, 许方甫, 卞金龙, 徐栋, 裘实, 赵晨, 朱盈, 刘国栋, 张洪程, 魏海燕. 淮北地区机械化种植方式对不同生育类型优质食味粳稻产量及品质的影响. 作物学报, 2018, 44: 1681-1693.
doi: 10.3724/SP.J.1006.2018.01681
Han C, Xu F P, Bian J L, Xu D, Qiu S, Zhao C, Zhu Y, Liu G D, Zhang H C, Wei H Y. Effects of mechanical planting methods on yield and quality of japonica rice with good taste and different growth durations in Huaibei region. Acta Agron Sin, 2018, 44: 1681-1693 (in Chinese with English abstract).
[15] 王亚梁, 朱德峰, 陈惠哲, 张玉屏, 向镜, 王志刚, 张义凯. 籼粳杂交稻精准条播育秧机插减氮增产的效应研究. 中国水稻科学, 2021, 35: 495-502.
doi: 10.16819/j.1001-7216.2021.210202
Wang Y L, Zhu D F, Chen H Z, Zhang Y P, Xiang J, Wang Z G, Zhang Y K. Effects of precise drill sowing-based seedling raising of indica-japonica hybrid rice for mechanical transplanting on yield increase under nitrogen reduction conditions. Chin J Rice Sci, 2021, 35: 495-502 (in Chinese with English abstract).
[16] 王亚梁, 朱德峰, 陈若霞, 方文英, 王晶卿, 向镜, 陈惠哲, 张玉屏, 谌江华. 杂交稻低播量精准条播育秧机插提高群体均匀度和产量的效应分析. 中国农业科学, 2022, 55: 666-679.
doi: 10.3864/j.issn.0578-1752.2022.04.004
Wang Y L, Zhu D F, Chen R X, Fang W Y, Wang J Q, Xiang J, Chen H Z, Zhang Y P, Chen J H. Beneficial effects of precision drill sowing with low seeding rates in machine transplanting for hybrid rice to improve population uniformity and yield. Sci Agric Sin, 2022, 55: 666-679 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.04.004
[17] 丁艳锋, 黄丕生, 凌启鸿. 水稻分蘖发生及与特定部位叶片叶鞘含氮率的关系. 南京农业大学学报, 1995, (4): 14-18.
Ding Y X, Huang P S, Ling Q H. Relationship between tillering and nitrogen content of leaf sheath in specific parts of rice. J Nanjing Agric Univ, 1995, (4): 14-18 (in Chinese with English abstract).
[18] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 李木英, 胡水秀. 机插早稻分蘖成穗特性及基本苗公式参数研究. 作物学报, 2016, 42: 427-436.
doi: 10.3724/SP.J.1006.2016.00427
Lyu W S, Zeng Y J, Shi Q H, Pan X H, Huang S, Shang Q Y, Tan X M, Li M Y, Hu S X. Tillering and panicle formation characteristics of machine-transplanted early rice and its parameters of basic population formulae. Acta Agron Sin, 2016, 42: 427-436 (in Chinese with English abstract).
[19] 张洪程, 邢志鹏, 翁文安, 田晋钰, 陶钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕. 生育约束型直播水稻生育特征与稳产关键技术. 中国农业科学, 2021, 54: 1322-1337.
doi: 10.3864/j.issn.0578-1752.2021.07.002
Zhang H C, Xing Z P, Weng W A, Tian J Y, Tao Y, Cheng S, Hu Q, Hu Y J, Guo B W, Wei H Y. Growth characteristics and key techniques for stable yield of growth constrained direct seeding rice. Sci Agric Sin, 54: 1322-1337 (in Chinese with English abstract).
[20] 田广丽, 周毅, 孙博, 张瑞卿, 周新国, 郭世伟. 氮素及栽培密度影响水稻分蘖动态的机制. 植物营养与肥料学报, 2018, 24: 896-904.
Tian G L, Zhou Y, Sun B, Zhang R Q, Zhou X G, Guo S W. Effects of nitrogen and transplanting density on the mechanisms of tillering dynamic of rice. J Plant Nutr Fert, 2018, 24: 896-904 (in Chinese with English abstract).
[21] Lafarge T A, Hammer G L. Predicting plant leaf area production: shoot assimilate accumulation and partitioning, and leaf area ratio, are stable for a wide range of sorghum population densities. Field Crops Res, 2002, 77: 137-151.
[22] 汪建军, 曾勇军, 易艳红, 章起明, 胡启星. 基于不同播种量的双季机插早稻均匀度对产量形成的影响. 作物杂志, 2018, (2): 141-147.
Wang J J, Zeng Y J, Yi Y H, Zhang Q M, Hu Q X. Effect of the uniformity of two-season machine-inserted early rice on yield formation based on different sowing amount. Crops, 2018, (2): 141-147 (in Chinese with English abstract).
[23] Huang M, Yang C L, Ji Q M, Jiang L G, Tan J L, Li Y Q. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Res, 2013, 149: 187-192.
[24] 于林惠, 李刚华, 徐晶晶, 凌启鸿, 丁艳锋. 基于高产示范方的机插水稻群体特征研究. 中国水稻科学, 2012, 26: 451-456.
