Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (07): 1016-1025.doi: 10.3724/SP.J.1006.2016.01016


Effects of Nutrient Management on Yield and Nitrogen Use Efficiency of Direct Seeding Rice

GUO Jiu-Xin1,KONG Ya-Li1,XIE Kai-Liu1,LI Dong-Hai2,FENG Xu-Meng1,3,LING Ning1,WANG Min1,GUO Shi-Wei1,*   

  1. 1 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2 Agricultural Technology Extension and service station of Fuyu County, Songyuan 138000, China; 3 College of Country Development, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2015-12-09 Revised:2016-03-14 Online:2016-07-12 Published:2016-03-22
  • Contact: 郭世伟, E-mail: sguo@njau.edu.cn, Tel: 025-84396393 E-mail:jiuxinguo@sina.com
  • Supported by:

    This study was supported by the National Basic Research Program of China (973 Program, 2013CB127403) and the China Special Fund for Agro-scientific Research in the Public Interest (201103003 and 201203013).


The effects of different nutrient management models on the yield and nitrogen (N) use efficiency (NUE) of direct seeding rice were investigated under site-specific farmers cultivate practice situation. We conducted a field experiment at eight farmers’ field in basic farmland protection region with a rice-wheat rotation ecosystem in Xinghua County, Maoshan town, Jiangsu Province, from June 2011 to November 2013. Three different nutrient management models and a control were used in this experiment including fertilizer free treatment (CK), farmers’ fertilizer practice (FFP) and optimal fertilizer management 1 and 2 (OPT1 and OPT2). The rice yield and its components, N accumulation and distribution, and NUE were determined. The results showed that the rice grain yield of OPT treatments (226 kg ha-1 N) significantly increased 5.5% due to the increase of grains per panicle, seed setting percentage, and 1000-grain weight while the N fertilizer application reduced 32.1% as compared with FFP treatment (333 kg ha-1 N). The rice grain yield of OPT2 treatment was 3.1% higher than that of OPT1 treatment while resulted from increasing potassium application (18 kg ha-1 K2O) at booting stage. The N concentration of different parts of plant, N requirement for 100 kg grain, straw N accumulation and N distribution in vegetative organs of OPT treatment were significantly lower than these of FFP treatment. Compared with FFP treatment, OPT treatment also significantly improved NUE of rice plants, in which partial factor productivity of N (PFPN), agronomic efficiency of N (AEN), the recovery efficiency of N (REN) and physiological efficiency of N (PEN) increased by 55.5%, 79.1%, 18.8%, and 48.7%, respectively. There was a significantly positive correlation between plant N accumulation and grain yield in rice, and the effect of yield increase per unit N accumulation in OPT treatment was higher than that in FFP treatment. Therefore, the optimal nutrition management model, including controlling total N rate, regulating application stage of N fertilizer and increasing potassium application, can be need to obtain a comprehensive effect for high grain yield and high N fertilizer use efficiency in direct seeding rice planted by farmers.

Key words: Rice, Yield, Nutrient management, Nitrogen use efficiency, Site-specific farmer cultivate

[1]Frolking S, Qiu J, Boles S, Xiao X, Liu J, Zhuang Y, Li C, Qiu X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochem Cy, 2002, 16: 38.1–38.10
[2]彭少兵, 黄建良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Roland Buresh, Christian Witt. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095–1103
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Roland B, Christian W. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095–1103 (in Chinese with English abstract)
[3]Peng S, Buresh R J, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37–47
[4]Zhang F, Fan M, Zhang W. Principles, dissemination and performance of fertilizer best management practices developed in China. In: Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives vs. Regulations. International Fertilizer Industry Association, Brussels, Belgium, 2007. pp 193–201
[5]Yin F, Fu B, Mao R. Effects of nitrogen fertilizer application rates on nitrate nitrogen distribution in saline soil in the Hai River Basin, China. J Soil Sediment, 2007, 7: 136–142
[6]Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z, Freney J R, Maetinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889–892
[7]Agrawal G D, Lunkad S K, Malkhed T. Diffuse agricultural nitrate pollution of groundwaters in India. Water Sci Technol, 1999, 39: 67–75
[8]Sayer J, Cassman K G. Agricultural innovation to protect the environment. Proc Natl Acad Sci USA, 2013, 110: 8345–8348
[9]West P C, Gerber J S, Engstrom P M, Mueller N D, Brauman K A, Carlson K M, Cassidy E S, Johnston M, MacDonald G K, Ray D K, Siebert S. Leverage points for improving global food security and the environment. Science, 2014, 345: 324–328
[10]Haefele S M, Jabbar S M A, Siopongco J D L C, Tirol-Padre A, Amarante S T, Cruz P C S, Cosico W C. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels. Field Crops Res, 2008, 107: 137–146
[11]李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲. 水稻高产氮高效型品种的物质积累与转运特性. 作物学报, 2013, 39: 101–109
Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency. Acta Agron Sin, 2013, 39: 101–109 (in Chinese with English abstract)
[12]孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40: 1639–1649
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014, 40: 1639–1649 (in Chinese with English abstract)
[13]王绍华, 曹卫星, 丁艳锋, 田永超, 姜东. 水氮互作对水稻氮吸收与利用的影响. 中国农业科学, 2004, 37: 497–501
Wang S H, Cao W X, Ding Y F, Tian Y C, Jiang D. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice. Sci Agric Sin, 2004, 37: 497–501 (in Chinese with English abstract)
[14]Sui B, Feng X, Tian G, Hu X, Shen Q, Guo S. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Res, 2013, 150: 99–107
[15]龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻氮素吸收利用与转运差异研究. 植物营养与肥料学报, 2014, 20: 796–810
Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Differences of nitrogen uptake, utilization and translocation between indica and japonica super rice. Plant Nutr Fert Sci, 2014, 20: 796–810 (in Chinese with English abstract)
[16]邹应斌, 敖和军, 夏冰, 唐启源, 彭少兵, Buresh R J. 不同氮肥施用对杂交稻产量及其氮素利用效率的影响. 作物研究, 2008, 22(4): 214–219
Zou Y B, Ao H J, Xia B, Tang Q Y, Peng S B, Roland J B. Effects of different nitrogen application on the yield and nitrogen use efficiency in hybrid rice. Crop Res, 2008, 22(4): 214–219 (in Chinese with English abstract)
[17]王伟妮, 鲁剑巍, 鲁明星, 李小坤, 李云春, 李慧. 湖北省早、中、晚稻施氮增产效应及氮肥利用率研究. 植物营养与肥料学报, 2011, 17: 545–553
Wang W N, Lu J W, Lu M X, Li X K, Li Y C, Li H. Effect of nitrogen fertilizer application and nitrogen use efficiency of early, middle and late rice in Hubei Province. Plant Nutr Fert Sci, 2011, 17: 545–553 (in Chinese with English abstract)
[18]张智, 王伟妮, 李昆, 马红菊, 苟曦, 鲁剑巍. 四川省不同区域水稻氮肥施用效果研究. 土壤学报, 2015, 52: 235–241
Zhang Z, Wang W N, Li K, Ma H J, Gou X, Lu J W. Effects of nitrogen fertilization on rice in different regions of Sichuan Province. Acta Pedol Sin, 2015, 52: 235–241 (in Chinese with English abstract)
[19]邬刚, 袁嫚嫚, 孙义祥, 钱晓华. 安徽化肥消费现状和粮食作物节肥潜力分析. 安徽农业科学, 2015, 43(13): 70–73
Wu G, Yuan M M, Sun Y X, Qian X H. Fertilizer consumption and fertilizer saving potential analysis for major cereal crops in Anhui. J Anhui Agric Sci, 2015, 43(13): 70–73 (in Chinese with English abstract)
[20]马立珩, 张莹, 隋标, 刘彩玲, 王萍, 顾锁娣, 沈其荣, 徐茂, 郭世伟. 江苏省水稻过量施肥的影响因素分析. 扬州大学学报, 2011, 32(2): 48–52
Ma L H, Zhang Y, Sui B, Liu C L, Wang P, Gu S D, Shen Q R, Xu M, Guo S W. The impact factors of excessive fertilization in Jiangsu Province. J Yangzhou Univ, 2011, 32(2): 48–52 (in Chinese with English abstract)
[21]安宁, 范明生, 张福锁. 水稻最佳作物管理技术的增产增效作用. 植物营养与肥料学报, 2015, 21: 846–852
An N, Fan M S, Zhang F S. Best crop management practices increase rice yield and nitrogen use efficiency. Plant Nutr Fert Sci, 2015, 21: 846–852 (in Chinese with English abstract)
[22]Cakmak I, Hoffland E. Zinc for the improvement of crop production and human health. Plant Soil, 2012, 361: 1–2
[23]Fageria N K, Baligar V C. Enhancing nitrogen use efficiency in crop plants. Adv Agron, 2005, 88: 97–185
[24]孟琳, 张小莉, 蒋小芳, 黄启为, 徐阳春, 杨兴明, 沈其荣. 有机肥料氮替代部分无机氮对水稻产量的影响及替代率研究. 植物营养与肥料学报, 2009, 15: 290–296
Meng L, Zhang X L, Jiang X F, Huang Q W, Xu Y C, Yang X M, Shen Q R. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and proper substitution rate. Plant Nutr Fert Sci, 2009, 15: 290–296 (in Chinese with English abstract)
[25]Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459–463
[26]许仙菊, 许建平, 宁运旺, 张永春, 马洪波. 稻麦轮作周年氮磷运筹对作物产量和土壤养分含量的影响. 中国土壤与肥料, 2013, (5): 75–59
Xu X J, Xu J P, Ning Y W, Zhang Y C, Ma H B. Effects of nitrogen-phosphorus reduction and phosphorus application patterns on crop yields and soil nutrients in rice−wheat rotation system. Soil Fert Sci China, 2013, (5): 75–59 (in Chinese with English abstract)
[27]王道中, 张成军, 郭熙盛. 减量施肥对水稻生长及氮素利用率的影响. 土壤通报, 2012, 43(1): 161–165
Wang D Z, Zhang C J, Guo X S. Effects of lower fertilizer on rice growth and nitrogen use efficiency. Chin J Soil Sci, 2012, 43(1): 161–165 (in Chinese with English abstract)
[28]Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, Sun Y, Peng X, Zhang J, He M, Zhu Y, Xue J, Wang G, Wu L, An N, Wu L, Ma L, Zhang W, Zhang F. Producing more grain with lower environmental costs. Nature, 2014, 514: 486–489
[29]张玲, 谢崇华, 李伟, 杨国涛. 氮钾对杂交水稻B优827籽粒淀粉含量及淀粉合成酶活性的影响. 中国水稻科学, 2008, 22: 551–554
Zhang L, Xie C H, Li W, Yang G T. Effects of nitrogen and potassium on starch content and activities of starch synthase in grains of hybrid rice B You 827. Chin J Rice Sci, 2008, 22: 551–554 (in Chinese with English abstract)
[30]Zhang F, Niu J, Zhang W, Chen X, Li C, Yuan L, Xie J. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil, 2010, 335(1/2): 21–34
[31]Deng M H, Shi X J, Tian Y H, Yin B, Zhang S L, Zhu Z L, Kimura S D. Optimizing nitrogen fertilizer application for rice production in the Taihu Lake Region, China. Pedosphere, 2012, 22: 48–57
[32]Koch B, Khosla R, Frasier W M, Inman D. Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron J, 2004, 96: 1572–1580
[33]Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 2009, 106: 3041–3046
[34]Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S, Meng Q F, Hou P, Yue S C, Römheld V, Zhang F S. Integrated soil-crop system management for food security. Proc Natl Acad Sci USA, 2011, 108: 6399–6404
[35]孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾贤文, 马均. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响. 作物学报, 2011, 37: 2221–2232
Sun Y J, Sun Y Y, Liu S J, Yang Z Y, Cheng H B, Jia X W, Ma J. Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice. Acta Agron Sin, 2011, 37: 2221–2232 (in Chinese with English abstract)
[36]Jaynes D B, Colvin T S, Karlen D L, Cambardella C A, Meek D W. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. J Environ Qual, 2001, 30: 1305–1314
[37]Zhu J G, Liu G, Han Y, Zhang Y L, Xing G X. Nitrate distribution and destrification in the saturated zone of paddy field under rice/wheat rotation. Chemosphere, 2003, 50: 725–732
[38]Zhang F, Chen X, Vitousek P. Chinese agriculture: An experiment for the world. Nature, 2013, 497: 33–35
[39]Zheng Y M, Ding Y F, Liu Z H, Wang S H. Effects of panicle nitrogen fertilization on non-structural carbohydrate and grain filling in indica rice. Agric Sci China, 2010, 9: 1630–1640
[40]Shang Q, Gao C, Yang X, Wu P, Ling N, Shen Q, Guo S. Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Biol Fert Soils, 2014, 50: 715–725

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[6] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[7] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[8] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[9] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[10] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[11] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[12] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[13] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[14] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[15] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
Full text



No Suggested Reading articles found!