Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 556-575.doi: 10.3724/SP.J.1006.2024.34094
• CROP GENETICS & BREEDINGZ·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SONG Jian1,6(), XIONG Ya-Jun1,6, CHEN Yi-Jie1,6, XU Rui-Xin2, LIU Kang-Lin1, GUO Qing-Yuan1, HONG Hui-Long2, GAO Hua-Wei2, GU Yong-Zhe2, ZHANG Li-Juan2, GUO Yong2, YAN Zhe2, LIU Zhang-Xiong2, GUAN Rong-Xia2, LI Ying-Hui2, WANG Xiao-Bo3, GUO Bing-Fu4, SUN Ru-Jian5, YAN Long7, WANG Hao-Rang8, JI Yue-Mei9, CHANG Ru-Zhen2, WANG Jun1,6,*(), QIU Li-Juan2,*()
[1] |
Gireesh C, Sundaram R M, Anantha S M, Pandey M K, Madhav M S, Rathod S, Yathish K R, Senguttuvel P, Kalyani B M, Ranjith E, Subbarao L V, Mondal T K, Swamy M, Rakshit S. Nested association mapping (NAM) populations: present status and future prospects in the genomics era. Crit Rev Plant Sci, 2021, 40: 49-67.
doi: 10.1080/07352689.2021.1880019 |
[2] |
Nordborg M, Tavaré S. Linkage disequilibrium: what history has to tell us. Trends Genet, 2002, 18: 83-90.
pmid: 11818140 |
[3] |
Visscher P M, Wray N R, Zhang Q, Sklar P, McCarthy M I, Brown M A, Yang J. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet, 2017, 101: 5-22.
doi: S0002-9297(17)30240-9 pmid: 28686856 |
[4] |
Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178: 539-551.
doi: 10.1534/genetics.107.074245 pmid: 18202393 |
[5] |
Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J M, Cao M, Rong T, Xu Y. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA, 2010, 107: 19585-19590.
doi: 10.1073/pnas.1006105107 pmid: 20974948 |
[6] |
McMullen M D, Kresovich S, Villeda S H, Bradbury P, Li H, Sun Q, Flint-Garica S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir G, Romero S, Rosas M O, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of the maize nested association mapping population. Science, 2009, 325: 737-740.
doi: 10.1126/science.1174320 pmid: 19661427 |
[7] |
Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R, Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, Mcmullen M D, Ware D, Balint-Kurti P J, Holland J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011, 43: 163-168.
doi: 10.1038/ng.747 pmid: 21217757 |
[8] |
Poland J A, Bradbury P J, Buckler E S, Nelson R J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011, 108: 6893-6898.
doi: 10.1073/pnas.1010894108 pmid: 21482771 |
[9] |
Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162.
doi: 10.1038/ng.746 pmid: 21217756 |
[10] |
Cook J P, McMullen M D, Holland J B, Tian F, Bradbury P, Ross-Ibarra J, Buckler E S, Flint-Garcia S A. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol, 2012, 158: 824-834.
doi: 10.1104/pp.111.185033 pmid: 22135431 |
[11] |
Peiffer J A, Flint-Garcia S A, Leon N D, McMullen M, Kaeppler S M, Buckler E S. The genetic architecture of maize stalk strength. PLoS One, 2013, 8: e67066.
doi: 10.1371/journal.pone.0067066 |
[12] |
Zhang N, Gibon Y, Wallace J G, Lepak N, Li P, Dedow L, Chen C, So Y S, Kremling K, Bradbury P J, Brutnell T, Stitt M, Buckler E S. Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiol, 2015, 168: 575-583.
doi: 10.1104/pp.15.00025 pmid: 25918116 |
[13] |
Li C, Sun B, Li Y, Cheng L, Xun W, Zhang D, Shi Y, Song Y, Buckler E S, Zhang Z, Wang T, Li Y. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics, 2016, 17: 894.
doi: 10.1186/s12864-016-3170-8 |
[14] |
Schnaithmann F, Kopahnke D, Pillen K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet, 2014, 127: 1513-1525.
doi: 10.1007/s00122-014-2315-x pmid: 24797143 |
[15] |
Bajgain P, Rouse M N, Tsilo T J, Macharia G K, Bhavani S, Jin Y, Anderson J A. Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS One, 2016, 11: e0155760.
doi: 10.1371/journal.pone.0155760 |
[16] |
Hoyos-Villegas V, Song Q, Wright E M, Beebe S E, Kelly J D. Joint linkage QTL mapping for yield and agronomic traits in a composite map of three common bean RIL populations. Crop Sci, 2016, 56: 2546-2563.
doi: 10.2135/cropsci2016.01.0063 |
[17] |
Li J, Bus A, Spamer V, Stich B. Comparison of statistical models for nested association mapping in rapeseed (Brassica napus L.) through computer simulations. BMC Plant Biol, 2016, 16: 26.
doi: 10.1186/s12870-016-0707-6 |
[18] |
Pandey M K, Roorkiwal M, Singh V K, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney R K. Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci, 2016, 7: 455.
doi: 10.3389/fpls.2016.00455 pmid: 27199998 |
[19] |
Bouchet S, Olatoye M O, Marla S R, Perumal R, Tesso T, Yu J, Tuinstra M, Morris G P. Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics, 2017, 206: 573-585.
doi: 10.1534/genetics.116.198499 pmid: 28592497 |
[20] | Fragoso C A, Moreno M, Wang Z, Heffelfinger C, Arbelaez L J, Aguirre J A, Franco N, Romero L E, Labadie K, Zhao H, Dellaporta S L, Lorieux M. Genetic architecture of a rice nested association mapping population. Genes Genom Genet, 2017, 7: 1913-1926. |
[21] |
Maranna S, Kumawat G, Nataraj V, Gireesh C, Gupta S, Satpute G K, Ratnaparkhe M B, Yadav D P. NAM population: a novel genetic resource for soybean improvement: development and characterization for yield and attributing traits. Plant Genet Resour, 2019, 17: 545-553.
doi: 10.1017/S1479262119000352 |
[22] |
Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B Z. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020, 18: 1457-1471.
doi: 10.1111/pbi.13311 pmid: 31808273 |
[23] | Song Q L, Yan L, Quigley C V, Jordan B, Fickus E, Schroeder S, Song B H, Charles An Y Q, Hyten D L, Nelson R L, Rainey K M, Beavis W, Specht J, Diers B, Cregan P. Genetic characterization of the soybean nested association mapping population. Plant Genome, 2017, 10: 3835. |
[24] | Xavier A, Jarquin D, Howard R, Ramasubramanian V, Specht J E, Graef G L, Beavis W D, Diers B W, Song Q, Cregan P, Nelson R, Mian R, Shannon J G, Mchale L K, Wang D, Schapaugh W, Lorenz A J, Xu S, Muir W M, Rainey K M. Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population. Genes Genom Genet, 2018, 8: 519-529. |
[25] | Diers B W, Specht J, Rainey K M, Cregan P, Song Q, Ramasubramanian V, Graef G L, Nelson R, Schapaugh W, Wang D, Shannon J G, Mchale L K, Kantartzi S K, Xavier A, Mian R, Stupar R M, Michno J M, Charles An Y Q, Goettel W, Ward R, Fox C, Lipka A E, Hyten D L, Cary T, Beavis W. Genetic architecture of soybean yield and agronomic traits. Genes Genom Genet, 2018, 8: 3367-3375. |
[26] |
Scott K, Balk C, Veney D, Mchale L K, Dorrance A E. Quantitative disease resistance loci towards and three species of in six soybean nested association mapping populations. Crop Sci, 2019, 59: 605-623.
doi: 10.2135/cropsci2018.09.0573 |
[27] |
Lopez M A, Xavier A, Rainey K M. Phenotypic variation and genetic architecture for photosynthesis and water use efficiency in soybean (Glycine max L. Merr.). Front Plant Sci, 2019, 10: 680.
doi: 10.3389/fpls.2019.00680 |
[28] |
Beche E, Gillman J D, Song Q J, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo A M. Genomic prediction using training population design in interspecific soybean populations. Mol Breed, 2021, 41: 15.
doi: 10.1007/s11032-021-01203-6 |
[29] |
李曙光, 曹永策, 贺建波, 王吴彬, 邢光南, 杨加银, 赵团结, 盖钧镒. 大豆巢式关联作图群体蛋白质含量的遗传解析. 中国农业科学, 2020, 53: 1743-1755.
doi: 10.3864/j.issn.0578-1752.2020.09.005 |
Li S G, Cao Y C, He J B, Wang W B, Xing G N, Yang J Y, Zhao T J, Gai J Y. Genetic dissection of protein content in a nested association mapping population of soybean. Sci Agric Sin, 2020, 53: 1743-1755 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.09.005 |
|
[30] |
He J, Meng S, Zhao T, Xing G, Yang S, Li Y, Guan R, Lu J, Wang Y, Xia Q, Yang B, Gai J. An innovative procedure of genome- wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet, 2017, 130: 2327-2343.
doi: 10.1007/s00122-017-2962-9 |
[31] | 刘晓冬, 王英男, 齐广勋, 赵勇, 仲晓芳, 董英山, 王玉民. 大豆花色研究进展. 东北农业科学, 2017, 42(6): 53-57. |
Liu X D, Wang Y N, Qi G X, Zhao Y, Zhong X F, Dong Y S, Wang Y M. A review of researches on flower color of soybean. J Northeast Agric Sci, 2017, 42(6): 53-57 (in Chinese with English abstract). | |
[32] |
邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展. 作物学报, 2021, 47: 2299-2313.
doi: 10.3724/SP.J.1006.2021.14022 |
Qiu H M, Chen L, Hou Y L, Wang X F, Chen J, Ma X P, Cui Z G, Zhang L, Hu J H, Wang Y Q, Qiu L J. Reserch progress on genetic regulatory mechanism of seed color in soybean (Glycine max). Acta Agron Sin, 2021, 47: 2299-2313 (in Chinese with English abstract). | |
[33] |
Song J, Liu Z, Hong H, Ma Y, Tian L, Li X, Li Y H, Guan R, Guo Y, Qiu L J. Identification and validation of loci governing seed coat color by combining association mapping and bulk segregation analysis in soybean. PLoS One, 2016, 11: e0159064.
doi: 10.1371/journal.pone.0159064 |
[34] |
Yuan B, Yuan C, Wang Y, Liu X, Qi G, Wang Y, Dong L, Zhao H, Li Y, Dong Y. Identification of genetic loci conferring seed coat color based on a high-density map in soybean. Front Plant Sci, 2022, 13: 968618.
doi: 10.3389/fpls.2022.968618 |
[35] |
Park G T, Sundaramoorthy J, Lee J D, Kim J H, Seo H S, Song J T, Martina S. Elucidation of molecular identity of the W3 locus and its implication in determination of flower colors in soybean. PLoS One, 2015, 10: e0142643.
doi: 10.1371/journal.pone.0142643 |
[36] | Zabala G, Vodkin L O. A rearrangement resulting in small tandem repeats in the F3’5’H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci, 2007, 47: S113-S124. |
[37] |
Takahashi R, Dubouzet J G, Matsumura H, Yasuda K, Iwashina T. A new allele of flower color gene W1 encoding flavonoid 3’5’-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja. BMC Plant Biol, 2010, 10: 155.
doi: 10.1186/1471-2229-10-155 pmid: 20663233 |
[38] |
Sundaramoorthy J, Park G T, Chang J H, Lee J D, Kim J H, Seo H S, Chung G, Hoe K J, Soo S H, Gyuhwa C, Song J T. Identification and molecular analysis of four new alleles at the W1 locus associated with flower color in soybean. PLoS One, 2016, 11: e0159865.
doi: 10.1371/journal.pone.0159865 |
[39] |
Yan F, Di S, Rodas F R, Rodriguez Torrico T, Murai Y, Iwashina T, Anai T, Takahashi R. Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2. BMC Plant Biol, 2014, 14: 58.
doi: 10.1186/1471-2229-14-58 |
[40] |
Xu M, Brar H K, Grosic S, Palmer R G, Bhattacharyya M K. Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics, 2010, 184: 53-63.
doi: 10.1534/genetics.109.107904 |
[41] |
Xu M, Palmer R G. Genetic analysis and molecular mapping of a pale flower allele at the W4 locus in soybean. Genome, 2005, 48: 334-340.
doi: 10.1139/g04-105 |
[42] |
Zabala G, Vodkin L O. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell, 2005, 17: 2619-2632.
doi: 10.1105/tpc.105.033506 |
[43] |
Iwashina T, Githiri S M, Benitez E R, Takemura T, Kitajima J, Takahashi R. Analysis of flavonoids in flower petals of soybean near-isogenic lines for flower and pubescence color genes. J Hered, 2007, 98: 250-257.
doi: 10.1093/jhered/esm012 pmid: 17420179 |
[44] |
Sundaramoorthy J, Park G T, Lee J D, Kim J H, Seo H S, Song J T. A P3A-type ATPase and an R2R3-MYB transcription factor are involved in vacuolar acidification and flower coloration in soybean. Front Plant Sci, 2020, 11: 580085.
doi: 10.3389/fpls.2020.580085 |
[45] |
Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T, Hong J S, MarFarlane S. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell, 2004, 16: 807-818.
doi: 10.1105/tpc.019885 |
[46] |
Cho Y B, Jones S I, Vodkin L O. Mutations in argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. Plant Cell 2017, 29: 708-725.
doi: 10.1105/tpc.17.00162 |
[47] |
Zabala G, Vodkin L. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3' hydroxylase. Genetics, 2003, 163: 295-309.
doi: 10.1093/genetics/163.1.295 |
[48] |
Gillman J D, Tetlow A, Lee J D, Shannon J G, Bilyeu K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol, 2011, 11: 155.
doi: 10.1186/1471-2229-11-155 pmid: 22070454 |
[49] | Zabala G, Vodkin L O, Cui Z. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLos One, 2014, 9: e111959. |
[50] |
Gao R, Han T, Xun H, Zeng X, Li P, Li Y, Wang Y, Shao Y, Cheng X, Feng X, Zhao J, Wang L, Gao X. MYB transcription factor GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. J Exp Bot, 2021, 72: 4401-4418.
doi: 10.1093/jxb/erab152 |
[51] |
Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128 |
[52] |
Xie M, Chung C Y, Li M W, Wong F L, Wang X, Liu A, Wang Z, Leung K Y, Wong T H, Tong S W, Xiao Z, Fan K, Ng M S, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen H T, Cannon S B, Foyer C H, Chan T F, Lam H M. A reference-grade wild soybean genome. Nat Commun, 2019, 10: 1216.
doi: 10.1038/s41467-019-09142-9 pmid: 30872580 |
[53] |
Tokumitsu Y, Kozu T, Yamatani H, Ito T, Nakano H, Hase A, Sasada H, Takada Y, Kaga A, Ishimoto M, Kusaba M, Nakashima T, Abe J, Yamada T. Functional divergence of G and its homologous genes for green pigmentation in soybean seeds. Front Plant Sci, 2021, 12: 796981.
doi: 10.3389/fpls.2021.796981 |
[54] |
Liu C, Chen X, Wang W, Hu X, Han W, He Q, Yang H, Xiang S, Gai J. Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Int J Mol Sci, 2021, 22: 1559.
doi: 10.3390/ijms22041559 |
[55] |
Lu N, Rao X, Li Y, Jun J H, Dixon R A. Dissecting the transcriptional regulation of proanthocyanin and anthocyanin biosynthesis in soybean (Glycine max). Plant Biotechnol J, 2021, 19: 1429-1442.
doi: 10.1111/pbi.v19.7 |
[56] | 宋喜娥, 李英慧, 常汝镇, 郭平毅, 邱丽娟. 中国栽培大豆(Glycine max (L.) Merr.) 微核心种质的群体结构与遗传多样性. 中国农业科学, 2010, 43: 2209-2219. |
Song X E, Li Y H, Chang R Z, Guo P Y, Qiu L J. Population structure and genetic diversity of mini core collection of cultivated soybean (Glycine max (L.)Merr.) in China. Sci Agric Sin, 2010, 43: 2209-2219 (in Chinese with English abstract). | |
[57] |
Li Y H, Qin C, Wang L, Jiao C, Hong H, Tian Y, Li Y, Xing G, Wang J, Gu Y, Gao X, Li D, Li H, Liu Z, Jing X, Feng B, Zhao T, Guan R, Guo Y, Liu J, Yan Z, Zhang L, Ge T, Li X, Wang X, Qiu H, Zhang W, Luan X, Han Y, Han D, Chang R, Guo Y, Reif J C, Jackson S A, Liu B, Tian S, Qiu L J. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci China Life Sci, 2023, 66: 350-365.
doi: 10.1007/s11427-022-2158-7 |
[58] | Darrigues A, Hall J, van der Knaap E, Francis D M, Gray S. Tomato analyzer-color test: a new tool for efficient digital phenotyping. J Am SocHortic, 2008, 133: 579-586. |
[59] | Rodríguez G R, Moyseenko J B, Robbins M D, Huarachi Morejón N, Francis D M, Esther V D K. Tomato analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. J Vis Exp, 2010, 16: 1856. |
[60] |
Sadohara R, Long Y, Izquierdo P, Urrea C A, Morris D, Cichy K. Seed coat color genetics and genotype × environment effects in yellow beans via machine-learning and genome-wide association. Plant Genome, 2021, 15: e20173.
doi: 10.1002/tpg2.v15.1 |
[61] |
Sun R, Sun B, Tian Y, Su S, Zhang Y, Zhang W, Wang J, Yu P, Guo B, Li H, Li Y, Gao H, Gu Y, Yu L, Ma Y, Su E, Li Q, Hu X, Zhang Q, Guo R, Chai S, Feng L, Wang J, Hong H, Xu J, Yao X, Wen J, Liu J, Li Y, Qiu L J. Dissection of the practical soybean breeding pipeline by developing ZDX1, a high-throughput functional array. Theor Appl Genet, 2022, 135: 1413-1427.
doi: 10.1007/s00122-022-04043-w pmid: 35187586 |
[62] |
Price M N, Dehal P S, Arkin A P. FastTree 2-approximately maximum-likelihood trees for arge alignments. PLoS One, 2010, 5: e9490.
doi: 10.1371/journal.pone.0009490 |
[63] |
Minh B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M, Haeseler A V, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530-1534.
doi: 10.1093/molbev/msaa015 pmid: 32011700 |
[64] |
Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88: 76-82.
doi: 10.1016/j.ajhg.2010.11.011 pmid: 21167468 |
[65] |
Browning B L, Tian X, Zhou Y, Browning S R. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet, 2021, 108: 1880-1890.
doi: 10.1016/j.ajhg.2021.08.005 pmid: 34478634 |
[66] |
Li M, Zhang Y W, Zhang Z C, Xiang Y, Liu M H, Zhou Y H, Zuo J F, Zhang H Q, Chen Y, Zhang Y M. A compressed variance component mixed model for detecting QTNs and QTN-by- environment and QTN-by-QTN interactions in genome-wide association studies. Mol Plant, 2022, 15: 630-650.
doi: 10.1016/j.molp.2022.02.012 |
[67] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[68] |
Kang H M, Zaitlen N A, Wade C M, Kirby A, Heckerman D, Daly M J, Eskin E. Efficient control of population structure in model organism association mapping. Genetics, 2008, 178: 1709-1723.
doi: 10.1534/genetics.107.080101 pmid: 18385116 |
[69] | Yu Y, Zhang H, Long Y, Shu Y, Zhai J. Plant public RNA-seq database: a comprehensive online database for expression analysis of -45 000 plant public RNA-Seq libraries. Plant Biotechnol J, 2022, 20: 806-808. |
[70] |
Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50: 187-196.
doi: 10.1023/A:1016087221334 |
[71] |
Yang K, Jeong N, Moon J K, Lee Y H, Lee S H, Kim H M, Hwang C H, Back K, Palmer R G, Jeong S C. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered, 2010, 101: 757.
doi: 10.1093/jhered/esq078 pmid: 20584753 |
[72] |
Lim Y J, Kwon S J, Qu S, Kim D G, Eom S H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants, 2021, 10: 353.
doi: 10.3390/antiox10030353 |
[73] |
Kim J H, Park J S, Lee C Y, Jeong M G, Xu J L, Choi Y, Jung H W, Choi H K. Dissecting seed pigmentation-associated genomic loci and genes by employing dual approaches of reference-based and k-mer-based GWAS with 438 glycine accessions. PLoS One, 2020, 15: e0243085.
doi: 10.1371/journal.pone.0243085 |
[74] |
Cho Y B, Jones S I, Vodkin L O. Nonallelic homologous recombination events responsible for copy number variation within an RNA silencing locus. Plant Direct, 2019, 3: e00162.
doi: 10.1002/pld3.2019.3.issue-8 |
[1] | WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819. |
[2] | WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-913. |
[3] | WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632. |
[4] | LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622. |
[5] | LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309. |
[6] | YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264. |
[7] | LI Yu-Jia, XU Hao, YU Shi-Nan, TANG Jian-Wei, LI Qiao-Yun, GAO Yan, ZHENG Ji-Zhou, DONG Chun-Hao, YUAN Yu-Hao, ZHENG Tian-Cun, YIN Gui-Hong. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou 8425B in its derived varieties [J]. Acta Agronomica Sinica, 2024, 50(1): 16-31. |
[8] | SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109. |
[9] | YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171. |
[10] | LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063. |
[11] | DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784. |
[12] | LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541. |
[13] | LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281. |
[14] | WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064. |
[15] | SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150. |
|