Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 744-754.doi: 10.3724/SP.J.1006.2025.44116

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato

YANG Xin-Yue(), XIAO Ren-Hao(), ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun()   

  1. College of Agronomy and Biotechnology, Southwest University / Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Chongqing 400702, China
  • Received:2024-07-17 Accepted:2024-12-12 Online:2024-12-16 Published:2024-12-12
  • Contact: WANG Ji-Chun E-mail:hi_yangxinyue@163.com;213314725@qq.com;wjchun@swu.edu.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Seed Industry ‘Potato Science and Enterprise Consortium Special Program’ of Chongqing Agriculture and Rural Committee(2021-2025);Special Program for Potato Innovation Team of Chongqing Modern Agricultural Industrial Technology System(CQMAITS2023-4);Yibin Twin Cities School Agreement Special(YBSCXY2023020013)

Abstract:

Waterlogging stress is a major factor contributing to yield losses in sweet potato; however, limited research has been conducted on the impacts of waterlogging at different developmental stages on sweet potato growth and yield. To address this gap, a controlled waterlogging experiment was carried out in 2022 and 2023 using the cultivar Yuhongxin 98 as the test material. Treatments included a normal watering control (CK), waterlogging stress during the storage root initiation stage (T1), waterlogging stress during the storage root bulking stage (T2), and waterlogging stress during both the storage root initiation and bulking stages (T3). The effects of waterlogging stress at different growth stages on physiological characteristics and yield were analyzed. The results showed that waterlogging stress reduced the root-to-shoot ratio and leaf relative water content, while significantly increasing the levels of proline and soluble sugars. Activities of antioxidant enzymes, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), were significantly enhanced under waterlogging stress, indicating that waterlogging altered assimilate distribution between aboveground and belowground parts. This promoted aboveground growth but inhibited storage root development, ultimately leading to significant yield reductions of 22.67%, 40.05%, and 66.93% in 2022, and 31.20%, 40.80%, and 64.60% in 2023 under T1, T2, and T3 treatments, respectively, compared to the control. The greatest yield loss occurred when waterlogging coincided with both the storage root initiation and bulking stages (T3). Notably, waterlogging during the storage root bulking stage (T2) caused greater sensitivity to stress and a reduced ability to recover growth after rewatering compared to waterlogging during the storage root initiation stage (T1). These findings highlight the critical importance of water management during the storage root bulking stage to mitigate the adverse effects of waterlogging on sweet potato yield.

Key words: sweet potato, waterlogging stress, osmotic adjustment, antioxidant enzymes, yield

Table 1

Basic physicochemical properties of the tested soil"

年份
Year
全氮含量
Total N
(g kg-1)
全磷含量
Total P
(g kg-1)
全钾含量
Total K
(g kg-1)
碱解氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available N
(mg kg-1)
有机质
Organic matter
(g kg-1)
pH
2022 1.03 1.24 23.56 101.54 15.68 96.50 13.47 7.27
2023 0.84 1.05 20.68 92.41 9.18 88.45 11.53 7.12

Fig. 1

Distribution of average precipitation during sweet potato growth period in the main producing areas of southwest China from 2017 to 2022"

Fig. 2

Effect of waterlogging treatment at different stages on relative water content of sweet potato leaves CK: normal watering throughout the entire growth period; T1: waterlogging stress during the storage root initial stage; T2: waterlogging stress during the storage root bulking stage; T3: waterlogging stress during the storage root initial stage and the storage root bulking stage. Error bars show the standard deviation of three replicates. Different letters within the same period indicate the significant differences between treatments at the P < 0.05 level."

Fig. 3

Effect of waterlogging treatment at different stages on content of proline (a) and soluble sugar (b) of functional leaves in sweet potato Treatments are the same as those given in Fig. 2. Error bars show the standard deviation of three replicates. Different letters within the same period indicate the significant differences between treatments at the P < 0.05 level."

Fig. 4

Effects of waterlogging treatment at different stages on activity of CAT (a), POD (b) and SOD (c) of functional sweet potato leaves Treatments are the same as those given in Fig. 2. Error bars show the standard deviation of three replicates. Different letters within the same period indicate the significant differences between treatments at the P < 0.05 level. CAT: catalase; POD: peroxidase; SOD: superoxide dismutase."

Table 2

Effects of waterlogging treatment at different stages on fresh weight of aboveground and underground parts in sweet potato in 2022 and 2023"

年份
Year
处理
Treatment
地上部鲜重
Fresh weight of aboveground part (g plant-1)
地下部鲜重
Fresh weight of underground part (g plant-1)
50 d 90 d 110 d 50 d 90 d 110 d
2022 CK 302.33±22.23 b 373.33±11.67 b 577.22±15.75 d 71.54±4.20 a 287.67±1.31 a 511.25±7.34 a
T1 371.11±14.37 a 456.00±39.40 a 763.33±6.01 b 39.41±1.71 b 119.77±3.04 b 371.84±19.47 b
T2 298.33±12.58 b 366.11±17.82 b 717.78±20.37 c 70.26±3.17 a 280.95±6.18 a 311.34±5.98 c
T3 387.22±17.66 a 466.67±32.44 a 922.22±21.17 a 40.99±2.23 b 123.75±7.76 b 198.87±13.23 d
2023 CK 215.08±9.79 b 345.00±6.01 b 409.44±3.47 d 80.25±4.16 a 445.36±19.22 a 618.05±10.01 a
T1 255.63±5.41 a 445.56±16.69 a 512.78±3.47 b 46.06±2.21 b 220.36±6.55 b 506.36±8.89 b
T2 215.86±10.66 b 349.45±10.72 b 492.78±0.96 c 79.61±2.80 a 423.35±16.58 a 435.76±16.59 c
T3 240.87±13.70 a 442.78±30.30 a 611.67±13.02 a 45.85±1.63 b 240.37±4.37 b 271.69±8.80 d
F
F-value
年份
Year (Y)
308.57** 5.31* 2034.57** 38.40** 948.32** 490.75**
处理Treatment (T) 27.54** 33.84** 453.65** 245.13** 662.32** 767.97**
年份×处理Y×T 5.76** 0.71 31.37** 0.73 9.62** 7.49**

Table 3

Effects of waterlogging treatment at different stages on root-shoot ratio of sweet potato in 2022 and 2023"

年份
Year
处理
Treatment
根冠比 Root-shoot ratio
50 d 90 d 110 d
2022 CK 0.24±0.03 a 0.77±0.02 a 0.89±0.03 a
T1 0.11±0.01 b 0.26±0.02 b 0.49±0.02 b
T2 0.24±0.02 a 0.77±0.03 a 0.43±0.02 c
T3 0.11±0.01 b 0.27±0.01 b 0.22±0.02 d
2023 CK 0.37±0.03 a 1.29±0.06 a 1.51±0.03 a
T1 0.18±0.01 b 0.49±0.03 b 0.99±0.02 b
T2 0.37±0.02 a 1.21±0.08 a 0.89±0.04 c
T3 0.19±0.01 b 0.54±0.03 b 0.44±0.03 d
F
F-value
年份 Year (Y) 216.99** 510.08** 2150.72**
处理 Treatment (T) 156.18** 486.06** 1354.94**
年份×处理 Y×T 4.46* 17.21** 72.40**

Table 4

Effects of waterlogging treatment at different stages on sweet potato yield in 2022 and 2023"

年份
Year
处理
Treatment
鲜薯产量
Fresh weight (kg hm-2)
单株薯数
Tuber number per plant (No.)
单薯重
Single tuber weight (g)
2022 CK 53,281.33±577.33 a 4.10±0.24 a 217.27±11.51 a
T1 39,270.67±693.78 b 3.37±0.12 b 194.57±4.72 b
T2 30,941.33±636.36 c 4.03±0.21 a 128.08±4.67 c
T3 16,322.67±337.53 d 2.57±0.12 c 106.17±3.92 d
2023 CK 50,000.00±616.44 a 5.10±0.29 a 164.02±10.75 a
T1 34,900.00±565.69 b 4.20±0.14 b 138.61±4.10 b
T2 32,550.73±924.66 c 4.73±0.25 a 114.87±5.70 c
T3 16,200.14±244.95 d 2.80±0.14 c 96.62±3.82 d
F
F-value
年份 Year (Y) 25.99** 47.51** 93.84**
处理 Treatment (T) 2334.41** 73.22** 143.82**
年份×处理 Y×T 20.93** 2.69 13.50**

Fig. 5

Correlation analysis of indicators * and ** indicate significant correlation at the 0.05 and 0.01 probability levels, respectively. CAT: catalase; POD: peroxidase; SOD: superoxide dismutase."

