Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 576-589.doi: 10.3724/SP.J.1006.2024.31025

• CROP GENETICS & BREEDINGZ·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance

ZHANG Bao-Hua1,2(), LIU Jia-Jing1,2, TIAN Xiao1,2, TIAN Xu-Zhao1,2, DONG Kuo1, WU Yu-Jie1, XIAO Kai3,*(), LI Xiao-Juan1,2,*()   

  1. 1College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
    2Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071001, Hebei, China
    3College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2023-04-06 Accepted:2023-09-13 Online:2024-03-12 Published:2023-10-09
  • Contact: *E-mail: xiaokai@hebau.edu.cn; E-mail: lxjlixiaojuan@126.com
  • Supported by:
    National Natural Science Foundation of China(32071935)

Abstract:

The SPX gene family includes four subgroups: SPX, SPX-EXS, SPX-MFS, and SPX-RING, which play an important role in phosphate signal response, but so far, little is known about the functions of this family in wheat. Previously, we identified a gene TaSPX1 (GenBank No. Ak332300), belonged to SPX subfamily from wheat (Triticum aestivum). Subcellular localization analysis showed that it targeted onto nucleus. Phylogenetic tree of TaSPX1 and its homologous proteins from the wheat, Arabidopsis, and rice SPX families showed that it was closely related to OsSPX1, a member of rice SPX subfamily. The relative expression level of TaSPX1 significantly increased under low nitrogen (low-N) stress when investigated by RT-qPCR. Transgenic tobacco (Nicotiana tabacum) overexpression lines were generated. Using the culture methods of Murashige & Skoog (MS) hydroponic solution, the phenotype of WT and OE under low-N stress treatment was investigated. We found that the plants of OE3 and OE4, two OE lines overexpressing TaSPX1, displayed increased growth vigor and leaf area, together with the enhanced plant fresh weight and root weight, and elevated photosynthetic parameters including photosynthetic rate (Pn), intercellular carbon dioxide concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr), along with the increased contents of nitrogen, soluble sugar, soluble protein, and chlorophyll content upon low-N stress with respect to WT. Studies on transport and assimilation related parameters showed that under low-N stress, the relative expression level of some related genes and the activities of nitrogen assimilation-related enzymes were increased. Assays on the SOD, POD, and CAT, the enzymes functional as cellular protector, revealed the higher activities of them in OE plants than those in WT. On the contrary, MDA content was decreased. Further RT-qPCR analysis indicated the expression levels of several protection enzymes mentioned above were higher in OE plants than those of WT under low-N stress. Therefore, TaSPX1 played an important role in mediating plant resistance to low-N stress by improving photosynthetic parameters, enhancing nitrogen absorption and transport, and strengthening the protective enzyme system. The results enrich new understanding on the function of wheat SPX family members involved in abiotic stress, and provide a theoretical basis for genetic improvement of crops against low-N stress.

Key words: wheat, TaSPX1, subcellular localization, low nitrogen stress, functional analysis

Table 1

Primers used for RT-qPCR analysis"

