Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 543-555.doi: 10.3724/SP.J.1006.2024.32023
• CROP GENETICS & BREEDINGZ·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Li-Jie1,2(), ZHOU Hai-Yu1,2, MUHAMMAD Zeshan1,2, MUNSIF Ali Shad1,2, YANG Ming-Chong1,2, LI Bo1,2, HAN Shi-Jian1, ZHANG Cui-Cui1,3, HU Li-Hua1,3,*(), WANG Ling-Qiang1,2,*()
[1] |
Salih H, Odongo M R, Gong W, He S, Du X. Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development. BMC Plant Biol, 2019, 19: 400.
doi: 10.1186/s12870-019-2003-8 pmid: 31510939 |
[2] |
Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081-1085.
doi: 10.1126/science.271.5252.1081 pmid: 8599083 |
[3] |
Wang J, Li Z, Liang Y, Zheng J, Gong Z, Zhou G, Xu Y, Li X. Genome-wide identification and expression reveal the involvement of the FCS-like zinc finger (FLZ) gene family in Gossypium hirsutum at low temperature. PeerJ, 2023, 11: e14690.
doi: 10.7717/peerj.14690 |
[4] |
He Y, Tang W, Swain J D, Green A L, Jack T P, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707-716.
pmid: 11402199 |
[5] | Jamsheer K M, Laxmi A. Expression of Arabidopsis FCS-like zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress. Front Plant Sci, 2015, 6: 746. |
[6] |
Nietzsche M, Schießl I, Börnke F. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Front Plant Sci, 2014, 5: 54.
doi: 10.3389/fpls.2014.00054 pmid: 24600465 |
[7] |
Jamsheer K M, Sharma M, Singh D, Mannully C T, Jindal S, Shukla B N, Laxmi A. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Plant J, 2018, 94: 232-245.
doi: 10.1111/tpj.2018.94.issue-2 |
[8] |
Jamsheer K M, Singh D, Sharma M, Sharma M, Jindal S, Mannully C T, Shukla B N, Laxmi A. The FCS-like zinc finger 6 and 10 are involved in regulating osmotic stress responses in Arabidopsis. Plant Signal Behav, 2019, 14:1592535.
doi: 10.1080/15592324.2019.1592535 |
[9] |
Hou X, Liang Y, He X, Shen Y, Huang Z. A novel ABA-responsive TaSRHP gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thaliana. Plant Mol Biol Rep, 2013, 31: 791-801.
doi: 10.1007/s11105-012-0549-9 |
[10] |
He Y, Gan S. A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Mol Biol, 2004, 54: 1-9.
doi: 10.1023/B:PLAN.0000028730.10834.e3 |
[11] |
Jamsheer K M, Shukla B N, Jindal S, Gopan N, Mannully C T, Laxmi A. The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. J Biol Chem, 2018, 293: 13134-13150.
doi: 10.1074/jbc.RA118.002073 pmid: 29945970 |
[12] |
Ma Y, Zhao J, Fu H, Yang T, Dong J, Yang W, Chen L, Zhou L, Wang J, Liu B, Zhang S, Edwards D. Genome-wide identification, expression and functional analysis reveal the involvement of FCS-like zinc finger gene family in submergence response in rice. Rice, 2021, 14: 76.
doi: 10.1186/s12284-021-00519-3 pmid: 34417910 |
[13] |
马雅美, 张少红, 赵均良, 刘斌. FCS-like锌指蛋白OsFLZ18在调控水稻抽穗期中的作用. 中国农业科学, 2022, 55: 3875-3884.
doi: 10.3864/j.issn.0578-1752.2022.20.001 |
Ma Y M, Zhang S H, Zhao J L, Liu B. FCS-like zinc finger protein OsFLZ18 in regulating rice flowering time. Sci Agric Sin, 2022, 55: 3875-3884 (in Chinese with English abstract). | |
[14] |
刘佳丽, 何明良, 刘晨曦, 廖栩, 李秀峰, 管清杰. 水稻盐碱逆境响应锌指蛋白基因OsZFP6表达特性及功能研究. 植物研究, 2020, 40: 424-432.
doi: 10.7525/j.issn.1673-5102.2020.03.014 |
Liu J L, He M L, Liu C X, Liao X, Li X F, Guan Q J. Zinc finger protein OsZFP6 expression features and functions in saline-alkali stress response. Bull Bot Res, 2020, 40: 424-432 (in Chinese with English abstract). | |
[15] | 骆鹰, 谢旻, 张超, 王伟平, 朱建华, 万向元, 汪启明, 饶力群. 水稻锌指蛋白基因OsBBX22响应热胁迫的功能分析. 基因组学与应用生物学, 2018, 37: 836-844. |
Luo Y, Xie M, Zhang C, Wang W P, Zhu J H, Wan X Y, Wang Q M, Rao L Q. Function analysis of rice zinc finger protein gene OsBBX22 in response to heat stress. Genom Appl Biol, 2018, 37: 836-844 (in Chinese with English abstract). | |
[16] |
Jamsheer K M, Laxmi A. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction. PLoS One, 2014, 9: e99074.
doi: 10.1371/journal.pone.0099074 |
[17] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[18] |
Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
doi: 10.1093/nar/gkv416 |
[19] | Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327. |
[20] |
Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783 |
[21] |
Yu C S, Lin C J, Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on N-peptide compositions. Prot Sci, 2004, 13: 1402-1406.
doi: 10.1110/ps.03479604 |
[22] |
Kokkirala V R, Yonggang P, Abbagani S, Zhu Z, Umate P. Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signal Behav, 2010, 5: 1336-1341.
doi: 10.4161/psb.5.11.13318 |
[23] |
Bao A, Burritt D J, Chen H, Zhou X, Cao D, Tran L P. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol, 2019, 39: 321-336.
doi: 10.1080/07388551.2018.1554621 pmid: 30646772 |
[24] |
Lee J H, Schöffl F. GUS activity staining in gels: a powerful tool for studying protein interactions in plants. Plant Mol Biol Rep, 1995, 13: 346-354.
doi: 10.1007/BF02669190 |
[25] | Jamsheer K M, Mannully C T, Gopan N, Laxmi A. Comprehensive evolutionary and expression analysis of FCS-like zinc finger gene family yields insights into their origin, expansion and divergence. PLoS One, 2015, 10: e134328. |
[26] |
Ma Y, Dong J, Yang W, Chen L, Wu W, Li W, Zhou L, Wang J, Chen J, Yang T, Zhang S, Zhao J, Liu B. OsFLZ2 interacts with OsMADS51 to fine-tune rice flowering time. Development, 2022, 149: dev200862.
doi: 10.1242/dev.200862 |
[27] |
Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. Genome-wide identification and characterization of FCS-like zinc finger (FLZ) family genes in maize (Zea mays) and functional analysis of ZmFLZ25 in plant abscisic acid response. Int J Mol Sci, 2021, 22: 3529.
doi: 10.3390/ijms22073529 |
[28] | 魏振林, 林贵凯, 崔晓同, 李婷, 仝会琴. 大豆FCS like Zinc Finger家族基因的生物信息学鉴定. 分子植物育种, 网络首发[2021-09-24], https://kns.cnki.net/kcms/detail/46.1068.S.20210923.1847.015.html. |
Wei Z L, Lin G K, Cui X T, Li T, Tong H Q. Bioinformatics analysis of soybean FCS like Zinc Finger gene family. Mol Plant Breed, Published online [2021-09-24], https://kns.cnki.net/kcms/detail/46.1068.S.20210923.1847.015.html (in Chinese with English abstract). | |
[29] | Jin Y M, Piao R, Yan Y F, Chen M, Wang L, He H, Liu X, Gao X A, Jiang W, Lin X F. Overexpression of a new zinc finger protein transcription factor OsCTZFP8 improves cold tolerance in rice. Int J Genom, 2018, 2018: 5480617. |
[1] | YU Yao, WANG Zi-Yao, ZHOU Si-Rui, LIU Peng-Cheng, YE Ya-Feng, MA Bo-Jun, LIU Bin-Mei, CHEN Xi-Feng. Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1 [J]. Acta Agronomica Sinica, 2024, 50(4): 857-870. |
[2] | WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770. |
[3] | WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746. |
[4] | XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463. |
[5] | WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492. |
[6] | WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424. |
[7] | XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439. |
[8] | LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75. |
[9] | XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571. |
[10] | HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372. |
[11] | LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411. |
[12] | JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295. |
[13] | TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038. |
[14] | SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050. |
[15] | WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159. |
|