[1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003
[2] Hwang S Y, Lin H W, Chern R H, Lo H F, Li L. Reduced susceptibility to waterlogging together with high-light stress is relatedto increases in superoxide dismutase and catalase activities in sweet potato. Plant Growth Regul, 1999, 27: 167-172.
[3] Eguchi T, Yoshida S. Effects of gas exchange inhibition and hypoxia on tuberous root morphogenesis in sweetpotato (Ipomoea batatas (L.)Lam.). Environ Control Biol, 2007, 45: 103-111.
[4] Ghuman B S, Lal R. Growth and plant-water relations of sweet potato (Ipomea batata) as affected by soil moisture regimes. Plant Soil, 1983, 70: 95-106.
[5] Pardales J R, Bañoc D M, Yamauchi A, Iijima M, Esquibel C B. The effect of fluctuations of soil moisture on root development during the establishment phase of sweetpotato. Plant Prod Sci, 2000, 3: 134-139.
[6] 闫彩霞, 曾波, 董元昌, 铁永波, 范瑜越. 中国西南地区暴雨时空变化特征分析. 西南师范大学学报(自然科学版), 2023, 48(8): 71-82.
Yan C X, Zeng B, Dong Y C, Tie Y B, Fan Y Y. Analysis on spatial-temporal variation characteristics of heavy rain over Western China. J Southwest Univ (Nat Sci Edn), 2023, 48(8): 71-82 (in Chinese with English abstract).
[7] 刘周斌, 周宇健, 杨博智, 欧立军, 邹学校. 植物抗涝性研究进展. 湖北农业科学, 2015, 54: 4385-4389.
Liu Z B, Zhou Y J, Yang B Z, Ou L J, Zou X X. Research progress in waterlogging of plant. Hubei Agric Sci, 2015, 54: 4385-4389 (in Chinese with English abstract).
[8] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46: 1760-1770.
doi: 10.3724/SP.J.1006.2020.04079
Zhang H Y, Wang B Q, Feng X Y, Li G L, Xie B T, Dong S X, Duan W X, Zhang L M. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.)Lam.]. Acta Agron Sin, 2020, 46: 1760-1770 (in Chinese with English abstract).
[9] 田礼欣. 涝渍胁迫对玉米农艺性状、生理特性及产量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Tian L X. Effects of Waterlogging Stress on Agronomic Characteristics, Physiological Characteristics and Yield of Maize. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[10] 余波, 盛文静, 韩蒙蒙, 鲍飞燕, 李祖林, 宋有洪, 刘惠惠. 玉米不同类型根形态及活力对淹水胁迫的响应特征. 华北农学报, 2023, 38(增刊1): 102-111.
Yu B, Sheng W J, Han M M, Bao F Y, Li Z L, Song Y H, Liu H H. Morphological characteristics and activities in different kinds of maize roots in response to flooding stress. Acta Agric Boreali-Sin, 2023, 38(S1): 102-111 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20194232
[11] 李从锋, 贾春兰, 陶志强, 杨今胜, 柳京国, 赵明. 拔节期淹水对不同株高夏玉米产量、形态特征及物质生产的影响. 玉米科学, 2019, 27(6): 62-67.
Li C F, Jia C L, Tao Z Q, Yang J S, Liu J G, Zhao M. Effects of waterlogging at jointing stage on grain yield, plant morphology and dry matter production in different plant height of summer maize. J Maize Sci, 2019, 27(6): 62-67 (in Chinese with English abstract).
[12] 马仲文, 李祖亮. 涝渍胁迫下施氮量对玉米生物量积累、分配和氮素利用率的影响. 山东农业科学, 2023, 55(11): 138-143.
Ma Z W, Li Z L. Effects of nitrogen application rate on maize biomass accumulation and distribution and nitrogen use efficiency under waterlogging stress. Shandong Agric Sci, 2023, 55(11): 138-143 (in Chinese with English abstract).
[13] 俞建河, 王本来, 曹秀清, 沈涛. 淹水时期与天数对油菜生长性状和产量的影响. 安徽农业科学, 2021, 49: 184-187.
Yu J H, Wang B L, Cao X Q, Shen T. Effects of flooding period and days on the growth traits and yield of rapeseed. Anhui Agric Sci, 2021, 49: 184-187 (in Chinese with English abstract).
[14] 马青荣, 左璇, 胡程达, 成林, 李彤霄. 涝渍对夏花生光合特性及产量影响. 应用气象学报, 2021, 32: 479-490.
Ma Q R, Zuo X, Hu C D, Cheng L, Li T X. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteorol Sci, 2021, 32: 479-490 (in Chinese with English abstract).
[15] Sharma D B, Swarup A. Effects of short-term flooding on growth, yield and mineral composition of wheat on sodic soil under field conditions. Plant Soil, 1988, 107: 137-143.
[16] Park S U, Lee C J, Kim S E, Lim Y H, Lee H U, Nam S S, Kim H S, Kwak S S. Selection of flooding stress tolerant sweetpotato cultivars based on biochemical and phenotypic characterization. Plant Physiol Biochem, 2020, 155: 243-251.
[17] 王芳, 宋伟, 杨松涛, 乔帅, 廖安忠, 谭文芳. 水淹胁迫对甘薯生长和养分分配的影响. 植物生理学报, 2022, 58: 1864-1872.
Wang F, Song W, Yang S T, Qiao S, Liao A Z, Tan W F. Effects of waterlogging stress on growth and nutrient distribution of sweet potato. Plant Physiol J, 2022, 58: 1864-1872 (in Chinese with English abstract).
[18] Lin K H R, Tsou C C, Hwang S Y, Chen L F O, Lo H F. Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato. J Plant Physiol, 2006, 163: 750-760.
[19] Araki H, Hamada A, Hossain M A, Takahashi T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Res, 2012, 137: 27-36.
[20] Yin D M, Chen S M, Chen F D, Guan Z Y, Fang W M. Morphological and physiological responses of two Chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot, 2009, 67: 87-93.
[21] Sairam R K, Kumutha D, Ezhilmathi K, Chinnusamy V, Meena R C. Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biol Plant, 2009, 53: 493-504.
[22] Alhdad G M, Seal C E, Al-Azzawi M J, Flowers T J. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environ Exp Bot, 2013, 87: 120-125.
[23] Candan N, Tarhan L. Tolerance or sensitivity responses of Mentha pulegium to osmotic and waterlogging stress in terms of antioxidant defense systems and membrane lipid peroxidation. Environ Exp Bot, 2012, 75: 83-88.
[24] Arbona V, Hossain Z, López-Climent M F, Pérez-Clemente R M, Gómez-Cadenas A. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in Citrus. Physiol Plant, 2008, 132: 452-466.
[25] Zhou W G, Chen F, Meng Y J, Chandrasekaran U, Luo X F, Yang W Y, Shu K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol Biochem, 2020, 148: 228-236.
[26] Wu S W, Hu C X, Tan Q L, Nie Z J, Sun X C. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat under drought stress. Plant Physiol Biochem, 2014, 83: 365-374.
[27] 叶玉秀. 水分胁迫影响糯玉米产量形成的生理机制研究. 扬州大学博士学位论文, 江苏扬州, 2021.
Ye Y X. Effects of Water Stress on Yield Fermation and Physiological Mechanism of Waxy Maize. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[28] 田一丹, 韩亮亮, 周琴, 张国正, 邢邯, 江海东. 大豆对渍水的生理响应I: 光合特性和糖代谢. 中国油料作物学报, 2012, 34: 262-267.
Tian Y D, Han L L, Zhou Q, Zhang G Z, Xing H, Jiang H D. Physiological response of soybean to waterlogging I: photosynthetic characteristics and sugar metabolism. Chin J Oil Crop Sci, 2012, 34: 262-267 (in Chinese with English abstract).
[29] Tian L X, Bi W S, Ren X S, Li W L, Sun L, Li J. Flooding has more adverse effects on the stem structure and yield of spring maize (Zea mays L.)than waterlogging in Northeast China. Eur J Agron, 2020, 117: 126054.
[30] 陈建勋, 王晓峰. 植物生理学实验指导, 第2版. 广州: 华南理工大学出版社, 2006.
Chen J X, Wang X F. Experimental Instruction of Plant Physiology, 2nd edn. Guangzhou: South China University of Technology Press, 2006 (in Chinese).
[31] Bailey-Serres J, Voesenek L A C J. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol, 2008, 59: 313-339.
doi: 10.1146/annurev.arplant.59.032607.092752 pmid: 18444902
[32] 王赞文, 梁宗锁, 韩蕊莲. 水涝胁迫对党参的生长、生理特性及多糖含量的影响. 浙江理工大学学报(自然科学版), 2017, 37: 893-900.
Wang Z W, Liang Z X, Han R L. Effect of waterlogging stress on the growth, physiological characteristics and polysaccharide content of codonopsis pilosula. J Zhejiang Sci-Tech Univ (Nat Sci), 2017, 37: 893-900 (in Chinese with English abstract).
[33] 丁锦峰, 苏盛楠, 梁鹏, 江孟孟, 郑丽洁, 汪先鹏, 李春燕, 朱新开, 郭文善. 拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响. 麦类作物学报, 2017, 37: 1473-1479.
Ding J F, Su S N, Liang P, Jiang M M, Zheng L J, Wang X P, Li C Y, Zhu X K, Guo W S. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat. J Triticeae Crops, 2017, 37: 1473-1479 (in Chinese with English abstract).
[34] 王本来, 俞建河, 曹秀清, 沈涛. 淹水时期与天数对大豆生长性状和产量的影响. 安徽农业科学, 2023, 51: 174-177.
Wang B L, Yu J H, Cao X Q, Shen T. Effect of Flooding Period and Days on the Growth Traits and Yield of Soybean. Anhui Agric Sci, 2023, 51: 174-177 (in Chinese with English abstract).
[35] 张凤. 淹水对花生生理特性及产量、品质的影响. 山东农业大学硕士学位论文, 山东泰安, 2012.
Zhang F. Effects of Water-logging on Physiological Characters, Pod Yield and Seed Quality of Peanut. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2012 (in Chinese with English abstract).
[36] 徐东忆, 李福建, 董金鑫, 杨迪迪, 陈立, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 生长调节物质对深播和渍水小麦幼苗生长和籽粒产量的影响. 麦类作物学报, 2022, 42: 1257-1265.
Xu D Y, Li F J, Dong J X, Yang D D, Chen L, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Effects of growth regulating substances on seedling growth and grain yield of deep-sown and waterlogged wheat. J Triticeae Crops, 2022, 42: 1257-1265 (in Chinese with English abstract).
[37] Morgan J M, Hare R A, Fletcher R J. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments. Austr J Agric Res, 1986, 37: 449-457.
[38] Huang C, Zhang W Q, Wang H, Gao Y, Ma S T, Qin A Z, Liu Z G, Zhao B, Ning D F, Zheng H J, Liu Z D. Effects of waterlogging at different stages on growth and ear quality of waxy maize. Agric Water Manag, 2022, 266: 107603.
[39] Yu M, Zhou Z Q, Deng X Y, Li J W, Mei F Z, Qi Y H. Physiological mechanism of programmed cell death aggravation and acceleration in wheat endosperm cells caused by waterlogging. Acta Physiol Plant, 2017, 39: 23.
[40] Parvin D, Karmoker J L. Effects of waterlogging on ion accumulation and sugar, protein and proline contents in Corchorus capsularis L. Bangladesh J Bot, 2013, 42: 55-64.
[41] Puyang X H, An M Y, Xu L X, Han L B, Zhang X Z. Antioxidant responses to waterlogging stress and subsequent recovery in two Kentucky bluegrass (Poa pratensis L.)cultivars. Acta Physiol Plant, 2015, 37: 197.
[42] Li W, Li G, Wen T, Gao L, Liu J, Hu J, Mo W, Ashraf U, Abrar M. Evaluation of physiological indices of waterlogging tolerance of different maize varieties in south China. Appl Ecol Environ Res, 2018, 16: 2059-2072.
[43] 孙建伟. 淹水对玉米细胞抗氧化酶系统的影响. 安徽农业科学, 2020, 48: 44-45.
Sun J W. Effects of waterflooding on antioxidant enzyme system in maize cells. Anhui Agric Sci, 2020, 48: 44-45 (in Chinese with English abstract).
[44] Tian L X, Bi W S, Liu X, Sun L, Li J. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L.)under field conditions. Acta Physiol Plant, 2019, 41: 63.
[45] 张淋淋, 孙海, 于红霞, 孟洪涛, 张舒娜, 张亚玉. 水分胁迫对西洋参叶片生理生化指标的影响. 吉林农业大学学报, 2020, 42: 403-408.
Zhang L L, Sun H, Yu H X, Meng H T, Zhang S N, Zhang Y Y. Effects of water stress on physiological and biochemical indexes of panax quinquefolius leaves. J Jilin Agric Univ, 2020, 42: 403-408 (in Chinese with English abstract).
[46] Alhoshan M, Zahedi M, Ramin A A, Sabzalian M R. Effect of soil drought on biomass production, physiological attributes and antioxidant enzymes activities of potato cultivars. Russ J Plant Physiol, 2019, 66: 265-277.
[47] 陈娟, 梁明霞, 潘开文. 涝渍胁迫下生姜幼苗生长及体内保护酶活性变化. 江苏农业科学, 2015, 43(5): 152-155.
Chen J, Liang M X, Pan K W. Study on growth and antioxidant enzyme activity of Zingiber officinale Rosc seedling under waterlogging stress. Jiangsu Agric Sci, 2015, 43(5): 152-155 (in Chinese with English abstract).
[48] 马尚宇, 韩笑, 王艳艳, 黄正来, 张文静, 樊永惠, 马元山. 花后渍水对小麦根系形态、生理及地上部干物质分配和产量的影响. 南京农业大学学报, 2021, 44: 614-621.
Ma S Y, Han X, Wang Y Y, Huang Z L, Zhang W J, Fan Y H, Ma Y S. Effect of waterlogging stress after anthesis on the root morphology, physiology, dry matter distribution and yield in wheat. J Nanjing Agric Univ, 2021, 44: 614-621 (in Chinese with English abstract).
[49] Jiang L, Yang H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Safe, 2009, 72: 1687-1693.
[50] Misra N, Gupta A K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol, 2006, 163: 11-18.
[1] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[2] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[3] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[4] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[5] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[6] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[7] XIE Ling-Li, LI Yong-Ling, XU Ben-Bo, ZHANG Xue-Kun. Progress on waterlogging tolerance mechanism and genetic improvement in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 287-300.
[8] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[9] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[10] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[11] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
[12] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[13] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[14] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
[15] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!