Yu L H, Li G H, Xu J J, Ling Q H, Ding Y F. Population characteristics of machine transplanted japonica rice based on high yield demonstration fields. Chin J Rice Sci, 2012, 26: 451-456 (in Chinese with English abstract).
[25] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t hm-2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 ( >13.5 t hm-2). Acta Agron Sin, 2014, 40: 2149-2159 (in Chinese with English abstract).
[26] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响. 作物杂志, 2018, (4): 69-78.
Zhang X C, Huang W X, Zhu K Y, Wang Z Q, Yang J C. Effects of nitrogen application on nitrogen use efficiency and agronomic traits of different rice varieties. Crops, 2018, (4): 69-78 (in Chinese with English abstract).
[27] 肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析. 中国水稻科学, 2023, 37: 529-542.
doi: 10.16819/j.1001-7216.2023.221111
Xiao D K, Hu R, Han T F, Zhang W F, Hou J, Ren K Y. Effects of nitrogen fertilizer consumption and operation on rice yield and its components in China: a meta-analysis. Chin J Rice Sci, 2023, 37: 529-542 (in Chinese with English abstract).
[28] Zakari S A, Asad M A U, Han Z, Guan X, Zaidi S H R, Gang P, Cheng F. Senescence-related translocation of nonstructural carbohydrate in rice leaf sheaths under different nitrogen supply. Agron J, 2020, 112: 1601-1616.
[29] 程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系. 生态学报, 2000, 20: 646-652.
Cheng F M, Ding Y S, Zhu B Y. Formation of amylose content in rice and its relationship with temperature at filling stage. Acta Ecol Sin, 2000, 20: 646-652 (in Chinese with English abstract).
[30] 盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响. 中国水稻科学, 2007, 21: 396-402.
Sheng J, Tao H J, Chen L G. Response of seed-setting and grain quality of rice to temperature at different time during grain filling period. Chin J Rice Sci, 2007, 21: 396-402 (in Chinese with English abstract).
[31] 高继平, 隋阳辉, 张文忠, 姚晨, 高明超, 赵明辉, 徐正进. 水稻灌浆期冠层温度对植株生理性状及稻米品质的影响. 中国水稻科学, 2015, 29: 501-510.
doi: 10.3969/j.issn.1001G7216.2015.05.007
Gao J P, Sui Y H, Zhang W Z, Yao C, Gao M C, Zhao M H, Xu Z J. Effect of canopy temperature on physiological characteristic and grain quality at filling stage in rice. Chin J Rice Sci, 2015, 29: 501-510 (in Chinese with English abstract).
[32] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响. 作物学报, 2021, 47: 1540-1550.
doi: 10.3724/SP.J.1006.2021.02069
Chen Y, Liu K, Zhang H L, Li S Y, Zhang Y J, Wei J L, Zhang H, Gu J F, Liu L J, Yang J C. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars. Acta Agron Sin, 2021, 47: 1540-1550 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02069
[33] 谢裕林, 于雅洁, 董明辉, 张文地, 江贻. 茎鞘非结构性碳水化合物积累运转与稻米品质对播期和行距配置的响应. 江苏农业科学, 2022, 50(8): 93-100.
Xie Y L, Yu Y J, Dong M H, Zhang W D, Jiang Y. Accumulation and movement of non-structural carbohydrate in stem sheath and response of rice quality to sowing date and row spacing allocation. Jiangsu Agric Sci, 2022, 50(8): 93-100 (in Chinese with English abstract).
[34] 袁帅, 苏雨婷, 陈平平, 易镇邪. 氮肥运筹对湘南双季杂交稻生长发育与稻米品质的影响. 作物杂志, 2023, (2): 91-99.
Yuan S, Su Y T, Chen P P, Yi Z X. Effects of nitrogen fertilizer management on growth and quality of two-season hybrid rice in southern Hunan province. Crops, 2023, (2): 91-99 (in Chinese with English abstract).
[35] Hu Q, Jiang W Q, Qiu S, Xing Z P, Hu Y J, Guo B W, Liu G D, Gao H, Zhang H C, Wei H Y. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. J Integr Agric, 2020, 19: 1197-1214.
[36] Li K N, Zhang S N, Tang S, Zhang J, Dong H Z, Yang S H, Qu H Y, Xie W, Gu M, Xu G H. The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters. Plant Physiol, 2022, 189: 1608-1624.
doi: 10.1093/plphys/kiac178 pmid: 35512346
[37] 张恒栋, 黄敏, 邹应斌, 陈佳娜, 单双吕. 米粉稻籽粒直链淀粉积累特性. 中国农业科学, 2021, 54: 1354-1364.
doi: 10.3864/j.issn.0578-1752.2021.07.004
Zhang H D, Huang M, Zou Y B, Chen J N, Shan S L. Amylose accumulation properties in the grains of noodle rice. Sci Agric Sin, 2021, 54: 1354-1364 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.004
[1] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[2] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[3] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[4] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[5] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[6] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[7] HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Effects of planting season on digestive characteristics of high amylose content rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357.
[8] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[9] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[10] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[11] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[12] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[13] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[14] GUO Chun-Lin, LIN Man-Hong, CHEN Ting, CHEN Hong-Fei, LIN Wen-Fang, LIN Wen-Xiong. Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism [J]. Acta Agronomica Sinica, 2024, 50(8): 2039-2052.
[15] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!