引物名称
Primer name
登录号
Accession number
上游引物
Forward sequence (5′-3′)
下游引物
Reverse sequence (5′-3′)
Ntaction U91563 ATTACGAGGATGAAGAGGAAGC TAAAAGCCTGAAGTTTGAAGA
Tatubulin U76558 CATGCTATCCCTCGTCTCGACCT CGCACTTCATGATGGAGTTGTAT
TaSPX1 Ak332300 ACTGGGGCTCTTATCCGTCT CAGCCTGCTCGATCACAGAT
NtSOD1 KJ874395 GGACAAGGAGTTCCGGATGATT CCATATTGACTTGAGCCAAGCG
NtSOD2 EU123521 TTGGGGAAGATGGTACTGCATC TCATCAGGATCAGCGTGAACAA
NtFeSOD KF724056 CAGGCCTGGAATCATCAGTT TTTCACCAAGGCAAGCTTTT
NtMnSOD1 X14482 ACCACCAGAATCACCATCAGAC CTATGCAATTTGGCGACGGTAG
NtMnSOD2 AB093097 AAGCCCTTGAACAGCTACATGA TCGAGTGGTTAATGTGACCTCC
NtCAT NTU07627 CAAGGATCTCTACGACTCGATT CTTGAGGGCAAATAATCCACCT
NtCAT1 EF532799 TCGGAGGATAAGCTTCTCCAGA ATGAGCACACTTGGGAGCATTA
NtCAT1;1 NTU93244 CAATGCTTGCCGATTTCTCT AGCAGGATCGGTATGGTCAG
NtCAT1;2 HF564632 GAAGTTCCCTGACATGGTCCAT AAGTGAACATGTGCAGGCTTTC
NtCAT1;3 HF564631 TGGCAAACGAGAGAAGTGTG AAGCAAGCTTTTGACCCAGA
NtCAT3 HF564633 GACCCCAGAGGATTTGCTGTAA ACCATGTCAGGGAACTTCATCC
NtPOD1;1 L02124 ATTAGGCTAAAGGTCCGTCGTG GCAAGTGTTTCAAAGGGGCTAG
NtPOD1;2 AB044154 GAAGGTTCAGACGCTGAGAGAA CAGGAAACAACTCCAGGACAGA
NtPOD1;3 AB044153 ATGGTCGTGGAGTTCTGGAATC GAATGTCAACCCAAGCAATCCC
NtPOD1;4 D11396 TCCTAATGTAGGTGCAGGAGGA CTCCAATTTCAGATGCAAGGGC
NtPOD1;5 AB178953 AGACCTCACCACCCAACAAC GCATCTCTTCTCCCAAGTGC
NtPOD1;6 AB027753 CTTACTGGTGCGCACACTATTG GCTGAGGAAGAAAGGTTGCATC
NtPOD1;7 AB027752 AATGGGTGCTTCTCTTCTTCGT CCCTTTTCTCTCCTGTGAAGCT
NtPOD4 AY032675 TTCCATCAGGGGATTTGAAG TGGTGCAGGAATGTTTGTGT
NtPOD9 AY032674 GAAACCCTAGCCAACCTTCC TCGTGTTCGTGGAGTTTGAG
NtNRT1.1-s AB102805 TACCGGTTTGTCGACGTGTC TCTCTTCTCCTTGTACACATAC
NtNRT1.1-t AB102806 CCGGCTTCATTGACACTCTT CCTCTTCTCCTTGTACACATAC
NtNRT1.2-s AB102807 GGGTTATCGTTCCCATTTGTCG TCAGCAAGTCTCTTCTCCTTGT
NtNRT1.2-t AB102808 GCCCTAACAGAGGTTAAGAGG TCCCCATTTCAGCAAGTCTC
NtNRT2.1 AJ557583 TAGCCGTCACATTCATGATCCT GATCGGCAGTTCTCGGCGAA
NtNRT2.2 AJ557584 CGTCGATCGTTAGGTATAATC ATTAACTACTCACACTTGGGTAA
NtNR1 X06134 ATCAGGTGGATGGATGGCGA ACAACCAACTCGAAGTACCC
NtNR2 X14059 ATGACTGGACCGTGGAAGTC AAAACACCGCACCGTTTTAG
NtNR3 JN384020 GGACGAAGGTACCGCTGATA GACTTCCACGGTCCAGTCAT
NtNR4 JN384019 TGTTTGAGCATCCGACTCAAC GGAGGTGGTCCACAAGCCA
NtNR5 XM_016606384 ATGGATATTACCGGCCGGCA TTACGTACCATCAGCATTAACA
NtNR6 XM_016583028 TTGAGGCACTGCTCAAAGAGC TCCCAAATGTGAATCACTCCC
NtNIR1 NM_001324935 ATGGCATCTTTTTCTGTTAAAT TTAATCTTCTGCTTCTTCTCTT
NtNIR2 X66145 GGGTTCCAGCTGATGATGTT TGGCATTCTCTTCTCGACCT
NtNIR3 X66147 TGGCAATTCACGAGGCAATC TCGTGGAACTGCACCAAAGT
NtNIR4 XR_001649867 AGTTGGGTTGACCAGTTTGC ACACGGATTCCACTTCCTTG
NtNIR5 XM_016583028 AGCATCTCCAGAAGACTTGG CCCAAATGTGAATCACTCCC
NtGS1 NM_001325250 ATTATGTCTCCGCTTTCAGATC ATTGAGCAAACCAGAAACAAGC
NtGS2 X95932 TCTTGGTGGTTTTCCTGGAC TGCTGAAATGCCAACTGAAG
NtGS3 XM_016584731 AAGATGGCTCAGATCTTGGCTC CTTTAAACATTCAATGCGAGCT
NtGS4 XM_016579636 GATGTGCAAACCCACACCTT CTGCAAATTCCTCGTCTGGT
NtGS5 XM_016640903 CGGGCATGATCAGAATTATTC AGATTGGTCGGGATATGAACC
NtGS6 XM_016640901 AACTAGGCTGGGATTGACG AGTCCCTCTCAGGCTCACAA
NtGS7 XM_016631331 CATTATGTCTCTGCTTTCAGAT TCATGGCAGTAACGACGTATGG

Fig. 1

Phylogenetic analysis of TaSPX1 and homologous from wheat, rice, and Arabidopsis thaliana The sequences of SPX proteins from Triticum aestivum L. (TaSAPs), Oryza sativa L. (OsSPXs), and Arabidopsis thaliana (L.) Heynh. (AtSPXs). The grey dot represents TaSPX1."

Fig. 2

Subcellular location of the TaSPX1-GFP fusion in epidermis cells of transformed tobacco (50 μm)"

Fig. 3

Relative expression pattern of TaSPX1 of wheat seedlings under low-N stress ** indicates significantly different at P < 0.01."

Table 2

Analysis of putative cis-acting elements in the promoter region of TaSPX1"

顺式元件
Cis-element
目标序列
Target sequence (5′-3′)
数目
Number
功能
Function
TATA-BOX TATATA 23 胁迫响应元件和核心启动元件
Stress response elements and core promoter element
CAAT-BOX CAAT 39 MYBHv1结合位点
MYBHv1 binding site
MYC CATGTG/CATTTG 4 干旱和盐响应元件
Drought and salt response element
MYB CAACAG/CAACTG/CAACCA 2 干旱和盐响应元件
Drought and salt response element
ABRE TACGTGTC/ACGTG 7 ABA响应元件
ABA-responsive element
Root motif ATATT 2 根系生长
Root growth
G-box CACGTT/TACGTG/GCCACGTGGA 4 参与光响应顺式作用调节元件
cis-acting regulatory element involved in light responsiveness
LTRE AGTCGG 2 低氮胁迫响应元件
Response to low nitrogen stress
/ NANGAG 4 低氮胁迫响应元件
Response to low nitrogen stress

Fig. 4

Relative expression level of TaSPX1 in overexpression tobacco lines ** indicates significantly different at P < 0.01 compared with the control (WT)."

Fig. 5

Phenotype of WT, OE3, and OE4 plants under low-Pi and low-N treatments and physiological and biochemical characteristics under low-N treatment A: growth status; B: whole plant phenotypic characteristics (Bar: 9 cm); C: fresh weight; D: root weight; E: leaf area; F: chlorophyll content; G: transpiration rate; H: photosynthetic rate; I: stomatal conductance; J: intercellular CO2 concentration. * and ** indicate significantly different at P<0.05 and P<0.01 compared with the control (WT), respectively."

Fig. 6

Contents of nitrogen (A), soluble sugar (B), and soluble protein (C) in WT, OE3, and OE4 under low-N treatment ** indicates significantly different at P < 0.01 compared with the control (WT)."

Fig. 7

Activities of nitrogen anabolases and relative expression of NIRs, NRs, NRTs, and GSs in WT, OE3, and OE4 lines under low-N treatment A: the activities of NIR enzyme; B: the activities of NR enzyme; C: the activities of GS enzyme; D: the relative expression of NRTs; E: the relative expression of NIRs; F: the relative expression of NRs; G: the relative expression of GSs. ** indicates significantly different at P < 0.01 compared with the control (WT)."

Fig. 8

Activity of protection enzymes, MDA content, and the relative expression level of protection enzyme genes in WT, OE3, and OE4 lines under low-N treatment A: the activity of SOD enzyme. B: the activity of POD enzyme. C: the activity of CAT enzyme. D: MDA content. E: the relative expression level of SOD genes. F: the relative expression of POD genes; G: the relative expression of CAT genes. ** indicates significantly different at P < 0.01 compared with the control (WT)."

[1] Anas M, Liao F, Verma K K, Sarwar M A, Mahmood A, Chen Z L, Li Q, Zeng X P, Liu Y, Li Y R. Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res, 2021, 53: 4701-4720.
[2] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响. 作物学报, 2023, 49: 2002-2011.
Song Y, Li J, Gu H H, Lu Z F, Liao S P, Li X K, Cong R H, Ren T, Lu J W. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.). Acta Agron Sin, 2023, 49: 2002-2011 (in Chinese with English abstract).
[3] Li Y, Zou N, Liang X, Zhou X, Guo S, Wang Y, Qin X, Tian Y, Lin J. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. Front Microbiol, 2023, 13: 1070817.
doi: 10.3389/fmicb.2022.1070817
[4] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010, 105: 1141-1157.
doi: 10.1093/aob/mcq028
[5] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 85-122.
doi: 10.1146/arplant.2018.69.issue-1
[6] Fan X, Naz M, Fan X, Xuan W, Miller A J, Xu G. Plant nitrate transporters: from gene function to application. J Exp Bot, 2017, 68: 2463-2475.
doi: 10.1093/jxb/erx011 pmid: 28158856
[7] Epstein E. Mineral nutrition of plants: principles and perspectives. For Sci, 1972, 19: 3-10.
[8] Fang X Z, Fang S Q, Ye Z Q, Liu D, Zhao K L, Jin C W. NRT1.1 dual-affinity nitrate transport signaling and its roles in plant abiotic stress resistance. Front Plant Sci, 2021, 12: 71569401-71569412.
[9] Fan X, Feng H, Tan Y, Xu Y, Miao Q, Xu G. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol, 2016, 58: 590-599.
doi: 10.1111/jipb.v58.6
[10] Feng Z Q, Li T, Wang X, Sun W J, Zhang T T, You C X, Wang X F. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Sci, 2022, 316: 111158.
doi: 10.1016/j.plantsci.2021.111158
[11] Xu N, Wang R, Zhao L, Zhang C, Li Z, Lei Z, Liu F, Guan P, Chu Z, Crawford N M, Wang Y. The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. Plant Cell, 2016, 28: 485-504.
doi: 10.1105/tpc.15.00567
[12] Qi J, Yu L, Ding J, Ji C, Wang S, Wang C, Ding G, Shi L, Xu F, Cai H. Transcription factor OsSNAC1 positively regulates nitrate transporter gene expression in rice. Plant Physiol, 2023, 19: kiad290.
[13] Wei S, Li X, Lu Z, Zhang H, Ye X, Zhou Y, Li J, Yan Y, Pei H, Duan F, Wang D, Chen S, Wang P, Zhang C, Shang L, Zhou Y, Yan P, Zhao M, Huang J, Bock R, Qian Q, Zhou W. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377: 1-10.
[14] Zhang D, Yang K, Kan Z, Dang H, Feng S, Yang Y, Li L, Hou N, Xu L, Wang X, Malnoy M, Ma F, Hao Y, Guan Q. The regulatory module MdBT2-MdMYB88/MdMYB124-MdNRTs regulates nitrogen usage in apple. Plant Physiol, 2021, 185: 1924-1942.
doi: 10.1093/plphys/kiaa118
[15] Jiang X, Cui H, Wang Z, Kang J, Yang Q, Guo C. Genome-wide analysis of the lateral organ boundaries domain (LBD) members in alfalfa and the involvement of MsLBD48 in nitrogen assimilation. Int J Mol Sci, 2023, 24: 464402-464416.
[16] Huang W, Ma D, Xia L, Zhang E, Wang P, Wang M, Guo F, Wang Y, Ni D, Zhao H. Overexpression of CsATG3a improves tolerance to nitrogen deficiency and increases nitrogen use efficiency in Arabidopsis. Plant Physiol Biochem, 2023, 196: 328-338.
doi: 10.1016/j.plaphy.2023.01.057
[17] Kishorekumar R, Bulle M, Wany A, Gupta K J. An overview of important enzymes involved in nitrogen assimilation of plants. Methods Mol Biol, 2020, 57: 1-13.
[18] Gao Y, Quan S, Lyu B, Tian T, Liu Z, Nie Z, Qi S, Jia J, Shu J, Groot E, Wu J, Wang Y. Barley transcription factor HvNLP2 mediates nitrate signaling and affects nitrogen use efficiency. J Exp Bot, 2022, 73: 770-783.
doi: 10.1093/jxb/erab245
[19] Cao J, Zheng X, Xie D, Zhou H, Shao S, Zhou J. Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato. Hortic Res, 2022, 9: 1-16.
[20] Zhang Y, He Z, Qi X, Li M, Liu J, Le S, Chen K, Wang C, Zhou Y, Xu Z, Chen J, Guo C, Tang W, Ma Y, Chen M. Overexpression of MYB-like transcription factor SiMYB30 from foxtail millet (Setaria italica L.) confers tolerance to low nitrogen stress in transgenic rice. Plant Physiol Biochem, 2023, 196: 731-738.
doi: 10.1016/j.plaphy.2023.02.025
[21] Gao S, Yang Y, Yang Y, Zhang X, Su Y, Guo J, Que Y, Xu L. Identification of low-nitrogen-related miRNAs and their target genes in sugarcane and the role of miR156 in nitrogen assimilation. Int J Mol Sci, 2022, 23: 1318701-1318716.
[22] Secco D, Wang C, Arpat B A, Wang Z, Poirier Y, Tyerman S D, Wu P, Shou H, Whelan J. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol, 2012, 193: 842-851.
pmid: 22403821
[23] Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y. Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J, 2007, 50: 982-994.
pmid: 17461783
[24] Zhao P, You Q, Lei M. A CRISPR/Cas9 deletion into the phosphate transporter SlPHO1;1 reveals its role in phosphate nutrition of tomato seedlings. Physiol Plant, 2019, 167: 556-563.
doi: 10.1111/ppl.v167.4
[25] Liu J, Fu S, Yang L, Luan M, Zhao F, Luan S, Lan W. Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants. Plant Signal Behav, 2016, 11: e1213474.
doi: 10.1080/15592324.2016.1213474
[26] Guo R, Zhang Q, Ying Y, Liao W, Liu Y, Whelan J, Chuanzao M, Shou H. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. Plant Cell Environ, 2023, 46: 1264-1277.
doi: 10.1111/pce.14414
[27] Kant S, Peng M, Rothstein S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet, 2011, 7: e1002021.
doi: 10.1371/journal.pgen.1002021
[28] Yue W, Ying Y, Wang C, Zhao Y, Dong C, Whelan J, Shou H. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters. Plant J, 2017, 90: 1040-1051.
doi: 10.1111/tpj.2017.90.issue-6
[29] Puga M I, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla J M, de Lorenzo L, Irigoyen M L, Masiero S, Bustos R, Rodríguez J, Leyva A, Rubio V, Sommer H, Paz-Ares J. SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in Arabidopsis. Proc Natl Acad Sci USA, 2014, 111: 14947-14952.
doi: 10.1073/pnas.1404654111
[30] Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y, Shou H, Mo X, Mao C, Wu P. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci USA, 2014, 111: 14953-14958.
doi: 10.1073/pnas.1404680111 pmid: 25271318
[31] Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J, 2009, 7: 550-561.
doi: 10.1111/pbi.2009.7.issue-6
[32] Wang C, Wei Q, Zhang K, Wang L, Liu F, Zhao L, Tan Y, Di C, Yan H, Yu J, Sun C, Chen W J, Xu W, Su Z. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One, 2013, 8: e81849.
doi: 10.1371/journal.pone.0081849
[33] Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Gao X, Liu L, Qian Y, Huang X, Yu F, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants. Nat Plants, 2019, 5: 401-413.
doi: 10.1038/s41477-019-0384-1
[34] Ueda Y, Kiba T, Yanagisawa S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signaling via transcriptional regulation of SPX genes. Plant J, 2020, 102: 448-466.
doi: 10.1111/tpj.v102.3
[35] Yang J, Zhao X, Chen Y, Li G, Li X, Xia M, Sun Z, Chen Y, Li Y, Yao L, Hou H. Identification, structural, and expression analyses of SPX genes in giant duckweed (Spirodela polyrhiza) reveals its role in response to low phosphorus and nitrogen stresses. Cells, 2022, 11: 116701-116724.
[36] Xing X, Du H, Yang Z, Li X, Kong Y, Li W, Zhang C. GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC Plant Biol, 2022, 22: 16101-16113.
[37] Tiwari J K, Buckseth T, Devi S, Varshney S, Sahu S, Patil V U, Zinta R, Ali N, Moudgil V, Singh R K, Rawat S, Dua V K, Kumar D, Kumar M, Chakrabarti S K, Rao A R, Rai A. Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a nitrogen-use efficient potato cv. Kufri Gaurav. Plant Physiol Biochem, 2020, 154: 171-183.
doi: 10.1016/j.plaphy.2020.05.041
[38] 尚文静, 贾利华, 史磊, 林德立, 刘娜, 郑文明. 小麦低磷响应基因的筛选与表达分析. 中国农业大学学报, 2016, 21(10): 1-10.
Shang W J, Jia L H, Shi L, Lin D L, Liu N, Zheng W M. Screening and expression analysis of genes responded to low phosphate in wheat root. J China Agric Univ, 2016, 21(10): 1-10 (in Chinese with English abstract).
[39] Kumar A, Sharma M, Gahlaut V, Nagaraju M, Chaudhary S, Kumar A, Tyagi P, Gajula M N V P, Singh K P. Genome-wide identification, characterization, and expression profiling of SPX gene family in wheat. Int J Biol Macromol, 2019, 140: 17-32.
doi: S0141-8130(19)34368-5 pmid: 31419556
[40] Zhao J, Zhao L Q, Gong X D, Feng S Z, Liu X C. Identifification of homeobox transcription factor family in genome-wide and expression pattern analysis of the members in Setosphaeria turcica. Sci Agric Sin, 2017, 50: 669-678.
[41] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[42] Ding W W, Fang W B, Shi S Y, Zhao Y J, Li X J, Xiao K. Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Mol Biol Rep, 2016, 34: 1111-1126.
doi: 10.1007/s11105-016-0991-1
[43] 蒋明月, 苏晓帅, 张宝华, 李小娟, 肖凯. 小麦TaWRKY46介导转基因烟草耐盐性的功能分析. 农业生物技术学报, 2020, 28: 1733-1746.
Jiang M Y, Su X S, Zhang B H, Li X J, Xiao K. Functional analysis of TaWRKY46-mediated salt tolerance in transgenic tobacco. J Agric Biotechnol, 2020, 28: 1733-1746 (in Chinese with English abstract).
[44] Stuart N W. Adaptation of the micro-kjeldahl method for the determination of nitrogen in plant tissues. Plant Physiol, 1936, 11: 173-179.
doi: 10.1104/pp.11.1.173 pmid: 16653330
[45] Park B S, Song J T, Seo H S. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat Commun, 2011, 2: 1-10.
[46] Ferrari T E, Varner J E. Intact tissue assay for nitrite reductase in barley aleurone layers. Plant Physiol, 1971, 47: 790-794.
doi: 10.1104/pp.47.6.790 pmid: 16657706
[47] Seabra A R, Silva L S, Carvalho H G. Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol, 2013, 13: 13701-13715.
[48] Huang X S, Luo T, Fu X Z, Fan Q J, Liu J H. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J Exp Bot, 2011, 62: 5191-5206.
doi: 10.1093/jxb/err229
[49] Liu H, Yang W, Liu D, Han Y, Zhang A, Li S. Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep, 2011, 38: 417-427.
doi: 10.1007/s11033-010-0124-0
[50] Xu Z, Raza Q, Xu L, He X, Huang Y, Yi J, Zhang D, Shao H B, Ma H, Ali Z. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis. Front Plant Sci, 2018, 9: 80901-80911.
[51] Quan X, Qian Q, Ye Z, Zeng J, Han Z, Zhang G. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress. J Plant Physiol, 2016, 206: 59-67.
doi: 10.1016/j.jplph.2016.07.020
[1] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[2] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[3] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[4] HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, and HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003.
[5] WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-913.
[6] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
[7] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[8] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[9] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[10] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[11] FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413.
[12] ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477.
[13] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[14] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[15] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .