Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1384-1393.doi: 10.3724/SP.J.1006.2024.34159

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Creating cold resistant germplasm of potato using Solanum boliviense

LIU Yuan-Yuan1(), DONG Jian-Ke1, YING Jing-Wen1, MEI Wen-Xiang1, CHENG Gang2, GUO Jing-Jing1, JIAO Wen-Biao3,*(), SONG Bo-Tao1,*()   

  1. 1National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops / Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Institute of Detection for Agricultural Products of Ezhou, Ezhou 436099, Hubei, China
    3College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-10-02 Accepted:2024-01-31 Online:2024-06-12 Published:2024-02-21
  • Contact: * E-mail: songbotao@mail.hzau.edu.cn;E-mail: jiao@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1100201);China Agriculture Research System of MOF and MARA(Potato, CARS-09)

Abstract:

Potato cultivars are not tolerant to low temperatures and frost, which directly affects the growth and development of plants and tubers, thus affecting potato yield. Wild potato species, such as S. boliviense, have abundant resources for cold frost resistance, which are important resources for improving cultivated potato varieties. Based on cold resistance identification of different S. boliviense strains, we screened and obtained the excellent strain BLV29-2 (S. boliviense) with comprehensive traits. It was then crossed and backcrossed with the diploid cultivar ED25, resulting in interspecific hybrids with stronger cold resistance. Inter-specific hybrid strains that had shown significant improvement in cold tolerance were treated with recycled colchicine. Cold tolerance and agronomic traits were assessed in some of the strains, and the results showed that all the doubled materials had significant increases in plant height, pollen grain diameter, and individual potato weight. Most of the materials showed there was no significant change in cold tolerance before and after doubling, but significantly improved compared to the cultivated species control. By crossing the treated strain T-FT073-4-7 with the superior tetraploid cultivar Huashu 13, we observed segregation of cold resistance in the offspring, with the 47% of the materials showing a preference towards the maternal parent T-FT073-4-7 and significantly higher cold resistance compared to the paternal cultivar. Through further field evaluations of agronomic traits, we identified selected breeding materials with the improved overall traits and the significantly enhanced cold resistance. This study successfully introduced the excellent cold resistance of the diploid wild species S. boliviense into the tetraploid cultivar, thus addressing the deficiency of the existing cultivar in terms of low-temperature sensitivity. These findings provide an important foundation for the selection and further improvement of cold-resistant genetic breeding materials.

Key words: potato, cold resistance, agronomic traits, chromosome doubling, genetic improvement

Table 1

A total of 25 lines of 10 accessions of the wild species S. boliviense"

株系
Line
材料
Accession
株系
Line
材料
Accession
株系
Line
材料
Accession
BLV29-1 PI 472806 BLV33-1 PI 498362 BLV36-3 PI 545999
BLV29-2 PI 472806 BLV33-2 PI 498362 BLV37-1 PI 546000
BLV29-3 PI 472806 BLV33-3 PI 498362 BLV37-2 PI 546000
BLV30-1 PI 473131 BLV34-1 PI 498383 BLV37-3 PI 546000
BLV30-2 PI 473131 BLV34-2 PI 498383 BLV38-1 PI 546010
BLV31-1 PI 473134 BLV34-3 PI 498383 BLV38-2 PI 546010
BLV32-1 PI 473135 BLV35-2 PI 500031 BLV38-3 PI 546010
BLV32-2 PI 473135 BLV36-1 PI 545999
BLV32-3 PI 473135 BLV36-2 PI 545999

Fig. 1

Identification of cold resistance and agronomic traits of S. boliviense FT is freezing tolerance, and CA is cold acclimated freezing tolerance. A: the identification of cold resistance of S. boliviense; B: the identification of plant height of S. boliviense; C: the identification of pollen viability of S. boliviense; D: BLV29-2 pollens; E: BLV37-2 pollens; F: BLV29-2 plant; G: BLV33-3 plant. Values are means ± SDs (n = 3). Bar: 20 μm."

