Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 576-589.doi: 10.3724/SP.J.1006.2024.31025
• CROP GENETICS & BREEDINGZ·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Bao-Hua1,2(), LIU Jia-Jing1,2, TIAN Xiao1,2, TIAN Xu-Zhao1,2, DONG Kuo1, WU Yu-Jie1, XIAO Kai3,*(), LI Xiao-Juan1,2,*()
[1] | Anas M, Liao F, Verma K K, Sarwar M A, Mahmood A, Chen Z L, Li Q, Zeng X P, Liu Y, Li Y R. Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res, 2021, 53: 4701-4720. |
[2] | 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响. 作物学报, 2023, 49: 2002-2011. |
Song Y, Li J, Gu H H, Lu Z F, Liao S P, Li X K, Cong R H, Ren T, Lu J W. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.). Acta Agron Sin, 2023, 49: 2002-2011 (in Chinese with English abstract). | |
[3] |
Li Y, Zou N, Liang X, Zhou X, Guo S, Wang Y, Qin X, Tian Y, Lin J. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. Front Microbiol, 2023, 13: 1070817.
doi: 10.3389/fmicb.2022.1070817 |
[4] |
Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010, 105: 1141-1157.
doi: 10.1093/aob/mcq028 |
[5] |
Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 85-122.
doi: 10.1146/arplant.2018.69.issue-1 |
[6] |
Fan X, Naz M, Fan X, Xuan W, Miller A J, Xu G. Plant nitrate transporters: from gene function to application. J Exp Bot, 2017, 68: 2463-2475.
doi: 10.1093/jxb/erx011 pmid: 28158856 |
[7] | Epstein E. Mineral nutrition of plants: principles and perspectives. For Sci, 1972, 19: 3-10. |
[8] | Fang X Z, Fang S Q, Ye Z Q, Liu D, Zhao K L, Jin C W. NRT1.1 dual-affinity nitrate transport signaling and its roles in plant abiotic stress resistance. Front Plant Sci, 2021, 12: 71569401-71569412. |
[9] |
Fan X, Feng H, Tan Y, Xu Y, Miao Q, Xu G. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol, 2016, 58: 590-599.
doi: 10.1111/jipb.v58.6 |
[10] |
Feng Z Q, Li T, Wang X, Sun W J, Zhang T T, You C X, Wang X F. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Sci, 2022, 316: 111158.
doi: 10.1016/j.plantsci.2021.111158 |
[11] |
Xu N, Wang R, Zhao L, Zhang C, Li Z, Lei Z, Liu F, Guan P, Chu Z, Crawford N M, Wang Y. The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. Plant Cell, 2016, 28: 485-504.
doi: 10.1105/tpc.15.00567 |
[12] | Qi J, Yu L, Ding J, Ji C, Wang S, Wang C, Ding G, Shi L, Xu F, Cai H. Transcription factor OsSNAC1 positively regulates nitrate transporter gene expression in rice. Plant Physiol, 2023, 19: kiad290. |
[13] | Wei S, Li X, Lu Z, Zhang H, Ye X, Zhou Y, Li J, Yan Y, Pei H, Duan F, Wang D, Chen S, Wang P, Zhang C, Shang L, Zhou Y, Yan P, Zhao M, Huang J, Bock R, Qian Q, Zhou W. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377: 1-10. |
[14] |
Zhang D, Yang K, Kan Z, Dang H, Feng S, Yang Y, Li L, Hou N, Xu L, Wang X, Malnoy M, Ma F, Hao Y, Guan Q. The regulatory module MdBT2-MdMYB88/MdMYB124-MdNRTs regulates nitrogen usage in apple. Plant Physiol, 2021, 185: 1924-1942.
doi: 10.1093/plphys/kiaa118 |
[15] | Jiang X, Cui H, Wang Z, Kang J, Yang Q, Guo C. Genome-wide analysis of the lateral organ boundaries domain (LBD) members in alfalfa and the involvement of MsLBD48 in nitrogen assimilation. Int J Mol Sci, 2023, 24: 464402-464416. |
[16] |
Huang W, Ma D, Xia L, Zhang E, Wang P, Wang M, Guo F, Wang Y, Ni D, Zhao H. Overexpression of CsATG3a improves tolerance to nitrogen deficiency and increases nitrogen use efficiency in Arabidopsis. Plant Physiol Biochem, 2023, 196: 328-338.
doi: 10.1016/j.plaphy.2023.01.057 |
[17] | Kishorekumar R, Bulle M, Wany A, Gupta K J. An overview of important enzymes involved in nitrogen assimilation of plants. Methods Mol Biol, 2020, 57: 1-13. |
[18] |
Gao Y, Quan S, Lyu B, Tian T, Liu Z, Nie Z, Qi S, Jia J, Shu J, Groot E, Wu J, Wang Y. Barley transcription factor HvNLP2 mediates nitrate signaling and affects nitrogen use efficiency. J Exp Bot, 2022, 73: 770-783.
doi: 10.1093/jxb/erab245 |
[19] | Cao J, Zheng X, Xie D, Zhou H, Shao S, Zhou J. Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato. Hortic Res, 2022, 9: 1-16. |
[20] |
Zhang Y, He Z, Qi X, Li M, Liu J, Le S, Chen K, Wang C, Zhou Y, Xu Z, Chen J, Guo C, Tang W, Ma Y, Chen M. Overexpression of MYB-like transcription factor SiMYB30 from foxtail millet (Setaria italica L.) confers tolerance to low nitrogen stress in transgenic rice. Plant Physiol Biochem, 2023, 196: 731-738.
doi: 10.1016/j.plaphy.2023.02.025 |
[21] | Gao S, Yang Y, Yang Y, Zhang X, Su Y, Guo J, Que Y, Xu L. Identification of low-nitrogen-related miRNAs and their target genes in sugarcane and the role of miR156 in nitrogen assimilation. Int J Mol Sci, 2022, 23: 1318701-1318716. |
[22] |
Secco D, Wang C, Arpat B A, Wang Z, Poirier Y, Tyerman S D, Wu P, Shou H, Whelan J. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol, 2012, 193: 842-851.
pmid: 22403821 |
[23] |
Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y. Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J, 2007, 50: 982-994.
pmid: 17461783 |
[24] |
Zhao P, You Q, Lei M. A CRISPR/Cas9 deletion into the phosphate transporter SlPHO1;1 reveals its role in phosphate nutrition of tomato seedlings. Physiol Plant, 2019, 167: 556-563.
doi: 10.1111/ppl.v167.4 |
[25] |
Liu J, Fu S, Yang L, Luan M, Zhao F, Luan S, Lan W. Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants. Plant Signal Behav, 2016, 11: e1213474.
doi: 10.1080/15592324.2016.1213474 |
[26] |
Guo R, Zhang Q, Ying Y, Liao W, Liu Y, Whelan J, Chuanzao M, Shou H. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. Plant Cell Environ, 2023, 46: 1264-1277.
doi: 10.1111/pce.14414 |
[27] |
Kant S, Peng M, Rothstein S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet, 2011, 7: e1002021.
doi: 10.1371/journal.pgen.1002021 |
[28] |
Yue W, Ying Y, Wang C, Zhao Y, Dong C, Whelan J, Shou H. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters. Plant J, 2017, 90: 1040-1051.
doi: 10.1111/tpj.2017.90.issue-6 |
[29] |
Puga M I, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla J M, de Lorenzo L, Irigoyen M L, Masiero S, Bustos R, Rodríguez J, Leyva A, Rubio V, Sommer H, Paz-Ares J. SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in Arabidopsis. Proc Natl Acad Sci USA, 2014, 111: 14947-14952.
doi: 10.1073/pnas.1404654111 |
[30] |
Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y, Shou H, Mo X, Mao C, Wu P. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci USA, 2014, 111: 14953-14958.
doi: 10.1073/pnas.1404680111 pmid: 25271318 |
[31] |
Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J, 2009, 7: 550-561.
doi: 10.1111/pbi.2009.7.issue-6 |
[32] |
Wang C, Wei Q, Zhang K, Wang L, Liu F, Zhao L, Tan Y, Di C, Yan H, Yu J, Sun C, Chen W J, Xu W, Su Z. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One, 2013, 8: e81849.
doi: 10.1371/journal.pone.0081849 |
[33] |
Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Gao X, Liu L, Qian Y, Huang X, Yu F, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants. Nat Plants, 2019, 5: 401-413.
doi: 10.1038/s41477-019-0384-1 |
[34] |
Ueda Y, Kiba T, Yanagisawa S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signaling via transcriptional regulation of SPX genes. Plant J, 2020, 102: 448-466.
doi: 10.1111/tpj.v102.3 |
[35] | Yang J, Zhao X, Chen Y, Li G, Li X, Xia M, Sun Z, Chen Y, Li Y, Yao L, Hou H. Identification, structural, and expression analyses of SPX genes in giant duckweed (Spirodela polyrhiza) reveals its role in response to low phosphorus and nitrogen stresses. Cells, 2022, 11: 116701-116724. |
[36] | Xing X, Du H, Yang Z, Li X, Kong Y, Li W, Zhang C. GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC Plant Biol, 2022, 22: 16101-16113. |
[37] |
Tiwari J K, Buckseth T, Devi S, Varshney S, Sahu S, Patil V U, Zinta R, Ali N, Moudgil V, Singh R K, Rawat S, Dua V K, Kumar D, Kumar M, Chakrabarti S K, Rao A R, Rai A. Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a nitrogen-use efficient potato cv. Kufri Gaurav. Plant Physiol Biochem, 2020, 154: 171-183.
doi: 10.1016/j.plaphy.2020.05.041 |
[38] | 尚文静, 贾利华, 史磊, 林德立, 刘娜, 郑文明. 小麦低磷响应基因的筛选与表达分析. 中国农业大学学报, 2016, 21(10): 1-10. |
Shang W J, Jia L H, Shi L, Lin D L, Liu N, Zheng W M. Screening and expression analysis of genes responded to low phosphate in wheat root. J China Agric Univ, 2016, 21(10): 1-10 (in Chinese with English abstract). | |
[39] |
Kumar A, Sharma M, Gahlaut V, Nagaraju M, Chaudhary S, Kumar A, Tyagi P, Gajula M N V P, Singh K P. Genome-wide identification, characterization, and expression profiling of SPX gene family in wheat. Int J Biol Macromol, 2019, 140: 17-32.
doi: S0141-8130(19)34368-5 pmid: 31419556 |
[40] | Zhao J, Zhao L Q, Gong X D, Feng S Z, Liu X C. Identifification of homeobox transcription factor family in genome-wide and expression pattern analysis of the members in Setosphaeria turcica. Sci Agric Sin, 2017, 50: 669-678. |
[41] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[42] |
Ding W W, Fang W B, Shi S Y, Zhao Y J, Li X J, Xiao K. Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Mol Biol Rep, 2016, 34: 1111-1126.
doi: 10.1007/s11105-016-0991-1 |
[43] | 蒋明月, 苏晓帅, 张宝华, 李小娟, 肖凯. 小麦TaWRKY46介导转基因烟草耐盐性的功能分析. 农业生物技术学报, 2020, 28: 1733-1746. |
Jiang M Y, Su X S, Zhang B H, Li X J, Xiao K. Functional analysis of TaWRKY46-mediated salt tolerance in transgenic tobacco. J Agric Biotechnol, 2020, 28: 1733-1746 (in Chinese with English abstract). | |
[44] |
Stuart N W. Adaptation of the micro-kjeldahl method for the determination of nitrogen in plant tissues. Plant Physiol, 1936, 11: 173-179.
doi: 10.1104/pp.11.1.173 pmid: 16653330 |
[45] | Park B S, Song J T, Seo H S. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat Commun, 2011, 2: 1-10. |
[46] |
Ferrari T E, Varner J E. Intact tissue assay for nitrite reductase in barley aleurone layers. Plant Physiol, 1971, 47: 790-794.
doi: 10.1104/pp.47.6.790 pmid: 16657706 |
[47] | Seabra A R, Silva L S, Carvalho H G. Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol, 2013, 13: 13701-13715. |
[48] |
Huang X S, Luo T, Fu X Z, Fan Q J, Liu J H. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J Exp Bot, 2011, 62: 5191-5206.
doi: 10.1093/jxb/err229 |
[49] |
Liu H, Yang W, Liu D, Han Y, Zhang A, Li S. Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep, 2011, 38: 417-427.
doi: 10.1007/s11033-010-0124-0 |
[50] | Xu Z, Raza Q, Xu L, He X, Huang Y, Yi J, Zhang D, Shao H B, Ma H, Ali Z. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis. Front Plant Sci, 2018, 9: 80901-80911. |
[51] |
Quan X, Qian Q, Ye Z, Zeng J, Han Z, Zhang G. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress. J Plant Physiol, 2016, 206: 59-67.
doi: 10.1016/j.jplph.2016.07.020 |
[1] | ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990. |
[2] | LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943. |
[3] | XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896. |
[4] | HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, and HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003. |
[5] | WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-913. |
[6] | QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090. |
[7] | JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792. |
[8] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
[9] | ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733. |
[10] | WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685. |
[11] | FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413. |
[12] | ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477. |
[13] | TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513. |
[14] | LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353. |
[15] | XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450. |
|