Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1286-1298.doi: 10.3724/SP.J.1006.2025.44153

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations

SHENG Qian-Nan1(), FANG Ya-Ting1, ZHAO Jian1, DU Si-Yao1, HU Xing-Zhen1, YU Qiu-hua2, ZHU Jun1, REN Tao1, LU Jian-Wei1,*()   

  1. 1College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Wuhan 430070, Hubei, China
    2Hubei Provincial General Station of Cultivated Land Quality and Fertilizer, Wuhan 430070, Hubei, China
  • Received:2024-09-11 Accepted:2025-01-23 Online:2025-05-12 Published:2025-02-06
  • Contact: *E-mail: lunm@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Comprehensive Model and Application of Obstacle Reduction and Productivity Improvement of Low-yield Fields in the Water-dry Rotation Area of the Middle and Lower Reaches of the Yangtze River”(2023YFD1901100);Hubei Province Agriculture Research System Rapeseed Research System(2023HBSTX4-03);China Agriculture Research System of MOF and MARA(CARS-12)

Abstract:

Freezing stress during the bolting stage is one of the critical factors limiting the yield increase of winter oilseed rape. Optimizing nutrient management practices can effectively mitigate cold damage stress in oilseed rape. During the 2023/2024 growing season, the Yangtze River Basin in China experienced two rounds of cold waves, resulting in varying levels of reduction in oilseed rape production. To investigate the effects of different nutrient management strategies on the growth of paddy oilseed rape (rice-oilseed rape rotation) and upland oilseed rape (maize-oilseed rape rotation), as well as their responses to freezing stress, a field experiment was conducted in Shayang county, Hubei province. The study incorporated meteorological data across two oilseed rape growing seasons (2022/2023 and 2023/2024). The main treatments were two planting patterns: paddy-grown oilseed rape in rice-oilseed rape rotation and upland oilseed rape in maize-oilseed rape rotation. The subplot treatments included no fertilizer (CK), conventional fertilization (CF), optimized fertilization (NPK) and optimized fertilization + straw + organic fertilization (NPK+S+M). The analysis encompassed oilseed rape yield, yield components and shoot biomass, further revealing the differential response of oilseed rape to freezing stress across the two rotations. The results showed that in 2022/2023 (control year), upland oilseed rape had higher yields than paddy oilseed rape. However, in 2023/2024 (freezing stress year), paddy oilseed rape outperformed upland oilseed rape in terms of yield. Under CK, CF, NPK, and NPK+S+M treatments, the yield reduction rates caused by freezing stress were 74.9%, 54.6%, 61.1% and 68.1% in paddy fields, and 70.8%, 71.7%, 69.0%, 71.6% in upland fields, respectively. Freezing stress had the greatest impact on the number of siliques per plant reducing it by an average of 28.3% in paddy fields and 29.7% in upland fields. Following this, the 1000-seed weight was affected, with an average reduction of 16.5% in paddy field and 38.8% in upland fields. Notably, after freezing stress, the contribution of 1000-seed weight to total yield increased. The response of shoot biomass to nutrient management and freezing stress followed a similar trend to yield. Correlation analysis between oilseed rape yield and meteorological factors revealed a significant positive correlation between mean maximum temperature and yield, and a significant negative correlation between yield and the number of days with temperatures ≤ 0℃ days, ≤ -3℃ days and total precipitation. In conclusion, paddy-grown oilseed rape and upland oilseed rape exhibited different sensitivities to low-temperature stress, which were influenced by nutrient management practices. Paddy oilseed rape demonstrated superior freeze resistance compared to upland oilseed rape. Providing adequate nutrient supply, particularly under CF treatment, was found to be the most effective strategy for mitigating cold stress and improving yield.

Key words: nutrient management, rice-oilseed rape rotation, maize-oilseed rape rotation, freezing stress, oilseed rape production

Fig. 1

Main meteorological factors in oilseed rape growing seasons in control year and freezing stress year"

Table 1

Climatic resource allocation index of growing period in oilseed rape"

年份
Year
日期
Date
生育时期
Growth stage
平均最高气温
Mean maximum temperature
(℃)
平均最低气温
Mean minimum temperature
(℃)
日平均气温
Daily mean temperature
(℃)
≤ 0℃天数
≤ 0℃ days
(d)
对照年
Control year
10/25-12/25 移栽期-苗期
Transplanting stage-seedling stage
15.8 7.1 10.8 9
12/25-02/15 越冬期-抽薹期
Overwintering stage-bolting stage
10.5 2.1 5.7 15
02/15-03/20 抽薹期-终花期
Bolting stage-final flowering stage
16.7 7.5 11.8 1
03/20-05/08 终花期-成熟期
Final flowering stage-maturity stage
22.3 13.4 17.4 0
冻害年Freezing stress year 10/27-12/27 移栽期-苗期
Transplanting stage-seedling stage
15.4 6.4 10.3 10
12/27-02/27 越冬期-抽薹期
Overwintering stage-bolting stage
9.2 1.6 4.9 22
02/27-03/27 抽薹期-终花期
Bolting stage-final flowering stage
16.9 8.5 12.2 0
03/27-05/05 终花期-成熟期
Final flowering stage-maturity stage
23.2 15.2 18.9 0
年份
Year
日期
Date
生育时期
Growth stage
≤ -3℃天数
≤ -3℃ days
(d)
总降雨量
Total
precipitation
(mm)
≥ 0℃有效积温
≥ 0℃ effective
accumulated temperature (℃)
对照年Control year 10/25-12/25 移栽期-苗期
Transplanting stage-seedling stage
1 30.6 671.3
12/25-02/15 越冬期-抽薹期
Overwintering stage-bolting stage
2 40.3 298.2
02/15-03/20 抽薹期-终花期
Bolting stage-final flowering stage
0 23.8 388.3
03/20-05/08 终花期-成熟期
Final flowering stage-maturity stage
0 140.1 834.1
冻害年Freezing stress year 10/27-12/27 移栽期-苗期
Transplanting stage-seedling stage
3 103.7 628.8
12/27-02/27 越冬期-抽薹期
Overwintering stage-bolting stage
9 159.2 321.1
02/27-03/27 抽薹期-终花期
Bolting stage-final flowering stage
0 40.9 354.3
03/27-05/05 终花期-成熟期
Final flowering stage-maturity stage
0 119.7 737.6

Table 2

Effects of freezing stress on oilseed rape yield under different nutrient management (kg hm-2)"

年份
Year
养分管理
Nutrient management
对照年
Control year
冻害年
Freezing stress year
冻害减产量
Yield decrease value
冻害减产率
Yield decrease rate (%)
稻田油菜
Paddy oilseed rape
CK 804±86 c** 201±65 c 603 74.9
CF 4137±157 a 1880±112 a* 2257 54.6
NPK 3321±367 b 1291±183 b 2030 61.1
NPK+S+M 4103±570 a 1307±132 b 2796 68.1
旱地油菜
Upland oilseed rape
CK 457±96 c 133±16 b 324 70.8
CF 4517±418 a 1279±233 a 3238 71.7
NPK 3661±410 b 1135±135 a 2526 69.0
NPK+S+M 4111±111 ab 1167±191 a 2944 71.6
方差分析ANOVA FF-value
年份Y 811.146***
轮作R 0.997ns
养分管理N 248.433***
Y×R 5.258*
Y×N 57.642***
R×N 0.723ns
Y×R×N 3.303*

Table 3

Effects of freezing stress on components of oilseed rape yield under different nutrient management measures"

年份
Year
养分管理
Nutrient management
单株有效角果数
Number of effective siliques
per plant
每角粒数
Seed number per silique
千粒重
1000-seed weight (g)
对照年
Control year
冻害年
Freezing stress year
对照年
Control year
冻害年
Freezing stress year
对照年
Control year
冻害年
Freezing stress year
稻田油菜
Paddy oilseed rape
CK 110.4±20.9 c 60.0±15.0 c 18.9±0.9 b 17.1±2.3 a 3.99±0.12 a 3.78±0.16 a
CF 506.7±47.6 a 380.0±52.8 a 21.6±0.7 a 17.4±1.2 a 4.24±0.06 a 3.18±0.08 c
NPK 435.1±19.1 ab 296.7±35.8 b 21.0±1.1 ab 17.8±0.9 a 4.13±0.06 a 3.22±0.14 bc
NPK+S+M 475.0±41.6 ab 331.2±37.0 ab 21.2±1.7 ab 18.3±0.9 a 4.09±0.08 a 3.54±0.20 ab
旱地油菜
Upland oilseed rape
CK 63.2±9.8 c 42.6±8.0 c 20.4±1.0 a 15.2±0.6 b 4.06±0.11 a 3.75±0.15 a
CF 505.7±34.7 a 359.2±42.9 a 22.1±3.1 a 19.4±0.2 a 4.10±0.10 a 3.00±0.20 b
NPK 398.3±40.8 b 273.4±37.7 b 22.4±2.7 a 18.0±0.6 a 4.25±0.09 a 3.17±0.21 b
NPK+S+M 490.3±51.8 a 314.0±39.1 ab 21.4±1.1 a 18.6±1.5 a 4.02±0.21 a 3.20±0.20 b
方差分析 ANOVA FF-value
年份Y 123.157*** 62.167*** 322.822***
轮作R 3.146ns 1.550ns 3.508ns
养分管理N 258.189*** 5.485** 7.333***
Y×R 0.011ns 0.738ns 3.077ns
Y×N 6.935*** 0.227ns 19.590***
R×N 0.527ns 0.541ns 2.108ns
Y×R×N 0.478ns 1.466ns 0.345ns

Fig. 2

The relative influence of the number of effective siliques per plant, seed number per silique and 1000-seeds weight on oilseed rape yield"

Fig. 3

Shoot biomass and allocation ratio of oilseed rape under different nutrient management under freezing stress Different lowercase letters represent that the difference between different nutrient management reaches a significant level of 0.05; * represents the shoot biomass differences between years under-test, * represents P < 0.05, ** represents P < 0.01, *** represents P < 0.001, ns represents no significant difference. Treatments are the same as those given in Table 2."

Fig. 4

Grain correlation analysis of oilseed rape yield and yield components and climatic resources during growth period *, **, and *** mean significant correlation at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[2] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
doi: 10.19802/j.issn.1007-9084.2019046
Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-903 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019046
[3] 万素琴, 陈晨, 刘志雄, 周月华, 邓环, 高素华. 气候变化背景下湖北省水稻高温热害时空分布. 中国农业气象, 2009, 30(增刊2): 316-319.
Wan S Q, Chen C, Liu Z X, Zhou Y H, Deng H, Gao S H. Space-time distribution of heat injury on rice in Hubei province under climate change. Chin J Agrometeorol, 2009, 30(S2): 316-319 (in Chinese with English abstract).
[4] 张学昆, 张春雷, 廖星, 王汉中. 2008年长江流域油菜低温冻害调查分析. 中国油料作物学报, 2008, 30: 122-126.
Zhang X K, Zhang C L, Liao X, Wang H Z. Investigation on 2008’low temperature and freeze injure on winter rape along Yangtze River. Chin J Oil Crop Sci, 2008, 30: 122-126 (in Chinese with English abstract).
[5] 陆魁东, 彭莉莉, 黄晚华, 周伟. 气候变化背景下湖南油菜气象灾害风险评估. 中国农业气象, 2013, 34: 191-196.
Lu K D, Peng L L, Huang W H, Zhou W. Meteorological disaster risk assessment of oilseed rape under climate change conditions. Chin J Agrometeorol, 2013, 34: 191-196 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2013.02.010
[6] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制. 作物学报, 2024, 50: 1015-1029.
doi: 10.3724/SP.J.1006.2024.34116
Zhou X Y, Xu J S, Xie L L, Xu B B, Zhang X K. Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L. Acta Agron Sin, 2024, 50: 1015-1029 (in Chinese with English abstract).
[7] 宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36: 170-176.
doi: 10.3724/SP.J.1006.2010.00170
Song F P, Hu L Y, Zhou G S, Wu J S, Fu T D. Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agron Sin, 2010, 36: 170-176 (in Chinese with English abstract).
[8] 白鹏, 冉春艳, 谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响. 中国农业科学, 2014, 47: 3566-3576.
doi: 10.3864/j.issn.0578-1752.2014.18.005
Bai P, Ran C Y, Xie X Y. Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.). Sci Agric Sin, 2014, 47: 3566-3576 (in Chinese with English abstract).
[9] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980-2009年长江下游地区油菜冻害时空特征研究. 长江流域资源与环境, 2018, 27: 1501-1508.
Hou W J, Chen C Q, Qiao H, Sun X S, Zhou S D. Temporal-spatial characteristics of rape freezing injury in the lower reaches of the Yangtze River during 1980-2009. Resour Environ Yangtze Basin, 2018, 27: 1501-1508 (in Chinese with English abstract).
[10] 崔读昌. 关于冻害、寒害、冷害和霜冻. 中国农业气象, 1999, 20: 56.
Cui D C. About freezing injury, cold injury, cold injury and frost. Chin J Agrometeorol, 1999, 20: 56 (in Chinese).
[11] 鲁剑巍. 中国油菜生产的高产高效氮素管理. 中国农业科学, 2016, 49: 3504-3505.
doi: 10.3864/j.issn.0578-1752.2016.18.004
Lu J W. Nitrogen management with high yield and high efficiency for oilseed rape in China. Sci Agric Sin, 2016, 49: 3504-3505 (in Chinese with English abstract).
[12] 刘波, 魏全全, 鲁剑巍, 李小坤, 丛日环, 吴礼树, 徐维明, 杨运清, 任涛. 苗期渍水和氮肥用量对直播冬油菜产量及氮肥利用率的影响. 植物营养与肥料学报, 2017, 23: 144-153.
Liu B, Wei Q Q, Lu J W, Li X K, Cong R H, Wu L S, Xu W M, Yang Y Q, Ren T. Effects of waterlogging at the seedling stage and nitrogen application on seed yields and nitrogen use efficiency of direct-sown winter rapeseed (Brassica napus L.). J Plant Nutr Fert, 2017, 23: 144-153 (in Chinese with English abstract).
[13] 李俊, 张春雷, 马霓, 李锋, 李光明. 栽培措施对冬油菜抗冻性和产量的影响. 江苏农业科学, 2010, 38(1): 95-97.
Li J, Zhang C L, Ma N, Li F, Li G M. Effects of cultivation method on freezing resistance and yielding capacity of winter rape. Jiangsu Agric Sci, 2010, 38(1): 95-97 (in Chinese).
[14] 张政文, 胡乃娟, 顾泽海, 陶宝瑞, 尹思慧, 徐蒋来, 朱利群. 肥料运筹对苗期油菜抗冻性的影响. 南京农业大学学报, 2015, 38: 1-7.
Zhang Z W, Hu N J, Gu Z H, Tao B R, Yin S H, Xu J L, Zhu L Q. Effects of fertilizer application patterns on the seedling rape freezing resistance. J Nanjing Agric Univ, 2015, 38: 1-7 (in Chinese with English abstract).
[15] 徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008, 41: 3133-3139.
Xu M G, Li D C, Li J M, Qin D Z, Kazuyuki Y, Yasukazu H. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Sci Agric Sin, 2008, 41: 3133-3139 (in Chinese with English abstract).
[16] 刘振齐, 孔令传, 何余堂. 油菜冻害原因及其预防措施. 安徽农业科学, 2005, 33: 2049.
Liu Z Q, Kong L C, He Y T. Causes of freezing injury of rapeseed and its preventive measures. J Anhui Agric Sci, 2005, 33: 2049 (in Chinese).
[17] 苏伟. 稻草还田对油菜生长、土壤肥力的综合效应及其机制研究. 华中农业大学博士学位论文, 湖北武汉, 2014.
Su W. The Effects and Mechanism of Rice Straw Retaining on Winter Oilseed Rape Growth and Soil Fertility. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2014 (in Chinese with English abstract).
[18] 李小坤, 任涛, 鲁剑巍. 长江流域水稻-油菜轮作体系氮肥增产增效综合调控. 华中农业大学学报, 2021, 40(3): 13-20.
Li X K, Ren T, Lu J W. Integrated regulation of nitrogen fertilizer for increasing yield and efficiency of rice-oilseed rape rotation system in the Yangtze River Basin. J Huazhong Agric Univ, 2021, 40(3): 13-20 (in Chinese with English abstract).
[19] Zhou W, Lyu T F, Chen Y, Westby A P, Ren W J. Soil physicochemical and biological properties of paddy-upland rotation: a review. Sci World J, 2014, 2014: 856352.
[20] 周橡棋. 不同养分管理措施对华中地区4种典型轮作制度的土壤物理性质影响初探. 华中农业大学硕士学位论文, 湖北武汉, 2022.
Zhou X Q. Preliminary Study on the Effects of Different Nutrient Management Measures on Soil Physical Properties of Four Typical Crop Rotation Systems in Central China. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[21] Wei L, Ge T D, Zhu Z K, Ye R Z, Peñuelas J, Li Y H, Lynn T M, Jones D L, Wu J S, Kuzyakov Y. Paddy soils have a much higher microbial biomass content than upland soils: a review of the origin, mechanisms, and drivers. Agric Ecosyst Environ, 2022, 326: 107798.
[22] 兰雪梅, 黄彩霞, 李博文, 李守蕾, 宋雅丽, 柴雨葳, 程宏波, 常磊, 柴守玺. 不同覆盖材料对西北旱地冬小麦地温及产量的影响. 麦类作物学报, 2016, 36: 1084-1092.
Lan X M, Huang C X, Li B W, Li S L, Song Y L, Chai Y W, Cheng H B, Chang L, Chai S X. Effect of different mulching materials on soil temperature and yield of winter wheat in northwest arid land of China. J Triticeae Crops, 2016, 36: 1084-1092 (in Chinese with English abstract).
[23] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34: 114-122.
Zhang S J, Wang H Z. Policies and strategies analyses of rapeseed production response to climate change in China. Chin J Oil Crop Sci, 2012, 34: 114-122 (in Chinese with English abstract).
[24] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-114 (in Chinese).
[25] 和珊, 丁超, 杨国峰, 朱江明, 赵娟. 微波干燥对油菜籽品质及气味成分的影响. 中国粮油学报, 2013, 28: 48-54.
He S, Ding C, Yang G F, Zhu J M, Zhao J. Effect of microwave drying on quality and volatile profiles of rapeseeds. J Chin Cereals Oils Assoc, 2013, 28: 48-54 (in Chinese with English abstract).
[26] 薛大伟, 方茂庭, 钱前. 有效积温在水稻生产中的应用. 中国稻米, 2004, 10(4): 47-48.
Xue D W, Fang M T, Qian Q. Application of effective accumulated temperature in rice production. China Rice, 2004, 10(4): 47-48 (in Chinese).
[27] 夏军, 陈进, 佘敦先. 2022年长江流域极端干旱事件及其影响与对策. 水利学报, 2022, 53: 1143-1153.
Xia J, Chen J, She D X. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022. J Hydraul Eng, 2022, 53: 1143-1153 (in Chinese with English abstract).
[28] 刘后利. 油菜的遗传和育种. 上海: 上海科学技术出版社, 1985.
Liu H L. Inheritance and Breeding of Rape. Shanghai: Shanghai Scientific & Technical Publishers, 1985 (in Chinese).
[29] 吴昊, 邵明阳, 沈福生, 段沙丽. 低温冻害对江西油菜产量的影响及其变化特征研究. 江西农业学报, 2021, 33(11): 14-19.
Wu H, Shao M Y, Shen F S, Duan S L. Effects of low temperature and freezing injury on rapeseed yield and its variation characteristics in Jiangxi Province. Acta Agric Jiangxi, 2021, 33(11): 14-19 (in Chinese with English abstract).
[30] 朱宏爱, 王智课. 油菜生长后期叶片对产量及角果数的影响. 浙江农业科学, 2005, 46: 399-400.
Zhu H A, Wang Z K. Effect of leaves on yield and pod number in late growth stage of rape. Zhejiang Agric Sci, 2005, 46: 399-400 (in Chinese with English abstract).
[31] 汪剑鸣, 杨爱卿, 陈永元, 龚乃弘, 周小萍. 气象因子与油菜产量关系的初步研究. 江西农业学报, 1997, 9(1): 6-11.
Wang J M, Yang A Q, Chen Y Y, Gong N H, Zhou X P. A preliminary study on the relationship between meteorological factors and rapeseed yield. Acta Agric Jiangxi, 1997, 9(1): 6-11 (in Chinese).
[32] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响. 作物学报, 2025, 51: 516-525.
doi: 10.3724/SP.J.1006.2025.44074
Chen Y T, Ding X Y, Xu B B, Zhang X K, Xu J S, Yin Y. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.). Acta Agron Sin, 51: 516-525 (in Chinese with English abstract).
[33] 邹娟, 朱建强, 吴启侠, 戴兰燕, 李梦琴. 氮磷钾施用对薹花期受渍油菜产量及养分吸收的影响. 湖北农业科学, 2015, 54: 4956-4959.
Zou J, Zhu J Q, Wu Q X, Dai L Y, Li M Q. Effects of NPK on yield and nutrient uptake of bud-blooming waterlogged rapeseed. Hubei Agric Sci, 2015, 54: 4956-4959 (in Chinese with English abstract).
[34] 王贺正, 陈明灿, 贺文闯, 李友军, 付国占, 徐国伟. 磷钾对小麦幼苗抗寒性的影响. 麦类作物学报, 2009, 29: 141-145.
Wang H Z, Chen M C, He W C, Li Y J, Fu G Z, Xu G W. Effect of phosphorus and potassium on cold resistance of wheat seedling. J Triticeae Crops, 2009, 29: 141-145 (in Chinese with English abstract).
[35] 陈培元, 蒋永罗, 李英, 付左. 钾对小麦生长发育、抗旱性和某些生理特性的影响. 作物学报, 1987, 13: 322-328.
Chen P Y, Jiang Y L, Li Y, Fu Z. Effect of potassium on wheat growth, drought resistance and some physiological properties under different soil moisture conditions. Acta Agron Sin, 1987, 13: 322-328 (in Chinese with English abstract).
[36] 吕凯. 低温灾害对安徽省油菜的影响及防御措施. 农业灾害研究, 2015, 5(10): 59-63.
Lyu K. Influences and defensive measures of hypothermia disasters on rapeseed in Anhui province. J Agric Catastrophol, 2015, 5(10): 59-63 (in Chinese with English abstract).
[37] 宋以玲, 于建, 陈士更, 肖承泽, 李玉环, 苏秀荣, 丁方军. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响. 水土保持学报, 2018, 32: 352-360.
Song Y L, Yu J, Chen S G, Xiao C Z, Li Y H, Su X R, Ding F J. Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth, microorganism and enzymes activities in soil. J Soil Water Conserv, 2018, 32: 352-360 (in Chinese with English abstract).
[38] 田昌, 彭建伟, 宋海星, 荣湘民, 官春云, 刘强. 有机肥化肥配施对冬油菜养分吸收、籽粒产量和品质的影响. 中国土壤与肥料, 2012, (4): 70-74.
Tian C, Peng J W, Song H X, Rong X M, Guan C Y, Liu Q. Effects of organic manure application combined with chemical fertilizers on absorption of nutrient, yield and quality of rapeseed. Soil Fert Sci China, 2012, (4): 70-74 (in Chinese with English abstract).
[39] 陈爽, 李先平, 章志航, 王悦, 郑灵韵, 曹锐, 陆际羽, 李辉信. 不同商品有机肥大量及中微量养分释放规律研究. 土壤通报, 2022, 53: 882-889.
Chen S, Li X P, Zhang Z H, Wang Y, Zheng L Y, Cao R, Lu J Y, Li H X. Comparison of the releasing patterns of nutrients from different commercial organic fertilizers. Chin J Soil Sci, 2022, 53: 882-889 (in Chinese with English abstract).
[40] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异. 作物学报, 2023, 49: 772-783.
doi: 10.3724/SP.J.1006.2023.24061
Fang Y T, Ren T, Zhang S T, Zhou X Q, Zhao J, Liao S P, Cong R H, Lu J W. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations. Acta Agron Sin, 2023, 49: 772-783 (in Chinese with English abstract).
[41] Cheng H Y, Wang G X, Hu H C, Wang Y B. The variation of soil temperature and water content of seasonal frozen soil with different vegetation coverage in the headwater region of the Yellow River, China. Environ Geol, 2008, 54: 1755-1762.
[42] 金雯晖, 杨劲松, 侯晓静, 姚荣江, 余世鹏, 王相平, 谢文萍. 轮作模式对滩涂土壤有机碳及团聚体的影响. 土壤, 2016, 48: 1195-1201.
Jin W H, Yang J S, Hou X J, Yao R J, Yu S P, Wang X P, Xie W P. Effects of rotation systems on soil organic carbon and aggregates in light salinized farmland in North Jiangsu province. Soils, 2016, 48: 1195-1201 (in Chinese with English abstract).
[1] MENG Zi-Zhen, LIU Chen, SHENG Qian-Nan, XIONG Zhi-Hao, FANG Ya-Ting, ZHAO Jian, YU Qiu-Hua, WANG Kun-Kun, LI Xiao-Kun, REN Tao, LU Jian-Wei. Effects of nitrogen, phosphorus, and potassium fertilizer application on the yield increase of winter oilseed rape and the degree of yield reduction due to freezing stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1037-1049.
[2] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[3] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[4] GUO Jiu-Xin,KONG Ya-Li,XIE Kai-Liu,LI Dong-Hai,FENG Xu-Meng,LING Ning,WANG Min,GUO Shi-Wei. Effects of Nutrient Management on Yield and Nitrogen Use Efficiency of Direct Seeding Rice [J]. Acta Agron Sin, 2016, 42(07): 1016-1025.
[5] XUE Ya-Guang,CHEN Ting-Ting,YANG Cheng,WANG Zhi-Qin,LIU Li-Jun,YANG Jian-Chang. Effects of Different Cultivation Patterns on the Yield and Physiological Characteristics in Mid-Season Japonica Rrice [J]. Acta Agron Sin, 2010, 36(3): 466-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!