Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 771-778.doi: 10.3724/SP.J.1006.2024.33026

• RESEARCH NOTES • Previous Articles     Next Articles

Is cob color variation in maize accidental or incidental to any agronomic traits? —An example of nationally approved common hybrids over the years

LIANG Xing-Wei1(), YANG Wen-Ting1, JIN Yu1, HU Li1, FU Xiao-Xiang1, CHEN Xian-Min2, ZHOU Shun-Li2,*(), SHEN Si2,*(), LIANG Xiao-Gui1,2,*()   

  1. 1School of Agricultural Sciences, Jiangxi Agricultural University / Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Laboratory for Phytochemistry and Plant-derived Pesticides of Jiangxi Province, Nanchang 330045, Jiangxi, China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2023-04-27 Accepted:2023-10-23 Online:2024-03-12 Published:2023-11-14
  • Contact: *E-mail: zhoushl@cau.edu.cn; E-mail: shensi@cau.edu.cn; E-mail: liangxg@jxau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32160445);China Agriculture Research System of MOF and MARA(CARS-02-13);China Postdoctoral Science Foundation(2022M723432)

Abstract:

Maize cob color has undergone powerful artificial selection in temperate germplasm and commercial hybrids. To clarify the selection bias of cob color in maize in different regions, and to explore the association of cob color with various agronomic traits, we used the public data of nationally approved maize hybrids from 1992 to 2020 to analyze the released regions and multiple agronomic traits of hybrids with different cob colors (red or white). Among the 1604 hybrids counted, the proportion of red cob hybrids has gradually increased from 50% in 1992 to more than 80% in 2020. The proportion of red cobs in the Northern spring maize region, Huanghuaihai summer maize region, and Northwestern maize region increased faster than that in the Southwestern and Southern maize regions. The average ear length and kernel row number of the red cob hybrids and white axis varieties were significantly higher than those of the whites in the recent 15-20 years. The average crude starch content of the reds increased significantly over the years, while the average crude fat content decreased significantly. The average crude protein and lysine content of the reds were weaker than that of the white axis varieties. Therefore, we speculate that the strong artificial selection for red cob may be mainly related to the pursuit of maize yield potential per plant. However, the performance of red cob hybrids in abiotic stress and grain protein quality deserves further exploration.

Key words: maize, cob color, artificial selection, nationally approved hybrids, regional distribution, agronomic traits

Fig. 1

Trends of cob color ratio of nationally approved common maize hybrids over the years White: white cob color; Red: red cob color. The shadow in the figure shows the number of nationally approved common maize varieties at different periods. *, **, and *** indicate significant difference at the 0.05, 0.01, and 0.001, probability levels, respectively."

Fig. 2

Cob color variation characteristics of nationally approved common maize hybrids in different regions over the years N: the Northern maize region; HHH: the Huanghuaihai maize region; NW: the Northwestern maize region; SW: the Southwestern maize region; S: the Southern maize region; _W: white cob color; _R: red cob color. The numbers in the columns are the statistics of the nationally approved common maize hybrids in different regions in different periods."

Fig. 3

Variations in plant architecture proportion of nationally approved common maize hybrids with different cob colors over the years W: white cob color; R: red cob color."

Fig. 4

Comparison of agronomic traits of nationally approved common maize hybrids with different cob colors over the years * and *** indicate significant different at the 0.05 and 0.001 probability levels, respectively."

Fig. 5

Comparison of ear/grain morphology of nationally approved common maize hybrids with different cob colors over the years *, **, and *** indicate significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 6

Comparison of grain quality of nationally approved common maize hybrids with different cob colors over the years White: white cob color; Red: red cob color; White_average: average white cob color; Red_average: the average red cob color. The red and black triangles in the figure represent the mean values of the red and white cob respectively. * and *** indicate significant difference at the 0.05 and 0.001 probability levels, respectively."

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.001
[2] Huang C, Sun H Y, Xu D Y, Chen Q Y, Liang Y M, Wang X F, Xu G H, Tian J G, Wang C L, Li D. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115: 334-341.
[3] Leng P, Khan S U, Zhang D, Zhou G, Zhang X, Zheng Y, Wang T, Zhao J. Linkage mapping reveals QTL for flowering time-related traits under multiple abiotic stress conditions in maize. Int J Mol Sci, 2022, 23: 8410.
doi: 10.3390/ijms23158410
[4] Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. J Exp Bot, 2018, 69: 1599-1613.
doi: 10.1093/jxb/ery013 pmid: 29365129
[5] Wang T Y, Ma X L, Li Y, Bai D P, Liu C, Liu Z Z, Tan X J, Shi Y S, Song Y C, Carlone M. Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci, 2011, 51: 512-525.
doi: 10.2135/cropsci2010.06.0383
[6] Wills D M, Fang Z, York A M, Holland J B, Doebley J F. Defining the role of the MADS-box gene, zea agamous-like1, a target of selection during maize domestication. J Hered, 2018, 109: 333-338.
doi: 10.1093/jhered/esx073
[7] Chen X M, Li F Y, Dong S, Liu X F, Li B B, Xiao Z D, Deng T, Wang Y B, Shen S, Zhou S L. Stubby or slender? Ear architecture is related to drought resistance in maize. Front Plant Sci, 2022, 13: 901186.
doi: 10.3389/fpls.2022.901186
[8] Fang H, Fu X Y, Wang Y B, Xu J, Feng H Y, Li W Y, Xu J T, Jittham O, Zhang X, Zhang L L. Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant J, 2020, 101: 278-292.
doi: 10.1111/tpj.14539
[9] Sosso D, Luo D P, Li Q B, Sasse J, Yang J L, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422 pmid: 26523777
[10] Morohashi K, Casas M I, Falcone Ferreyra M L, Mejía-Guerra M K, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani J, Rodriguez E, Pellegrinet S, Mcmullen M, Casati P, Grotewold E. A genome-wide regulatory framework identifies maize pericarp color1 controlled genes. Plant Cell, 2012, 24: 2745-2764.
doi: 10.1105/tpc.112.098004
[11] Xie C X, Weng J F, Liu W G, Zou C, Hao Z F, Li W W, Li M S, Guo X S, Zhang G Y, Xu Y B. Zea mays (L.) P1 locus for cob glume color identified as a post-domestication selection target with an effect on temperate maize genomes. Crop J, 2013, 1: 15-24.
doi: 10.1016/j.cj.2013.07.002
[12] Frascaroli E, Landi P. Allelic frequency change of P1 gene in maize population after recurrent selection for grain yield. Crop Sci, 1998, 38: 1391-1394.
doi: 10.2135/cropsci1998.0011183X003800050039x
[13] Landi P, Frascaroli E. Association between P1 gene and agronomic traits in maize backcross-derived lines differing for cob color. Maydica, 2004, 49: 127-135.
[14] Landi P, Canè M A, Frascaroli E. Responses to divergent selection for cob color in maize. Euphytica, 2008, 164: 645-658.
doi: 10.1007/s10681-008-9659-8
[15] Venturini G, Babazadeh L, Casati P, Pilu R, Salomoni D, Toffolatti S L. Assessing pigmented pericarp of maize kernels as possible source of resistance to fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. Int J Food Microbiol, 2016, 227: 56-62.
doi: 10.1016/j.ijfoodmicro.2016.03.022 pmid: 27071055
[16] Pilu R, Cassani E, Sirizzotti A, Petroni K, Tonelli C. Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel. J Appl Genet, 2011, 52: 145-152.
doi: 10.1007/s13353-010-0014-0 pmid: 21116770
[17] Wang X Y, Wang X L, Xu C C, Tan W M, Wang P, Meng Q F. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Sci, 2019, 59: 2794-2805.
doi: 10.2135/cropsci2019.04.0218
[18] Liang X G, Gao Z, Shen S, Zhao X, Zhang L, Zhou S L. Cob color, an indicator of grain dehydration and agronomic traits in maize hybrids. Crop J, 2022, 10: 582-586.
doi: 10.1016/j.cj.2021.11.003
[19] Warburton M L, Reif J C, Frisch M, Bohn M, Bedoya C, Xia X C, Crossa J, Franco J, Hoisington D, Pixley K. Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci, 2008, 48: 617-624.
doi: 10.2135/cropsci2007.02.0103
[20] 陈先敏, 梁效贵, 赵雪, 高震, 吴巩, 申思, 林珊, 周丽丽, 周顺利. 历年国审玉米品种产量和品质性状变化趋势分析. 中国农业科学, 2018, 51: 4020-4029.
doi: 10.3864/j.issn.0578-1752.2018.21.002
Chen X M, Liang X G, Zhao X, Gao Z, Wu G, Shen S, Lin S, Zhou L L, Zhou S L. Analysis on the trends of yield and quality related traits for maize hybrids released in China over the past years. Sci Agric Sin, 2018, 51: 4020-4029 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.21.002
[21] 孙世贤. 中国农作物优良品种: 1990-2000年国家审(认)定品种. 北京: 中国农业科学技术出版社, 2001. pp 145-206.
Sun S X. China’s Crop Hybrids:National Accredited and Recognitory Hybrids During 1990-2000. Beijing: China Agricultural Science and Technology Press, 2001. pp 145-206 (in Chinese).
[22] 孙世贤, 廖琴. 全国玉米审定品种名录(2000-2008). 北京: 中国农业科学技术出版社, 2008. pp 1-251.
Sun S X, Liao Q. The Catalogue of Accredited Maize Hybrids in China (2000-2008). Beijing: China Agricultural Science and Technology Press, 2008. pp 1-251 (in Chinese).
[23] 陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36: 1153-1160.
doi: 10.3724/SP.J.1006.2010.01153
Chen C Y, Hou Y H, Sun R, Zhu P, Dong Z Q, Zhao M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin, 2010, 36: 1153-1160 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.01153
[24] 白志英, 李存东, 郑金风, 毕常锐, 唐光雷. 种植密度对玉米先玉335和郑单958生理特性、产量的影响. 华北农学报, 2010, 25(增刊1): 166-169.
Bai Z Y, Li C D, Zheng J F, Bi C R, Tang L G. The effect of plant density on the physiological characters and yield of maize Xianyu 335 and Zhengdan 958. Acta Agric Boreali-Sin, 2010, 25(S1): 166-169 (in Chinese with English abstract).
[25] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50: 2463-2475.
doi: 10.3864/j.issn.0578-1752.2017.13.006
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017, 50: 2463-2475 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.13.006
[26] 张丽, 董树亭, 刘存辉, 王空军, 张吉旺, 刘鹏. 玉米籽粒容重与产量和品质的相关分析. 中国农业科学, 2007, 40: 405-411.
Zhang L, Dong S T, Liu C H, Wang K J, Zhang J W, Liu P. Correlation analysis on maize test weight, yield and quality. Sci Agric Sin, 2007, 40: 405-411 (in Chinese with English abstract).
[27] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573-581.
doi: 10.1016/j.tplants.2010.06.005
[28] Du H, Feng B R, Yang S S, Huang Y B, Tang Y X. The R2R3-MYB transcription factor gene family in maize. PLoS One, 2012, 7: e37463.
doi: 10.1371/journal.pone.0037463
[29] Karppinen K, Lafferty D J, Albert N W, Mikkola N, McGhie T, Allan A C, Afzal B M, Häggman H, Espley R V, Jaakola L. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. New Phytol, 2021, 232: 1350-1367.
doi: 10.1111/nph.17669 pmid: 34351627
[1] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[2] YUE Hai-Wang, WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou. Comprehensive evaluation of maize hybrids in the mega-environments of Huanghuaihai plain based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2024, 50(4): 836-856.
[3] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[4] XUE Ming, WANG Chen-Chen, JIANG Lu-Guang, LIU Hao, ZHANG Lu-Yao, CHEN Sai-Hua. Mapping and functional analysis of maize inflorescence development gene AFP1 [J]. Acta Agronomica Sinica, 2024, 50(3): 603-612.
[5] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[6] MAO Yan, ZHENG Ming-Min, MOU Cheng-Xiang, XIE Wu-Bing, TANG Qi. Function analysis of the promoter of natural antisense transcript cis- NATZmNAC48 in maize under osmotic stress [J]. Acta Agronomica Sinica, 2024, 50(2): 354-362.
[7] MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372.
[8] YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382.
[9] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[10] YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99.
[11] SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186.
[12] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[13] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[14] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[15] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .