Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 779-792.doi: 10.3724/SP.J.1006.2024.31045
• RESEARCH NOTES • Previous Articles
JU Ji-Hao1(), MA Chao1, WANG Tian-Ning1, WU Yi1, DONG Zhong2, FANG Mei-E1, CHEN Yu-Shu1, ZHANG Jun1,*(), FU Guo-Zhan1,*()
[1] |
Mathe C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Arch Biochem Biophys, 2010, 500: 58-65.
doi: 10.1016/j.abb.2010.04.007 pmid: 20398621 |
[2] |
Hiraga S, Sasaki K, Ito H, Ohashi H Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462-468.
doi: 10.1093/pcp/pce061 pmid: 11382811 |
[3] |
Gao C Q, Wang Y C, Liu G F, Wang C, Jiang J, Yang C P. Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep, 2010, 28: 77-89.
doi: 10.1007/s11105-009-0129-9 |
[4] |
Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep, 2005, 24: 255-265.
doi: 10.1007/s00299-005-0972-6 pmid: 15856234 |
[5] |
Mei W Q, Qin Y M, Song W G, Li J, Zhu Y X. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genom, 2009, 36: 141-150.
doi: 10.1016/S1673-8527(08)60101-0 |
[6] |
Joo J H, Bae Y S, Lee J S. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol, 2001, 126: 1055-1060.
doi: 10.1104/pp.126.3.1055 pmid: 11457956 |
[7] |
Cordoba-Pedregosa M D, Cordoba F, Villalba J M, Gonzalez-Reyes J A. Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiol, 2003, 131: 697-706.
doi: 10.1104/pp.012682 |
[8] |
Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta, 2009, 229: 823-836.
doi: 10.1007/s00425-008-0876-0 pmid: 19116728 |
[9] |
Dunand C, De Meyer M, Crévecoeur M, Penel C. Expression of a peroxidase gene in zucchini in relation with hypocotyl growth. Plant Physiol Biochem, 2003, 41: 805-811.
doi: 10.1016/S0981-9428(03)00125-6 |
[10] |
Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S. The Arabidopsis class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiol, 2015, 169: 2513-2525.
doi: 10.1104/pp.15.01464 pmid: 26468518 |
[11] |
Kim B H, Kim S Y, Nam K H. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells, 2012, 34: 539-548.
doi: 10.1007/s10059-012-0230-z pmid: 23180292 |
[12] |
Jaggi M, Kumar S, Sinha A K. Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol, 2011, 90: 1005-1016.
doi: 10.1007/s00253-011-3131-8 |
[13] |
Su P S, Yan J, Li W, Wang L, Zhao J X, Ma X, Li A F, Wang H W, Kong L R. A member of wheat class III Peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC Plant Biol, 2020, 20: 392.
doi: 10.1186/s12870-020-02602-1 |
[14] |
Mohammadi R. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 2016, 211: 71-89.
doi: 10.1007/s10681-016-1727-x |
[15] | 陈翔, 林涛, 林非非, 张妍, 苏慧, 胡燕美, 宋有洪, 魏凤珍, 李金才. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展. 麦类作物学报, 2020, 40: 243-250. |
Chen X, Lin T, Lin F F, Zhang Y, Su H, Hu Y M, Song Y H, Wei F Z, Li J C. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai region. J Triticeae Crops, 2020, 40: 243-250 (in Chinese with English abstract). | |
[16] |
Cai D Y, Shoukat M R, Zheng Y D, Tan H B, Meng F Y, Yan H J. Optimizing center pivot irrigation to regulate field microclimate and wheat physiology under dry-hot wind conditions in the north China plain. Water, 2022, 14: 708.
doi: 10.3390/w14050708 |
[17] |
Scialabba A, Bellani L M, Dell’aquila A. Effects of ageing on peroxidase activity and localization in radish (Raphanus sativus L.) seeds. Eur J Histochem, 2002, 46: 351-358.
pmid: 12597620 |
[18] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[19] |
Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: 39-49.
doi: 10.1093/nar/gkv416 pmid: 25953851 |
[20] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[21] |
Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40: e49.
doi: 10.1093/nar/gkr1293 |
[22] |
Kang C H, Jung W Y, Kang Y H, Kim J Y, Kim D G, Jeong J C, Baek D W, Jin J B, Lee J Y, Kim M O, Chung W S, Mengiste T, Koiwa H, Kwak S S, Bahk J D, Lee S Y, Nam J S, Yun D J, Cho M J. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ, 2006, 13: 84-95.
pmid: 16003391 |
[23] |
Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
doi: 10.1016/s0378-1119(02)00465-1 pmid: 12034502 |
[24] |
Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
doi: 10.1016/j.phytochem.2004.06.023 pmid: 15279994 |
[25] |
Wang Y, Wang Q, Zhao Y, Han G, Zhu S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479 |
[26] |
Moural T W, Lewis K M, Barnaba C, Zhu F, Palmer N A, Sarath G, Scully E D, Jones J P, Sattler S E. Characterization of class III peroxidases from switchgrass. Plant Physiol, 2017, 173: 417-433.
doi: 10.1104/pp.16.01426 pmid: 27879392 |
[27] |
Ren L L, Liu Y J, Liu H J, Qian T T, Qi L W, Wang X R, Zeng Q Y. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404-2419.
doi: 10.1105/tpc.114.124750 |
[28] |
Xiao H L, Wang C P, Khan N, Chen M X, Guan L, Leng X P. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L.). BMC Genomics, 2020, 21: 444.
doi: 10.1186/s12864-020-06828-z |
[29] |
贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析. 作物学报, 2023, 49: 1410-1425.
doi: 10.3724/SP.J.1006.2023.21036 |
Jia Y K, Gao H H, Feng J C, Hao Z R, Wang C Y, Xie Y X, Guo T C, Ma D Y. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat. Acta Agron Sin, 2023, 49: 1410-1425 (in Chinese with English abstract). | |
[30] |
贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析. 作物学报, 2022, 48: 2533-2545.
doi: 10.3724/SP.J.1006.2022.14183 |
Jia X X, Qi E F, Ma S, Huang W, Zheng Y W, Bai Y J, Wen G H. Genome-wide identification and expression analysis of potato PYL gene family. Acta Agron Sin, 2022, 48: 2533-2545 (in Chinese with English abstract). | |
[31] |
Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M. Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genom, 2008, 279: 171-182.
doi: 10.1007/s00438-007-0305-2 |
[32] |
Meng G, Fan W Y, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Physiol Biochem, 2021, 167: 245-256.
doi: 10.1016/j.plaphy.2021.08.004 |
[33] |
Jespersen H M, Kjaersgard I V, Ostergaard L, Welinder K G. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J, 1997, 326: 305-310.
doi: 10.1042/bj3260305 |
[34] |
Cheng L T, Ma L, Meng L X, Shang H H, Cao P J, Jin J J. Genome-wide identification and analysis of the class III peroxidase gene family in tobacco (Nicotiana tabacum). Front Genet, 2022, 13: 916867.
doi: 10.3389/fgene.2022.916867 |
[35] |
Tao Y, Wang F T, Jia D M, Li J T, Zhang Y, Jia C G, Wang D P, Pan H Y. Cloning and functional analysis of the promoter of a stress-inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2015, 33: 200-208.
doi: 10.1007/s11105-014-0741-1 |
[36] |
Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 2014, 239: 47-60.
doi: 10.1007/s00425-013-1960-7 pmid: 24062085 |
[37] |
Kwasniewski M, Chwialkowska K, Kwasniewska J, Kusak J, Siwinski K, Szarejko I. Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J Plant Physiol, 2013, 170: 185-195.
doi: 10.1016/j.jplph.2012.09.017 |
[38] |
Jabeen R, Iqbal A, Deeba F, Zulfiqar F, Mustafa G, Nawaz H, Habiba U, Nafees M, Zaid A, Siddique K H M. Isolation and characterization of peroxidase P7-like gene and Rab-GDI like gene from potential medicinal plants: a step toward understanding cell defense signaling. Front Plant Sci, 2022, 13: 975852.
doi: 10.3389/fpls.2022.975852 |
[39] |
Wu B M, Li L, Qiu T H, Zhang X, Cui S X. Cytosolic APX2 is a pleiotropic protein involved in H2O2homeostasis, chloroplast protection, plant architecture and fertility maintenance. Plant Cell Rep, 2018, 37: 833-848.
doi: 10.1007/s00299-018-2272-y |
[40] |
Hong S H, Tripathi B N, Chung M S, Cho C, Lee S, Kim J H, Bai H W, Bae H J, Cho J Y, Chung B Y, Lee S S. Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Sci Rep, 2018, 8: 9171.
doi: 10.1038/s41598-018-27459-1 pmid: 29907832 |
[41] |
Fagerstedt K V, Kukkola E M, Koistinen V V T, Takahashi J, Marjamaa K. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. J Integr Plant Biol, 2010, 52: 186-194.
doi: 10.1111/j.1744-7909.2010.00928.x |
[42] |
Yang T T, Zhang P Y, Pan J H, Amanullah S, Luan F S, Han W H, Liu H Y, Wang X Z. Genome-wide analysis of the peroxidase gene family and verification of lignin synthesis-related genes in Watermelon. Int J Mol Sci, 2022, 23: 642.
doi: 10.3390/ijms23020642 |
[43] |
Leng X, Wang H Z, Zhang S, Qu C P, Yang C P, Xu Z R, Liu G J. Identification and characterization of the APX gene family and its expression pattern under phytohormone treatment and abiotic stress in Populus trichocarpa. Genes, 2021, 12: 334.
doi: 10.3390/genes12030334 |
[44] |
Liao G L, Liu Q, Li Y Q, Zhong M, Xu X B. Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang). J Plant Res, 2020, 133: 715-726.
doi: 10.1007/s10265-020-01206-y |
[45] |
Sakai T, Takahashi Y, Nagata T. Analysis of the promoter of the auxin-inducible gene, parC, of tobacco. Plant Cell Physiol, 1996, 37: 906-913.
pmid: 8979393 |
[46] |
Suzuki N, Rivero R M, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol, 2014, 203: 32-43.
doi: 10.1111/nph.12797 pmid: 24720847 |
[47] |
Silva E N, Silveira J A G, Rodrigues C R F, Viégas R A. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Plant Biol, 2015, 17: 1023-1029.
doi: 10.1111/plb.2015.17.issue-5 |
[48] |
Peng J Y, Li Z H, Wen X, Li W Y, Shi H, Yang L S, Zhu H Q, Guo H W. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet, 2014, 10: e1004664.
doi: 10.1371/journal.pgen.1004664 |
[49] |
Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137-148.
doi: 10.1046/j.1365-313X.2003.01708.x |
[50] |
Lu H, Han R L, Jiang X N. Heterologous expression and characterization of a proxidomal ascorbate peroxidase from Populus tomentosa. Mol Biol Rep, 2009, 36: 21-27.
pmid: 17899442 |
[51] |
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470-3488.
doi: 10.1105/tpc.105.035659 |
[52] |
Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y A. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant, 2019, 168: 98-117.
doi: 10.1111/ppl.v168.1 |
[1] | ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990. |
[2] | LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943. |
[3] | XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896. |
[4] | HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, and HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003. |
[5] | WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819. |
[6] | WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-913. |
[7] | QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090. |
[8] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
[9] | ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733. |
[10] | ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589. |
[11] | FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413. |
[12] | ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477. |
[13] | TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513. |
[14] | LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353. |
[15] | XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450. |
|