Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 785-796.doi: 10.3724/SP.J.1006.2025.42022

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake

YANG Cui-Hua(), LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu(), SHENG Feng()   

  1. School of Life Sciences, Hubei University / State Key Laboratory of Biocatalysis and Enzyme Engineering, Wuhan 430062, Hubei, China
  • Received:2024-04-22 Accepted:2024-10-25 Online:2025-03-12 Published:2024-11-12
  • Contact: *E-mail: shengfsk@163.com; E-mail: duxuezhusk@163.com E-mail:1784723552@qq.com;duxuezhusk@163.com;shengfsk@163.com
  • About author:

    **Contributed equally to this work

  • Supported by:
    Hubei Provincial Central Leading Local Special Project(2020ZYYD036);Key R&D Plan Projects in Hubei Province(2021BBA224)

Abstract:

This experiment aimed to investigate the effects of poly-γ-glutamic acid (γ-PGA) on rice yield, quality, and nutrient absorption, providing a theoretical basis and technical reference for cultivating rice with high yield, superior quality, and efficient nutrient utilization. The field experiment was conducted in Huaqiao town, Wuxue county, Hubei province, from 2022 to 2023, using a randomized block design. The study included three rice varieties (Heixiandao (B), Gangteyou 8024 (R), and Huanghuazhan (H)) and two γ-PGA treatments (no application of γ-PGA fermentation solution (P0) and 25 kg hm-2 γ-PGA fermentation solution (P1)). Dry matter mass, nitrogen accumulation, phosphorus accumulation, yield, appearance quality, grain protein content, and amylose content were analyzed. The results showed that γ-PGA application had a significant effect on rice yield in 2022, with P1 treatments increasing yield by 3.2%-10.8% compared to P0 treatments. However, there was no significant effect on yield in 2023. The dry matter mass of varieties B and R treated with γ-PGA was significantly higher than those without γ-PGA. Compared to BP0, the BP1 treatment significantly increased dry matter mass by 7.5%-8.5% at the full heading stage and by 5.9%-7.2% at the mature stage. Similarly, compared to RP0, the RP1 treatment significantly increased dry matter mass by 8.5%-8.8% at the full heading stage and by 3.3%-3.5% at the mature stage. γ-PGA application had no significant effect on the dry matter mass of variety H. Furthermore, γ-PGA significantly increased nitrogen and phosphorus accumulation. Compared to P0, the P1 treatments increased nitrogen accumulation by 12.5%-19.0% and phosphorus accumulation by 13.4%-20.3% at the full heading stage, and increased nitrogen accumulation by 7.2%-16.5% and phosphorus accumulation by 9.2%-29.0% at the mature stage. γ-PGA application also significantly enhanced amylose and protein content while reducing chalkiness degree and gel consistency, though it had no significant effects on grain length, grain width, or alkali spreading value. In conclusion, the application of γ-PGA significantly improved dry matter mass, nitrogen and phosphorus accumulation, and rice quality.

Key words: rice, poly-γ-glutamic acid (γ-PGA), yield, dry matter accumulation, nutrient absorption

Table 1

Variance analysis of two factors (F-value)"

年份
Year
生育期
Growth stage
指标
Indicator
品种
Variety
γ-PGA
treatment
品种 × γ-PGA
Variety × γ-PGA
2022 产量 Yield 871.738** 1.229* 7.416
有效穗 Effective panicle 30.662** 1.299 0.091
穗粒数 Spikelets per panicle 34.814** 0.218 0.003
千粒重 1000-kernel weight 3796.451** 3.589 0.084
I 干物质积累量 Dry matter accumulation 133.636** 48.374** 0.112
II 50.072** 4.408 0.060
I 氮素积累量 Nitrogen accumulation 182.658** 82.530** 2.395
II 86.224** 26.157** 0.167
I 磷素积累量 Phosphorus accumulation 268.848** 126.361** 0.278
II 149.059** 87.727** 2.036
2022 产量 Yield 15.815* 0.119 0.176
有效穗 Effective panicle 70.308** 0.962 0.154
穗粒数 Spikelets per panicle 28.351** 1.082 0.412
千粒重 1000-kernel weight 8131.307** 0.910 0.474
I 干物质积累量 Dry matter accumulation 517.003** 77.750** 1.665
II 30.725** 2.121 0.160
I 氮素积累量 Nitrogen accumulation 185.366** 41.353** 1.061
II 39.619** 6.928* 0.492
I 磷素积累量 Phosphorus accumulation 549.982** 188.645** 5.115*
II 60.943** 8.543* 0.354