Fig. 2

Identification of FT051 agronomic traits A: BLV29-2 plant; B: ED25 plant; C: FT051-2 plant; D: FT051-3 plant; E: BLV29-2 flowers; F: ED25 flowers; G: FT051-3 flowers; H: FT051-9 flowers."

Fig. 3

Identification of cold resistance of FT073 FT is direct cold resistance and CA is acclimated cold resistance. White and black columns indicate before and after cold resistance, respectively. Values are means ± SDs (n = 3)."

Fig. 4

Identification of FT073 agronomic traits A: FT073-19 plant; B: FT073 plant height; C: FT073 stem thick; D: FT073 main stem number; E: FT073-16 plant; F: FT073 stem color; G: FT073 leaf shape index; H: FT073 leaf area. Values are means±SDs (n = 3)."

Fig. 5

Identification of ploidy of treatment materials A-F are chromosome count ploidy identification. A: AC142; B: E3; C: FT073-15; D~F: T-FT073-15. Bar: 5 μm."

Fig. 6

Identification of cold resistance before and after material doubling FT is direct cold resistance, and CA is acclimated cold resistance. Black and gray columns indicate the cold resistance of the material before and after doubling, respectively. Values are means ± SDs (n = 3). Asterisks indicate significant difference between double before and after by using Student’s t-test (*: P < 0.05)."

Fig. 7

Identification of agronomic traits before and after material doubling A: FT073-15 plant; B: T-FT073-15-1 plant; C: FT073-15 flower; D: T-FT073-15-1 flower; E: FT073-15 pollens; F: T-FT073-15-1 pollens; G: FT073-15 tubers; H: T-FT073-15-1 tubers. Values are means ± SDs (n = 3)."

Fig. 8

Phenotypes of FT123 after frost A: T-FT073-4-7; B: Huashu 13; C: FT123-2; D: FT123-6; E: FT123-16; F: FT123-25; G: FT123-33; H: FT123-47."

