Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1690-1700.doi: 10.3724/SP.J.1006.2025.42045

• RESEARCH NOTES • Previous Articles    

Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice

LI Fu-Yuan1,**,YANG-Yi2,**,MA Ji-Qiong2,XU Ming-Hui2,LIN Liang-Bin1,*,SUN Yi-Ding2,*   

  1. 1 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; 2 Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences / Yunnan Provincial Key Laboratory of Agricultural Biotechnology / Southwest Key Laboratory of Crop Gene Resources and Germplasm Creation, Ministry of Agriculture and Rural Affairs / Scientific Observation for Rice Germplasm Resources of Yunnan, Ministry of Agriculture and Rural Affairs, Kunming 650205, Yunnan, China
  • Received:2024-10-11 Revised:2025-03-26 Accepted:2025-03-26 Online:2025-06-12 Published:2025-04-01
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32260523) and the Science and Technology Program of Yunnan Province (202101BD070001?002, 202301BD070001?218, 202405AC350096). 

Abstract:

To investigate the function of the E3 ubiquitin ligase OsPUB4 and elucidate its regulatory mechanism, we cloned the coding sequence of OsPUB4, a U-box-type E3 ubiquitin ligase gene, from the rice cultivar “Nipponbare”. The cis-acting elements of the promoter and the sequence characteristics of the coding region were predicted using bioinformatics tools, and a phylogenetic tree was constructed. The expression patterns of OsPUB4 under different plant hormone treatments were analyzed by quantitative real-time PCR (qRT-PCR). Additionally, interaction proteins of OsPUB4 were identified using a yeast cDNA library screening approach. Our findings revealed that: (1) The promoter region of OsPUB4 contains multiple response elements associated with hormones, light, and temperature. The coding region is 2187 bp in length, lacks a signal peptide, and contains a transmembrane domain and 62 phosphorylation sites. (2) OsPUB4 is closely related to the PUB4 protein of Triticum Urartu. (3) Exogenous jasmonic acid (JA) treatment rapidly suppressed OsPUB4 expression in rice leaves, whereas indole-3-acetic acid (IAA) had the opposite effect. (4) OsPUB4 interacts with OsTPS5, Di19, and THIC. These results suggest that OsPUB4 is induced by exogenous hormones and interacts with multiple stress response-related proteins, providing a theoretical foundation for further investigations into the role of OsPUB4 in rice stress responses.

Key words: rice, E3 ubiquitin ligase, OsPUB4, inducible expression characteristics, interacting proteins

[1] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位. 作物学报, 2023, 49: 3029–3041.
Zhou W Q, Qiang X X, Li S Y, Wang S, Wei W R. Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice. Acta Agron Sin, 2023, 49: 3029–3041 (in Chinese with English abstract). 

[2] VanDemark A P, Hill C P. Structural basis of ubiquitylation. Curr Opin Struct Biol, 2002, 12: 822–830.

[3] Park J J, Yi J, Yoon J, Cho L H, Ping J, Jeong H J, Cho S K, Kim W T, An G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J, 2011, 65: 194–205.

[4] Hao Z Y, Tian J F, Fang H, Fang L, Xu X, He F, Li S Y, Xie W Y, Du Q, You X M, et al. A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism. Cell Rep, 2022, 40: 111235.

[5] Wang K, Li S, Chen L X, Tian H R, Chen C, Fu Y H, Du H T, Hu Z, Li R T, Du Y X, et al. E3 ubiquitin ligase OsPIE3 destabilises the B-lectin receptor-like kinase PID2 to control blast disease resistance in rice. New Phytol, 2023, 237: 1826–1842.

[6] Liu D P, Zhang X X, Li Q L, Xiao Y H, Zhang G X, Yin W C, Niu M, Meng W J, Dong N N, Liu J H, et al. The U-box ubiquitin ligase TUD1 promotes brassinosteroid-induced GSK2 degradation in rice. Plant Commun, 2023, 4: 100450.

[7] Yang C W, González-Lamothe R, Ewan R A, Rowland O, Yoshioka H, Shenton M, Ye H, O’Donnell E, Jones J D G, Sadanandom A. The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell, 2006, 18: 1084–1098.

[8] He Q, McLellan H, Boevink P C, Sadanandom A, Xie C H, Birch P R J, Tian Z D. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot, 2015, 66: 3189–3199.

[9] Cho S K, Ryu M Y, Song C, Kwak J M, Kim W T. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell, 2008, 20: 1899–1914.

[10] Wang N, Liu Y P, Cong Y H, Wang T T, Zhong X J, Yang S P, Li Y, Gai J Y. Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57: 1189–1209.

[11] 张念. 番茄E3泛素连接酶SlSGR9抗旱功能研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022.
Zhang N. Drought Resistance of Tomato E3 Ubiquitin Ligase SlSGR9. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract).

[12] Bergler J, Hoth S. Plant U-box Armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol, 2011, 13: 725–730.

[13] Zhang M, Zhao J F, Li L, Gao Y N, Zhao L L, Patil S B, Fang J J, Zhang W H, Yang Y H, Li M, et al. The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation. Plant Cell Environ, 2017, 40: 2831–2843.

[14] 齐晨辉, 赵先炎, 韩朋良, 姜翰, 王永旭, 胡大刚, 郝玉金. 苹果U-boxE3泛素连接酶MdPUB24的耐盐性和ABA敏感性鉴定. 园艺学报, 2017, 44: 2255–2264.
Qi C H, Zhao X Y, Han P L, Jiang H, Wang Y X, Hu D G, Hao Y J. Functional identification of salt tolerance and ABA sensitivity of apple U-box E3 ubiquitin ligase MdPUB24. Acta Hortic Sin, 2017, 44: 2255–2264 (in Chinese with English abstract).

[15] Ni X M, Tian Z D, Liu J, Song B T, Li J C, Shi X L, Xie C H. StPUB17, a novel potato UND/PUB/ARM repeat type gene, is associated with late blight resistance and NaCl stress. Plant Sci, 2010, 178: 158–169.

[16] Jiao L, Zhang Y L, Wu J, Zhang H Q, Lu J. A novel U-Box protein gene from “zuoshanyi” grapevine (Vitis amurensis rupr. cv.) involved in cold responsive gene expression in Arabidopsis thanliana. Plant Mol Biol Rep, 2015, 33: 557–568.

[17] Min H J, Jung Y J, Kang B G, Kim W T. CaPUB1, a hot pepper U-box E3 ubiquitin ligase, confers enhanced cold stress tolerance and decreased drought stress tolerance in transgenic rice (Oryza sativa L.). Mol Cells, 2016, 39: 250–257.

[18] 黄喆, 王保云, 刘箐, 余艺涛, 李魏, 吕军. 植物U-box蛋白在抗病抗逆反应中的功能研究进展. 基因组学与应用生物学, 2020, 39: 5803–5808.
Huang Z, Wang B Y, Liu Q, Yu Y T, Li W, Lyu J. Research progress on the function of plant U-box protein in disease resistance and stress resistance. Genom Appl Biol, 2020, 39: 5803–5808 (in Chinese with English abstract).

[19] 孙一丁, 杨奕, 刘畅媛, 马继琼, 许明辉. 水稻酵母双杂交文库构建及PID2胞内结构域互作蛋白的筛选. 分子植物育种, 2022, 20: 3931–3937.
Sun Y D, Yang Y, Liu C Y, Ma J Q, Xu M H. Construction of a yeast two hybrid library of rice and the validation of a PID2-intracellular domain interaction protein. Mol Plant Breed, 2022, 20: 3931–3937 (in Chinese with English abstract).

[20] Yoo Y H, Jiang X, Jung K H. An abiotic stress responsive U-box E3 ubiquitin ligase is involved in OsGI-mediating diurnal rhythm regulating mechanism. Plants, 2020, 9: 1071.

[21] Vandesteene L, López-Galvis L, Vanneste K, Feil R, Maere S, Lammens W, Rolland F, Lunn J E, Avonce N, Beeckman T, et al. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. Plant Physiol, 2012, 160: 884–896.

[22] 杜姣林, 蔺新兰, 马豫皖, 陈己任, 陈海霞, 李玉帆. 植物海藻糖-6-磷酸合成酶基因研究进展. 植物科学学报, 2023, 41: 411–420.
Du J L, Lin X L, Ma Y W, Chen J R, Chen H X, Li Y F. Research progress in plant Trehalose-6-phosphate synthase genes. Plant Sci J, 2023, 41: 411–420 (in Chinese with English abstract).

[23] 胡利伟, 崔大勇, 臧爱萍, Neill Steven, 蔡伟明. 生长素介导OsRGP1OsSuS参与水稻地上部基部向重陛弯曲生长. 分子细胞生物学报, 2009, 42: 27–34.
Hu L W, Cui D Y, Zang A P, Steven N, Cai W M. Auxin-regulated OsRGP1 and OsSuS are involved in gravitropic bending of rice shoot bases. J Mol Cell Biol, 2009, 42: 27–34 (in Chinese with English abstract).

[24] 孙亚丽, 唐家琪, 毛馨晨, 王子瑞, 张超, 于恒秀. 植物维生素B1生物合成及生物强化的研究进展. 安徽农业科学, 2024, 52(2): 5–9.
Sun Y L, Tang J Q, Mao X C, Wang Z R, Zhang C, Yu H X. Research progress on biosynthesis and biofortification of vitamin B1 in plants. J Anhui Agric Sci, 2024, 52(2): 5–9 (in Chinese with English abstract).

[25] Boubakri H, Gargouri M, Mliki A, Brini F, Chong J L, Jbara M. Vitamins for enhancing plant resistance. Planta, 2016, 244: 529–543.

[26] Guan J C, Hasnain G, Garrett T J, Chase C D, Gregory J, Hanson A D, McCarty D R. Divisions of labor in the thiamin biosynthetic pathway among organs of maize. Front Plant Sci, 2014, 5: 370.

[27] Zarepour M, Simon K, Wilch M, Nieländer U, Koshiba T, Seo M, Lindel T, Bittner F. Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. Plant Mol Biol, 2012, 80: 659–671.

[28] Shi X Y, Tian Q X, Deng P, Zhang W H, Jing W. The rice aldehyde oxidase OsAO3 gene regulates plant growth, grain yield, and drought tolerance by participating in ABA biosynthesis. Biochem Biophys Res Commun, 2021, 548: 189–195.

[29] Ding X H, Cao Y L, Huang L L, Zhao J, Xu C G, Li X H, Wang S P. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell, 2008, 20: 228–240.

[30] Jiang Z R, Wang M, Nicolas M, Ogé L, Pérez-Garcia M D, Crespel L, Li G H, Ding Y F, Le Gourrierec J, Grappin P, et al. Glucose-6-phosphate dehydrogenases: the hidden players of plant physiology. Int J Mol Sci, 2022, 23: 16128.

[31] Chen L, Kuai P, Ye M F, Zhou S X, Lu J, Lou Y G. Overexpression of a cytosolic 6-phosphogluconate dehydrogenase gene enhances the resistance of rice to Nilaparvata lugens. Plants, 2020, 9: 1529.

[32] Zhuang X L, Jiang J F, Li J H, Ma Q B, Xu Y Y, Xue Y B, Xu Z H, Chong K. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J, 2006, 48: 581–591.

[33] Zhuang X, Xu Y, Chong K, Lan L, Xue Y, Xu Z. OsAGAP, an ARF-GAP from rice, regulates root development mediated by auxin in Arabidopsis. Plant Cell Environ, 2005, 28: 147–156.

[34] 穆天骄. OsDi19调控水稻耐旱的功能研究. 山东大学硕士学位论文, 山东济南, 2022.
Mu T J. Functional Analysis of the Rice Di19 in the Regulation of Drought Tolerance. MS Thesis of Shandong University, Jinan, Shandong, China, 2022 (in Chinese with English abstract). 

[1] LEI Song-Han, FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun, WANG Xiao-Wen. Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1467-1479.
[2] LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 0-.
[3] WANG Meng-Ning, XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui. Effect of high temperature during the panicle initiation and heading stages on grain shape and filling and its relationship with grain weight in rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1347-1362.
[4] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[5] WENG Wen-An, XING Zhi-Peng, HU Qun, WEI Hai-Yan, LIAO Ping, ZHU Hai-Bin, QU Ji-Wei, LI Xiu-Li, LIU Gui-Yun, GAO Hui, ZHANG Hong-Cheng. Study on yield formation characteristics, energy and economic benefits of unmanned dry direct-seeding rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1363-1377.
[6] ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117.
[7] XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109.
[8] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[9] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[10] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[11] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[12] SU Chang, MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui. Response of osalr3 mutant to exogenous organic acids and plant growth regulators under aluminum stress [J]. Acta Agronomica Sinica, 2025, 51(3): 676-686.
[13] LIU Jian-Guo, CHEN Dong-Dong, CHEN Yu-Yu, YI Qin-Qin, LI Qing, XU Zheng-Jin, QIAN Qian, SHEN Lan. Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains [J]. Acta Agronomica Sinica, 2025, 51(3): 598-608.
[14] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
[15] LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!