Table 2

Rice yield and yield components under different treatments"

年份
Year
处理
Treatment
有效穗
Effective panicle
(×104 hm-2)
穗粒数
Spikelets per
panicle
千粒重
1000-kernel
weight (g)
结实率
Seed-setting rate
(%)
产量
Grain yield
(t hm-2)
2022 BP0 306.67 ± 1.67 bc 153.92 ± 1.84 b 25.59 ± 0.01 a 79.79 ± 0.60 a 9.13 ± 0.26 b
BP1 310.00 ± 0 b 155.13 ± 0.42 b 25.69 ± 0.09 a 80.51 ± 0.73 a 10.12 ± 0.33 a
RP0 285.00 ± 10.41 d 177.77 ± 7.60 a 25.59 ± 0.02 a 78.96 ± 0.28 a 10.40 ± 0.34 a
RP1 290.00 ± 8.66 cd 184.47 ± 4.90 a 25.66 ± 0.08 a 79.37 ± 0.51 a 10.74 ± 0.18 a
HP0 330.00 ± 5.00 a 157.52 ± 0.77 b 21.88 ± 0 b 71.44 ± 0.31 b 7.45 ± 0.36 c
HP1 338.33 ± 1.67 a 159.28 ± 1.04 b 21.93 ± 0.02 b 72.01 ± 0.40 b 7.77 ± 0.34 c
2023 BP0 302.14 ± 2.03 c 154.12 ± 1.18 b 25.19 ± 0.03 a 78.33 ± 0.38 a 8.56 ± 0.26 a
BP1 308.22 ± 4.06 bc 155.15 ± 1.08 b 25.19 ± 0.03 a 78.89 ± 0.85 a 8.99 ± 0.27 a
RP0 318.36 ± 4.06 b 175.02 ± 2.63 a 25.11 ± 0.05 a 73.74 ± 0.56 bc 9.15 ± 0.30 a
RP1 320.39 ± 7.31 b 175.74 ± 2.67 a 25.17 ± 0.04 a 74.65 ± 0.43 b 9.50 ± 0.13 a
HP0 352.83 ± 3.51 a 144.43 ± 4.69 c 21.21 ± 0.01 b 70.90 ± 1.05 d 7.78 ± 0.68 a
HP1 354.86 ± 2.03 a 149.71 ± 3.03 bc 21.22 ± 0.04 b 72.02 ± 0.29 cd 8.18 ± 0.93 a

Table 3

Dry matter accumulation, harvest index, and contribution of dry matter accumulation from full heading to maturity to grain in rice under different treatments"

年份
Year
处理Treatment 干物质积累量
Dry matter accumulation (t hm-2)
转运量
Transport
(t hm-2)
转运率
Transport rate
(%)
收获指数
Harvest index (%)
对籽粒贡献率
Contribution to grain (%)
齐穗期
Full heading stage
成熟期
Mature stage
2022 BP0 14.84 ± 0.09 b 20.94 ± 0.65 c 6.10 ± 0.66 b 28.99 ± 2.26 b 43.66 ± 1.64 a 66.79 ± 6.63 a
BP1 15.96 ± 0.15 a 22.19 ± 0.28 bc 6.23 ± 0.17 b 28.06 ± 0.47 b 45.64 ± 2.01 a 61.78 ± 3.50 a
RP0 14.86 ± 0.06 b 23.83 ± 0.60 ab 8.98 ± 0.66 a 37.57 ± 1.76 a 43.63 ± 0.46 a 86.08 ± 3.56 a
RP1 16.13 ± 0.12 a 24.66 ± 0.58 a 8.53 ± 0.52 a 34.54 ± 1.34 ab 43.60 ± 1.34 a 79.55 ± 5.44 a
HP0 12.01 ± 0.36 d 17.68 ± 0.39 d 5.66 ± 0.28 b 32.04 ± 1.39 ab 42.16 ± 2.29 a 76.80 ± 7.56 a
HP1 13.10 ± 0.27 c 18.72 ± 0.92 d 5.62 ± 1.06 b 29.58 ± 4.48 b 41.87 ± 3.69 a 73.36 ± 15.90 a
2023 BP0 14.83 ± 0.09 d 22.42 ± 0.71 cd 7.59 ± 0.75 a 32.69 ± 2.34 a 38.26 ± 1.52 a 88.73 ± 9.39 a
BP1 16.09 ± 0.09 c 24.02 ± 1.52 bc 7.93 ± 1.44 a 33.54 ± 3.75 a 37.77 ± 3.00 a 88.79 ± 17.26 a
RP0 17.46 ± 0.32 b 26.43 ± 0.38 ab 8.97 ± 0.67 a 32.89 ± 2.09 a 34.66 ± 1.41 a 98.29 ± 8.60 a
RP1 19.00 ± 0.06 a 27.30 ± 0.43 a 8.29 ± 0.48 a 31.35 ± 1.28 a 34.84 ± 1.03 a 87.46 ± 6.22 a
HP0 12.23 ± 0.21 f 19.66 ± 0.87 d 7.02 ± 0.72 a 32.30 ± 2.37 a 40.62 ± 4.38 a 92.79 ± 16.31 a
HP1 13.15 ± 0.09 e 20.32 ± 0.85 d 6.76 ± 0.71 a 32.80 ± 2.35 a 41.49 ± 5.96 a 87.21 ± 20.24 a

Fig. 1

Dry matter mass of rice under different treatments Different lowercase letters above the bars indicate significant difference among treatments at the 0.05 probability level. Treatments are the same as those given in Table 2."

Fig. 2

Nitrogen accumulation and transport in rice plants under different treatments Different lowercase letters above the bars indicate significant difference among treatments at the 0.05 probability level. Treatments are the same as those given in Table 2."

Fig. 3

Phosphorus accumulation and transport in rice plants under different treatments Different lowercase letters above the bars indicate significant difference among treatments at the 0.05 probability level. Treatments are the same as those given in Table 2."

Table 4

Main grain quality indices in good taste rice cultivars under different treatments"

年份
Year
处理
Treatment
粒长
Length
(mm)
粒宽
Width
(mm)
垩白度Chalkiness degree (%) 胶稠度
Gel
consistency
(mm)
碱消值
Alkali
spreading value (mm)
直链淀粉Amylose
content (%)
蛋白质
Protein content (%)
2022 BP0 6.34±0.03 b 1.90±0.01 b 6.77±0.11 ab 81.50±1.04 a 5.17±0.15 bc 12.48±0.07 bc 8.67±0.04 ab
BP1 6.43±0.04 a 1.91±0.01 b 6.65±0.28 b 80.00±0.29 ab 5.28±0.16 abc 12.88±0.29 b 8.85±0.13 a
RP0 6.09±0.02 c 2.13±0.01 a 6.88±0.26 ab 79.83±0.60 ab 4.83±0.15 c 11.90±0.10 c 8.62±0.23 ab
RP1 6.17±0.01 c 2.14±0.01 a 6.42±0.07 b 78.17±0.93 b 5.08±0.12 bc 12.32±0.20 bc 8.80±0.16 a
HP0 6.18±0.04 c 1.79±0.01 c 7.50±0.23 a 70.50±0.58 c 5.65±0.21 a 14.02±0.23 a 8.07±0.20 c
HP1 6.30±0.02 b 1.80±0.02 c 7.17±0.38 ab 68.50±0.29 c 5.72±0.13 a 14.32±0.21 a 8.22±0.16 bc
2023 BP0 6.61±0.04 ab 2.02±0.04 b 6.73±0.12 bc 82.83±0.73 a 4.68±0.04 c 12.28±0.08 bc 8.62±0.09 abc
BP1 6.70±0.04 a 2.02±0.04 b 6.40±0.20 cd 81.17±0.44 a 4.87±0.15 bc 12.43±0.03 b 8.82±0.19 a
RP0 6.22±0.03 d 2.19±0.03 a 7.55±0.10 a 81.67±0.44 a 4.88±0.04 bc 11.77±0.09 c 8.45±0.08 bc
RP1 6.31±0.04 d 2.21±0.04 a 7.05±0.21 b 80.33±1.17 a 5.10±0.15 b 12.12±0.12 b 8.67±0.12 ab
HP0 6.50±0.03 c 1.90±0.03 c 6.42±0.09 cd 71.17±1.76 b 6.15±0.08 a 14.20±0.24 a 8.08±0.02 d
HP1 6.56±0.01 bc 1.91±0.01 c 6.18±0.10 d 69.50±1.76 b 6.32±0.12 a 14.48±0.27 a 8.32±0.04 cd
[1] Wei X Y, Yang L J, Chen Z, Xia W H, Chen Y B, Cao M F, He N. Molecular weight control of poly-γ-glutamic acid reveals novel insights into extracellular polymeric substance synthesis in Bacillus licheniformis. Biotechnol Biofuels Bioprod, 2024, 17: 60.
[2] Zhang Q, Chen Y Z, Gao L, Chen J G, Ma X, Cai D B, Wang D, Chen S W. Enhanced production of poly-γ-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis. Synth Syst Biotechnol, 2022, 7: 567-573.
doi: 10.1016/j.synbio.2022.01.006 pmid: 35155838
[3] Yan S, Yao H S, Chen Z, Zeng S Q, Xi X, Wang Y P, He N, Li Q B. Poly-γ-glutamic acid produced from Bacillus licheniformis CGMCC 2876 as a potential substitute for polyacrylamide in the sugarcane industry. Biotechnol Prog, 2015, 31: 1287-1294.
[4] 史文娟, 梁嘉平, 陶汪海, 谭帅, 王全九. 添加γ-聚谷氨酸减少土壤水分深层渗漏提高持水能力. 农业工程学报, 2015, 31(23): 94-100.
Shi W J, Liang J P, Tao W H, Tan S, Wang Q J. γ-PGA additive decreasing soil water infiltration and improving water holding capacity. Trans CSAE, 2015, 31(23): 94-100 (in Chinese with English abstract).
[5] Zhang L, Yang X M, Gao D C, Wang L L, Li J, Wei Z B, Shi Y L. Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Sci Rep, 2017, 7: 6090.
doi: 10.1038/s41598-017-06248-2 pmid: 28729559
[6] 徐良菊, 李俊良, 金圣爱. 喷施不同种类叶面肥对晚播冬小麦氮磷钾养分积累及产量的影响. 山东农业科学, 2021, 53(1): 77-81.
Xu L J, Li J L, Jin S A. Effects of spraying different kinds of foliar fertilizer on NPK nutrient accumulation and yield of late-sown winter wheat. Shandong Agric Sci, 2021, 53(1): 77-81 (in Chinese with English abstract).
[7] Bai N L, Zhang H L, Li S X, Zheng X Q, Zhang J Q, Sun L N, Lv W G. Effects of application rates of poly-γ-glutamic acid on vegetable growth and soil bacterial community structure. Appl Soil Ecol, 2020, 147: 103405.
[8] 柴虹, 吕春花, 王智刚, 宁明茹, 吴袁园, 管文彬, 胡浩. 含有γ-聚谷氨酸的高效微生物肥料的应用研究. 农业与技术, 2019, 39(3): 8-10.
Chai H, Lyu C H, Wang Z G, Ning M R, Wu Y Y, Guan W B, Hu H. Study on the application of efficient microbial fertilizer containing γ-polyglutamic acid. Agric Technol, 2019, 39(3): 8-10 (in Chinese).
[9] 褚群, 董春娟, 尚庆茂. γ-聚谷氨酸对番茄穴盘育苗基质矿质养分供应及幼苗生长发育的影响. 植物营养与肥料学报, 2016, 22: 855-862.
Chu Q, Dong C J, Shang Q M. Effects of γ-poly glutamic acid on substrate mineral nutrient supply and growth of tomato plug seedlings. J Plant Nutr Fert, 2016, 22: 855-862 (in Chinese with English abstract).
[10] 张静静, 白由路, 杨俐苹, 卢艳丽, 王磊, 李格, 张银杰. 喷施γ-聚谷氨酸提高夏玉米产量和养分吸收的机制. 植物营养与肥料学报, 2019, 25: 1856-1867.
Zhang J J, Bai Y L, Yang L P, Lu Y L, Wang L, Li G, Zhang Y J. Mechanism of spraying γ-poly glutamic acid increasing yield and nutrient uptake of summer maize. J Plant Nutr Fert, 2019, 25: 1856-1867 (in Chinese with English abstract).
[11] Xu Z Q, Lei P, Feng X H, Xu X J, Xu H, Yang H B, Tang W Q. Effect of poly (γ-glutamic acid) on microbial community and nitrogen pools of soil. Acta Agric Scand Sect B Soil Plant Sci, 2013, 63: 657-668.
[12] 郭建忠. γ-聚谷氨酸及其吸水树脂对土壤性质和冬小麦生长的影响研究. 西安理工大学博士学位论文, 陕西西安, 2021.
Guo J Z. Effects of γ-polyglutamic Acid and Its Absorbent Resin on Soil Properties and Winter Wheat Growth. PhD Dissertation of Xi’an University of Technology, Xi’an, Shaanxi, China, 2021 (in Chinese with English abstract).
[13] 武国慧, 刘汉文, 高德才, 高纪超, 张蕾, 段刚强, 王玲莉, 石元亮. 聚-γ-谷氨酸与不同形态氮肥共施对油菜生长的影响. 中国农学通报, 2018, 34(15): 48-54.
doi: 10.11924/j.issn.1000-6850.casb17040153
Wu G H, Liu H W, Gao D C, Gao J C, Zhang L, Duan G Q, Wang L L, Shi Y L. Effects of co-application of poly-γ-glutamic acid and different forms of nitrogen fertilizer on rape growth. Chin Agric Sci Bull, 2018, 34(15): 48-54 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb17040153
[14] 刘端义, 梅金先, 张旅峰, 魏宗林, 黎银忠, 张似松, 柯云华, 陈守文, 姜玲. 聚-γ-谷氨酸及其增效肥在水稻上的应用. 湖北农业科学, 2010, 49: 2390-2394.
Liu D Y, Mei J X, Zhang L F, Wei Z L, Li Y Z, Zhang S S, Ke Y H, Chen S W, Jiang L. Effects of poly-(γ-glutamic acid) synergist and beneficiate complex fertilizer on rice. Hubei Agric Sci, 2010, 49: 2390-2394 (in Chinese with English abstract).
[15] 刁倩, 王斌, 曹辉, 赵飞, 徐晗, 闫红玲, 龙力刚, 杨振军. γ-聚谷氨酸对水稻、玉米、大豆生长及产量的影响. 南方农业, 2020, 14(28): 48-52.
Diao Q, Wang B, Cao H, Zhao F, Xu H, Yan H L, Long L G, Yang Z J. Effects of γ-polyglutamic acid on the growth and yield of rice, maize and soybean. South China Agric, 2020, 14(28): 48-52 (in Chinese with English abstract).
[16] Liang J P, Shi W J. Poly-γ-glutamic acid improves water-stable aggregates, nitrogen and phosphorus uptake efficiency, water-fertilizer productivity, and economic benefit in barren desertified soils of Northwest China. Agric Water Manag, 2021, 245: 106551.
[17] Bai Y, Tan R, Yan Y R, Chen T, Feng Y T, Sun Q W, Li J K, Wang Y F, Liu F T, Wang J W, Zhang Y, Cheng X H, Wu G C. Effect of addition of γ-poly glutamic acid on bacterial nanocellulose production under agitated culture conditions. Biotechnol Biofuels Bioprod, 2024, 17: 68.
[18] Peng Y Y, Jiang B, Zhang T, Mu W M, Miao M, Hua Y F. High-level production of poly (γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus, Bacillus methylotrophicus. Proc Biochem, 2015, 50: 329-335.
[19] Ma H Z, Li P P, Xiao N, Xia T. Poly-γ-glutamic acid promoted maize root development by affecting auxin signaling pathway and the abundance and diversity of rhizosphere microbial community. BMC Plant Biol, 2022, 22: 521.
doi: 10.1186/s12870-022-03908-y pmid: 36352394
[20] 魏全全, 张萌, 芶久兰, 胡华群, 何池, 卢宗云, 刘藜. 聚谷氨酸增效肥料对贵州黄壤区露天茄子生物效应及肥料利用率的影响. 河南农业科学, 2022, 51(5): 53-61.
Wei Q Q, Zhang M, Gou J L, Hu H Q, He C, Lu Z Y, Liu L. Effect of polyglutamic acid-enhanced fertilizer on the biological effect and fertilizer utilization of open-air eggplant in yellow soil area of Guizhou. J Henan Agric Sci, 2022, 51(5): 53-61 (in Chinese with English abstract).
[21] Xu Z, Wan C, Xu X, Feng X, Xu H. Effect of poly (γ-glutamic acid) on wheat productivity, nitrogen use efficiency and soil microbes. J Soil Sci Plant Nutr, 2013, 13: 744-755.
[22] 彭碧琳, 李妹娟, 胡香玉, 钟旭华, 唐湘如, 刘彦卓, 梁开明, 潘俊峰, 黄农荣, 傅友强, 胡锐. 轻简氮肥管理对华南双季稻产量和氮肥利用率的影响. 中国农业科学, 2021, 54: 1424-1438.
doi: 10.3864/j.issn.0578-1752.2021.07.009
Peng B L, Li M J, Hu X Y, Zhong X H, Tang X R, Liu Y Z, Liang K M, Pan J F, Huang N R, Fu Y Q, Hu R. Effects of simplified nitrogen managements on grain yield and nitrogen use efficiency of double-cropping rice in South China. Sci Agric Sin, 2021, 54: 1424-1438 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.009
[23] Inbaraj B S, Wang J S, Lu J F, Siao F Y, Chen B H. Adsorption of toxic mercury (II) by an extracellular biopolymer poly (gamma-glutamic acid). Bioresour Technol, 2009, 100: 200-207.
[24] Xu Z Q, Lei P, Feng X H, Xu X J, Liang J F, Chi B, Xu H. Calcium involved in the poly (γ-glutamic acid) -mediated promotion of Chinese cabbage nitrogen metabolism. Plant Physiol Biochem, 2014, 80: 144-152.
[25] 闫洪奎, 王欣然. 长期定位试验下秸秆还田配套深松对土壤性状及玉米产量的影响. 华北农学报, 2017, 32(增刊1): 250-255.
Yan H K, Wang X R. The effects of straw returned form a complete set of deep scarification to soil properties and maize yield under a long-term trial. Acta Agric Boreali-Sin, 2017, 32(S1): 250-255 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2017.S1.043
[26] 黄巧义, 唐拴虎, 李苹, 付弘婷, 张木, 黄旭, 易琼, 张发宝. 包膜材料γ-聚谷氨酸对菜心的农学效应. 植物营养与肥料学报, 2016, 22: 1645-1654.
Huang Q Y, Tang S H, Li P, Fu H T, Zhang M, Huang X, Yi Q, Zhang F B. Agronomic effects of coating material γ-polyglutamic acid on Chinese flowering cabbage. J Plant Nutr Fert, 2016, 22: 1645-1654 (in Chinese with English abstract).
[27] 史文娟, 王培华, 林凤妹, 李曼, 王瀚. γ-聚谷氨酸在农田系统应用的研究进展及展望. 灌溉排水学报, 2022, 41(5): 1-7.
Shi W J, Wang P H, Lin F M, Li M, Wang H. The application of poly-γ glutamic acid in agriculture: a review. J Irrig Drain, 2022, 41(5): 1-7 (in Chinese with English abstract).
[28] Liu L, Shi W J, Pang L N. Effects of water-nitrogen coupling on soil water and nitrogen, photosynthesis, yield and water use of lettuce under different application rates of poly-γ-glutamic acid. Irrig Drain, 2023, 72: 105-118.
[29] Yin A M, Jia Y P, Qiu T L, Gao M, Cheng S T, Wang X M, Sun Y M. Poly-γ-glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure. Appl Soil Ecol, 2018, 129: 128-135.
[30] Wang G L, Liu Q, Wang Y, Li J Y, Chen Y, Wen Q L, Zheng D W, Kang W, Quan H L. The application and functional progress of γ-poly-glutamic acid in food: a mini-review. Curr Pharm Des, 2020, 26: 5347-5352.
[31] 何宇, 吕卫光, 李双喜, 郑宪清, 张翰林, 张娟琴, 张海韵, 白娜玲, 刘善良. γ-聚谷氨酸发酵液对小白菜生长及氮磷肥料利用率的影响. 浙江农业学报, 2023, 35: 329-337.
doi: 10.3969/j.issn.1004-1524.2023.02.10
He Y, Lyu W G, Li S X, Zheng X Q, Zhang H L, Zhang J Q, Zhang H Y, Bai N L, Liu S L. Effects of γ-polyglutamic acid fermentation broth on growth of pakchoi and utilization rate of nitrogen and phosphorus fertilizer. Acta Agric Zhejiangensis, 2023, 35: 329-337 (in Chinese with English abstract).
[32] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展. 作物杂志, 2022, (1): 11-19.
Liu L, Song N N, Qi X L, Cui K H. Research advances on the relationship between root characteristics and nitrogen uptake and utilization efficiency in rice. Crops, 2022, (1): 11-19 (in Chinese with English abstract).
[33] Lipson D, Näsholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 2001, 128: 305-316.
doi: 10.1007/s004420100693 pmid: 24549899
[34] 郭立. 不同水稻品种氮素吸收与利用的差异及生理基础. 广西大学硕士学位论文, 广西南宁, 2007.
Guo L. Differences in Nitrogen Absorption and Utilization among Different Rice Varieties and Their Physiological Basis. MS Thesis of Guangxi University, Nanning, Guangxi, China, 2007 (in Chinese with English abstract).
[35] 单玉华. 不同类型水稻品种氮素吸收利用的差异及控制. 扬州大学博士学位论文, 江苏扬州, 2002.
Shan Y H. Difference and Control of Nitrogen Absorption and Utilization of Different Types of Rice Varieties. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2002 (in Chinese with English abstract).
[36] Liang J P, Shi W J, He Z J, Pang L N, Zhang Y C. Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China. Agric Water Manag, 2019, 218: 48-59.
[37] 张雪洁. 聚谷氨酸调控草莓生长和果实品质的生理机制. 河南科技学院硕士学位论文, 河南新乡, 2023.
Zhang X J. Physiological Mechanism of Polyglutamic Acid Regulating Strawberry Growth and Fruit Quality. MS Thesis of Henan Institute of Science and Technology, Xinxiang, Henan, China, 2023 (in Chinese with English abstract).
[38] 张文. γ-聚谷氨酸制备及其农用效果. 中国农业科学院硕士学位论文, 北京, 2014.
Zhang W. Preparation of γ-polyglutamic Acid and Its Agricultural Effect. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract).
[39] 刘方丹, 刘榴, 高久林, 谢金长, 姜玲. 聚-γ-谷氨酸提高藤稔葡萄品质的研究. 中国南方果树, 2014, 43(1): 23-27.
Liu F D, Liu L, Gao J L, Xie J C, Jiang L. Improving the fruit quality of fujiminori grape using poly-γ-glutamic acid. South China Fruits, 2014, 43(1): 23-27 (in Chinese with English abstract).
[40] 夏朵, 周浩, 何予卿. 稻米品质的遗传研究及分子育种进展. 华中农业大学学报, 2022, 41(1): 48-61.
Xia D, Zhou H, He Y Q. Progress on genetic study and molecular breeding of rice quality. J Huazhong Agric Univ, 2022, 41(1): 48-61 (in Chinese with English abstract).
[1] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[2] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[3] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[4] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[5] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[6] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[7] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[8] SU Chang, MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui. Response of osalr3 mutant to exogenous organic acids and plant growth regulators under aluminum stress [J]. Acta Agronomica Sinica, 2025, 51(3): 676-686.
[9] LIU Jian-Guo, CHEN Dong-Dong, CHEN Yu-Yu, YI Qin-Qin, LI Qing, XU Zheng-Jin, QIAN Qian, SHEN Lan. Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains [J]. Acta Agronomica Sinica, 2025, 51(3): 598-608.
[10] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
[11] LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357.
[12] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[13] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[14] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[15] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!