[1] 谢婷婷, 柳俊. 光周期诱导马铃薯块茎形成的分子机理研究进展. 中国农业科学, 2013, 46: 4657-4664.
doi: 10.3864/j.issn.0578-1752.2013.22.003
Xie T T, Liu J. Molecular mechanism underlying photoperiodic-induced potato tuber formation. Sci Agric Sin, 2013, 46: 4657-4664. (in Chinese with English abstract)
[2] 刘园园, 董建科, 单雅成, 吴江海, 何天久, 刘明慧, 李静文, 宋波涛. 马铃薯野生种Solanum chacoense的特征特性及其在育种中的利用. 中国马铃薯, 2023, 37: 53-61.
Liu Y Y, Dong J K, Shan Y C, Wu J H, He T J, Liu M H, Li J W, Song B T. Characteristics and application in breeding of wild species Solanum chacoense. Chin Potato J, 2023, 37: 53-61. (in Chinese with English abstract)
[3] 谢从华, 柳俊. 中国马铃薯引进与传播之辨析. 华中农业大学学报, 2021, 40(4): 1-7.
Xie C H, Liu J. Review of introduction and spread of potato in China. J Huazhong Agric Univ, 2021, 40(4): 1-7. (in Chinese with English abstract)
[4] 李飞, 刘杰, 金黎平, 段绍光, 邓宽平. 过氧化物酶同工酶与马铃薯耐冻性的关系. 贵州农业科学, 2010, 38(8): 27-29.
Li F, Liu J, Jin L P, Duan S G, Deng K P. Relationship between POD isoenzyme and freeze tolerance in potato. Guizhou Agric Sci, 2010, 38(8): 27-29. (in Chinese with English abstract)
[5] 陈国保, 夏小曼, 李永平. 两种类型的低温对广西玉林冬季免耕马铃薯的影响. 作物杂志, 2010, (1): 95-98.
Chen G B, Xia X M, Li Y P. Impact of two types of low temperature on winter no-till potato. Crops, 2010, (1): 95-98. (in Chinese with English abstract)
[6] 梅文祥. 马铃薯资源抗寒性鉴定及S. demssium × S. tuberosum杂交后代抗性鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Mei W X. Detection of Freezing Tolerance in Potato Resources and Resistance in Hybrids of S. demssium and S. tuberosum. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[7] 董建科, 涂卫, 赵庆浩, 周帅, 王俊豪, 张卓, 宋波涛. 国内主要马铃薯品种(系)抗寒性鉴定. 见: 屈冬玉, 金黎平, 陈伊里主编. 马铃薯产业与健康消费 哈尔滨: 黑龙江科学技术出版社, 2019. pp 189-195.
Dong J K, Tu W, Zhao Q H, Zhou S, Wang J H, Zhang Z, Song B T. Identification of cold resistance of major potato varieties (lines) in China. In: Qu D Y, Jin L P, Chen Y L, eds. Potato Industry and Health Consumption. Harbin: Heilongjiang Science and Technology Press, 2019. pp 189-195. (in Chinese)
[8] Vega S E, Bamberg J B. Screening the US potato collection for frost hardiness. Am J Potato Res, 1995, 72: 13-21.
[9] Hawkes J G. The Potato: Evolution, Biodiversity and Genetic Resources. Washington DC: Smithsonian Institution Press, 1990.
[10] Jansky S. Parental effects on the performance of cultivated × wild species hybrids in potato. Euphytica, 2011, 178: 273-281.
[11] Machida-Hirano R. Diversity of potato genetic resources. Breed Sci, 2015, 1: 26-40.
[12] Jansky S H, Simon R, Spooner D M. A test of taxonomic predictivity: resistance to early blight in wild relatives of cultivated potato. Phytopathology, 2008, 98: 680-687.
doi: 10.1094/PHYTO-98-6-0680 pmid: 18944292
[13] Bachmann-Pfabe S, Hammann T, Kruse J, Dehmer K J. Screening of wild potato genetic resources for combined resistance to late blight on tubers and pale potato cyst nematodes. Euphytica, 2019, 215: 48.
[14] Lynch D R, Kawchuk L M, Chen Q, Kokko M. Resistance to Fusarium sambucinum in wild and cultivated Solanum species. Am J Potato Res, 2003, 80: 353-358.
[15] Gray G R, Chauvin L P, Sarhan F, Huner N P A. Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol, 1997, 114: 467-474.
doi: 10.1104/pp.114.2.467 pmid: 12223720
[16] Seppanen M, Majaharju M, Somersalo S. Freezing tolerance, cold acclimation and oxidative stress in potato: paraquat tolerance is related to acclimation but is a poor indicator of freezing tolerance. Plant Physiol, 1998, 102: 454-460.
[17] 董建科, 涂卫, 王海波, 应静文, 杜鹃, 赵喜娟, 赵庆浩, 黄维, 蔡兴奎, 宋波涛. 马铃薯高效染色体加倍方法建立与抗寒资源创制. 作物学报, 2020, 46: 1659-1666.
doi: 10.3724/SP.J.1006.2020.04073
Dong J K, Tu W, Wang H B, Ying J W, Du J, Zhao X J, Zhao Q H, Huang W, Cai X K, Song B T. Establishment of a high efficient method for chromosome doubling and exploration of cold-resistant resources in potato. Acta Agron Sin, 2020, 46: 1659-1666. (in Chinese with English abstract)
[18] Dpooležel J, Binarová P, Lcretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant, 1989, 31: 113-120.
[19] Zhao Z F, Wang Y H, Huang S P. Plant chromosome count. For Res, 1990, 5: 503-508.
[20] Ugborogho R E, Oyelana O A. Meiosis, pollen morphology and perianth stomata of some taxa of Amaranthus L. (Amaranthaceae) in Nigeria. Feddes Repert, 1992, 103: 363-373.
[21] 魏亮, 徐建飞, 卞春松, 段绍光, 胡军, 刘杰, 庞万福, 于卓, 金黎平. 中国主要马铃薯栽培品种抗寒性的鉴定与评价. 植物生理学报, 2017, 53: 815-823.
Wei L, Xu J F, Bian C S, Duan S G, Hu J, Liu J, Pang W F, Yu Z, Jin L P. Identification and evaluation of the freezing tolerance of major potato varieties in China. Acta Phytophysiol Sin, 2017, 53: 815-823. (in Chinese with English abstract)
[22] Li P H. Frost killing temperatures of 60 tuber-bearing Solanum species. Am J Potato Res, 1977, 54: 452-456.
[23] Stone J M, Palta J P, Bamberg J B, Weiss L S, Harbage J F. Inheritance of freezing resistance in tuber-bearing Solanum species: evidence for independent genetic control of no acclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci USA, 1993, 90: 7869-7873.
pmid: 11607422
[24] Vega S E, Del Rio A H, Bamberg J B, Palta J P. Marker-assisted genetic analysis of non-acclimated freezing tolerance and cold acclimation capacity in a backcross Solarium population. Am J Potato Res, 2003, 80: 359-369.
[25] Bamberg J B, Palta J P, Vega S E. Solanum commersonii cytoplasm does not improve freezing tolerance in substitution backcross hybrids with frost-sensitive potato species. Am J Potato Res, 2005, 82: 251-254.
[26] Hermundstad S, Peloquin S J. Tuber yield and tuber traits of haploid-wild species F1 hybrids. Am J Potato Res, 1986, 29: 289-297.
[27] Tu W, Dong J K, Zou Y, Zhao Q H, Wang H B, Ying J W, Wu J H, Du J, Cai X K, Song B T. Interspecific potato somatic hybrids between Solanum malmeanum and S. tuberosum provide valuable resources for freezing-tolerance breeding. Plant Cell Tissue Organ Cult, 2021, 147: 73-83.
[28] Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev, 2014, 80: 283-383.
[29] Johnston S A, Hanneman R E. Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. Am J Potato Res, 1980, 57: 7-14.
[30] Chen Y K, Palta J P, Bamberg J B. 463 understanding genetics of freezing tolerance: expression of freezing tolerance in the interspecific F1 and somatic hybrids of potatoes. J Am Soc Hortic Sci, 1999, 34: 524.
[31] Cardi T, D’Ambrosio E, Consoli D, Puite K J, Ramulu K S. Production of somatic hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants. Theor Appl Genet, 1993, 87: 193-200.
doi: 10.1007/BF00223764 pmid: 24190212
[32] Tang D, Jia Y X, Zhang J Z, Li H B, Cheng L, Wang P, Bao Z G, Liu Z H, Feng S S, Zhu X J, Li D W, Zhu G T, Wang H R, Zhou Y, Zhou Y F, Bryan G J, Buell C R, Zhang C Z, Huang S W. Genome evolution and diversity of wild and cultivated potatoes. Nature, 2022, 606: 535-541.
[1] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[2] SUN Yi-Ming, TIAN Xia, WANG Shao-Xia, LIU Qing. Effects of phosphorus application levels on selenium absorption, distribution, and transformation in sweet potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1608-1615.
[3] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[4] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[5] WANG Xian-Ling, JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield [J]. Acta Agronomica Sinica, 2024, 50(5): 1271-1286.
[6] LI Hang-Yu, LIU Xin-Cheng, HE Wen-Ting, LIU Ke-Yi, QIAO Zhen-Hua, LYU Pin-Cang, ZHANG Xian-Hua, HE Yu-Chi, CAI De-Tian, SONG Zhao-Jian. Induction, identification and salt-alkali tolerance evaluation of tetraploid Haidao 86 [J]. Acta Agronomica Sinica, 2024, 50(4): 914-931.
[7] LIANG Xing-Wei, YANG Wen-Ting, JIN Yu, HU Li, FU Xiao-Xiang, CHEN Xian-Min, ZHOU Shun-Li, SHEN Si, LIANG Xiao-Gui. Is cob color variation in maize accidental or incidental to any agronomic traits? —An example of nationally approved common hybrids over the years [J]. Acta Agronomica Sinica, 2024, 50(3): 771-778.
[8] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[9] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[10] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[11] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[12] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[13] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[14] ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870.
[15] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .