Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2594-2600.doi: 10.3724/SP.J.1006.2023.24225
• RESEARCH NOTES • Previous Articles
YU Xue-Ting1(), LI Ke2, LI Meng-Tao1, BAO Ru-Xue1, CHEN Xin3,*(), WANG Wen-Quan1
[1] |
El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481-501.
doi: 10.1007/s11103-005-2270-7 pmid: 15669146 |
[2] | 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议. 农业展望, 2014, 10(8): 41-48. |
Jiang H P, Ni Y F, Zhu F S. Development mode and strategies of China’s Cassava industry. Agric Outlook, 2014, 10(8): 41-48. (in Chinese with English abstract)
doi: 10.1177/003072707901000107 |
|
[3] |
Uchechukwu-Agua A D, Caleb O J, Opara U L. Postharvest handling and storage of fresh Cassava root and products: a review. Food Bioproc Technol, 2015, 8: 729-748.
doi: 10.1007/s11947-015-1478-z |
[4] | 刘子茜, 朱雅欣, 伍国强, 魏明. SnRK2在植物响应逆境胁迫和生长发育中的作用. 生物工程学报, 2022, 38(1): 89-103. |
Liu Z X, Zhu Y X, Wu G Q, Wei M. The role of SnRK2 in the response to stress, the growth and development of plants. Chin J Biotechnol, 2022, 38(1): 89-103 (in Chinese with English abstract). | |
[5] |
Maszkowska J, Szymańska K P, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The multifaceted regulation of SnRK2 kinases. Cells, 2021, 10: 2180.
doi: 10.3390/cells10092180 |
[6] |
Boudsocq M, Droillard M J, Barbier-Brygoo, Barbier-Brygoo H, Laurière C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol, 2007, 63: 491-503.
doi: 10.1007/s11103-006-9103-1 pmid: 17103012 |
[7] |
Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J, 2005, 44: 939-949.
doi: 10.1111/j.1365-313X.2005.02583.x pmid: 16359387 |
[8] |
Mao X, Li Y, Rehman S U, Miao L, Zhang Y, Chen X, Yu C, Wang J, Li C, Jing R. The sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2) genes are multifaceted players in Plant Growth, Development and Response to Environmental Stimuli. Plant Cell Physiol, 2020, 61: 225-242.
doi: 10.1093/pcp/pcz230 pmid: 31834400 |
[9] | Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases-key regulators of plant response to abiotic stresses. J Integr Biol, 2011, 15: 859-872. |
[10] |
Soma F, Mogami J, Yoshida T, Abekura M, Takahashi F, Kidokoro S, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nat Plants, 2017, 3: 16204.
doi: 10.1038/nplants.2016.204 pmid: 28059081 |
[11] |
Maszkowska J, Dębski J, Kulik A, Kistowski M, Bucholc M, Lichocka M, Klimecka M, Sztatelman O, Szymańska K P, Dadlez M, Dobrowolska G. Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress. Plant Cell Environ, 2019, 42: 931-946.
doi: 10.1111/pce.13465 |
[12] |
Shin R, Alvarez S, Burch A Y, Jez J M, Schachtman D P. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci USA, 2007, 104: 6460-6465.
doi: 10.1073/pnas.0610208104 |
[13] |
Collin A, Daszkowska-Golec A, Szarejko I. Updates on the role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA signaling in different developmental stages in plants. Cells, 2021, 10: 1996.
doi: 10.3390/cells10081996 |
[14] |
Rainer W, Charles A S, Po-Kai H, Yohei T, Shintaro M, Julian I S. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
doi: 10.1038/s41580-022-00479-6 |
[15] |
Hsu P K, Dubeaux G, Takahashi Y, Schroeder J I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J, 2021, 105: 307-321.
doi: 10.1111/tpj.v105.2 |
[16] |
McLoughlin F, Galvan-Ampudia C S, Julkowska M M, Caarls L, Vander D D, Laurière C, Munnik T, Haring M A, Testerink C. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J, 2012, 72: 436-449.
doi: 10.1111/tpj.2012.72.issue-3 |
[17] |
Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152 |
[18] |
Jiang Y, Yang B, Michael K D. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics, 2009, 282: 503-516.
doi: 10.1007/s00438-009-0481-3 |
[19] |
杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
doi: 10.3724/SP.J.1006.2020.03022 |
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161 gene in maize. Acta Agron Sin, 2020, 46: 2008-2016. (in Chinese with English abstract) | |
[20] |
Feibing W, Zhu H, Chen D H, Li Z J, Peng R, Yao Q H. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult, 2016, 125: 387-398.
doi: 10.1007/s11240-016-0953-1 |
[21] |
Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiol Plant, 2017, 160: 312-327.
doi: 10.1111/ppl.2017.160.issue-3 |
[22] | 刘陈. 木薯蔗糖合酶基因家族及蔗糖合酶1基因的转录调控因子的研究. 海南大学博士学位论文, 海南海口, 2018. |
Liu C. Study on Sucrose Synthase Gene Family and Transcription Regulators of MeSus1 in Cassava (Manihot esculenta). PhD Dissertation of Hainan University, Haikou, Hainan, China, 2018. (in Chinese with English abstract) | |
[23] |
Yan P, Zeng Y, Shen W, Tuo D, Li X, Zhou P. Nimble cloning: a simple, versatile, and efficient system for standardized molecular cloning. Front Bioeng Biotechnol, 2020, 7: 460.
doi: 10.3389/fbioe.2019.00460 |
[24] |
Fàbregas N, Yoshida T, Fernie A R. Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nat Commun, 2020, 11: 6184.
doi: 10.1038/s41467-020-19977-2 pmid: 33273465 |
[25] |
Lou D, Wang H, Yu D. The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol, 2018, 18: 203.
doi: 10.1186/s12870-018-1408-0 pmid: 30236054 |
[26] | Lou D, Wang H, Liang G, Yu D. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci, 2017, 13: 993. |
[27] |
谭秦亮, 李长宁, 杨丽涛, 李杨瑞. 甘蔗ABA信号转导关键酶SoSnRK2.1基因的克隆与表达分析. 作物学报, 2013, 39: 2162-2170.
doi: 10.3724/SP.J.1006.2013.02162 |
Tan Q L, Li C N, Yang L T, Li Y R. Cloning and expression analysis of abscisic acid signal transduction key enzyme gene SoSnRK2.1 from sugarcane. Acta Agron Sin, 2013, 39: 2162-2170. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.02162 |
|
[28] |
胡丹丹, 张帆, 黄立钰, 卓大龙, 张帆, 周永力, 石英尧, 黎志康. 胁迫相关蛋白激酶基因OsSAPK2调控水稻抗白叶枯病反应. 作物学报, 2015, 41: 1191-1200.
doi: 10.3724/SP.J.1006.2015.01191 |
Hu D D, Zhang F, Huang L Y, Zhuo D L, Zhang F, Zhou Y L, Shi Y Y, Li Z K. Stress-activated protein kinase OsSAPK2 involved in regulating resistant response to Xanthomonas oryzae pv. oryzae in rice. Acta Agron Sin, 2015, 41: 1191-1200. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01191 |
|
[29] |
Lei L, Stevens D M, Coaker G. Phosphorylation of the pseudomonas effector AvrPtoB by Arabidopsis SnRK2.8 is required for bacterial virulence. Mol Plant, 2020, 13: 1513-1522.
doi: 10.1016/j.molp.2020.08.018 pmid: 32889173 |
[1] | MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497. |
[2] | JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295. |
[3] | WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881. |
[4] | DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479. |
[5] | XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965. |
[6] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[7] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[8] | YUE Man-Fang, ZHANG Chun, ZHENG Deng-Yu, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmbHLH91 to abiotic stress [J]. Acta Agronomica Sinica, 2022, 48(12): 3004-3017. |
[9] | LI Xiang-Chen, SHEN Xu, ZHOU Xin-Cheng, CHEN Xin, WANG Hai-Yan, WANG Wen-Quan. Identification and relative expression levels of PEPC gene family members in cassava [J]. Acta Agronomica Sinica, 2022, 48(12): 3108-3119. |
[10] | LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796. |
[11] | JIA Xiao-Xia, QI En-Fang, MA Sheng, HUANG Wei, ZHENG Yong-Wei, BAI Yong-Jie, WEN Guo-Hong. Genome-wide identification and expression analysis of potato PYL gene family [J]. Acta Agronomica Sinica, 2022, 48(10): 2533-2545. |
[12] | WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274. |
[13] | SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49. |
[14] | HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818. |
[15] | Meng-Ting YANG, Chun ZHANG, Zuo-Ping WANG, Hua-Wen ZOU, Zhong-Yi WU. Cloning and functional analysis of ZmbHLH161 gene in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 2008-2016. |
|