Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 914-931.doi: 10.3724/SP.J.1006.2024.32035

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Induction, identification and salt-alkali tolerance evaluation of tetraploid Haidao 86

LI Hang-Yu1(), LIU Xin-Cheng1, HE Wen-Ting1, LIU Ke-Yi1, QIAO Zhen-Hua1, LYU Pin-Cang1, ZHANG Xian-Hua1, HE Yu-Chi1, CAI De-Tian1,2, SONG Zhao-Jian1,*()   

  1. 1School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
    2Wuhan Polyploid Biotechnology Co., Ltd., Wuhan 430345, Hubei, China
  • Received:2023-08-29 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-13
  • Contact: * E-mail: zjsong99@126.com
  • Supported by:
    Major Science and Technology Project of Wuhan and the Brand Agriculture Development Plan of Wuhan

Abstract:

Polyploidization is an important trend in plant evolution. Polyploid plants often have stronger resistance to stress than diploid ones. Haidao 86 is a rice germplasm resource with strong salt-alkali tolerance, which has important utilization value for the application of saline-alkaline land and the increase of grain yield. To make full use of the advantages of enhanced stress resistance in polyploid plants and breed new tetraploid rice varieties with stronger salt-alkali tolerance, diploid Haidao 86 was submitted for in vitro chromosome doubling to create autotetraploid Haidao 86 in this study. After stress treatment with NaCl, Na2CO3, and PEG-6000, the phenotypic indexes, physiological and biochemical indexes of tetraploid and diploid Haidao86 at germination and seedling stages were detected to understand the salt-alkali tolerance characteristics and differences between them. The results showed as follows: (1) By in vitro chromosome doubling, tetraploid plants can be efficiently induced, with a doubling rate of 27.63%. (2) Compared with diploid Haidao 86, the nuclear DNA content and root tip chromosome number of tetraploid Haidao 86 was doubled. There were significant changes in morphology and agronomic traits, such as plants becoming shorter, stems becoming thicker, effective panicles per plant decreasing, grain and thousand grain weight increasing, total grains per panicle, and filled grains per panicle decreasing, and seed setting rate decreasing. (3) At germination stage, the germination energy, germination rate, shoot length, root length, root number, and water content of tetraploid Haidao 86 were the highest, followed by diploid Haidao 86, and the control Huanghuazhan was the lowest. Tetraploid Haidao 86 had the lowest salt alkali damage rate and grade, followed by diploid Haidao 86, and the control Huanghuazhan had the highest salt alkali damage rate and grade. (4) At seedling stage, tetraploid Haidao 86 had the highest proline and chlorophyll content, the lowest malondialdehyde content and relative electrical conductivity, the highest superoxide dismutase and peroxidase activity, followed by diploid Haidao 86, and the control Huanghuazhan had the lowest proline and chlorophyll content, the highest malondialdehyde content and relative electrical conductivity, and the lowest superoxide dismutase and peroxidase activity. So tetraploid Haidao 86 had significant advantages in salt-alkali tolerance in both phenotypic indexes, and physiological and biochemical indexes, and had stronger salt-alkali tolerance than diploid Haidao 86. The results lay the foundation for in-depth research on the salt-alkali tolerance mechanism of Haidao 86, and provide the material and theoretical basis for the breeding of new salt-alkali resistant tetraploid rice varieties.

Key words: Haidao 86, in vitro chromosome doubling, tetraploid, salt-alkali tolerance, germination energy, germination rate, physiological and biochemical indexes

Table 1

Chromosome doubling data of Haidao 86"

批次
Batch
种胚数
NE
愈伤
组织数
NC
诱导率
IR
(%)
加倍
存活数
NSC
加倍存活率
SR
(%)
分化愈伤
组织数
NDC
分化率
DR
(%)
总成
苗数
TSN
四倍体
苗数
PSN
加倍率CDR
(%)
1 80 70 87.50 70 100 39 55.71 16 5 31.25
2 75 64 85.33 64 100 47 73.44 21 6 28.57
3 75 54 72.00 46 85.19 29 63.04 13 3 23.08
均值
Mean ± SD
76.67
±2.89
62.67
±8.08
81.61
±8.39
60.00
±12.49
95.06
±8.55
38.33
±9.02
64.06
±8.91
16.67
±4.04
4.67
±1.53
27.63
±4.16

Fig. 1

Nuclear DNA content analysis of Haidao 86-2x and Haidao 86-4x"

Fig. 2

Chromosome number analysis of Haidao 86-2x and Haidao 86-4x in root tip A: Haidao 86-2x (2n=2x=24); B: Haidao 86-4x (2n=4x=48)."

Table 2

Main agronomic traits of Haidao 86-2x and Haidao 86-4x"

材料
Material
株高
PH (cm)
单株有效穗数
EP
穗长
PL (cm)
粒长
GL (mm)
粒宽
GW (mm)
HD86-2x 181.96±3.34 15.40±1.14 26.79±1.87 7.01±0.04 3.03±0.04
HD86-4x 152.40±4.18** 10.20±1.30** 23.36±1.85* 9.04±0.06** 4.02±0.03**
材料
Material
芒长
AL (cm)
每穗总粒数
TG
每穗实粒数
FG
结实率
SSR (%)
千粒重
TGW (g)
HD86-2x 0.10-6.60 162.72±5.96 147.16±7.66 90.41±2.29 24.90±1.05
HD86-4x 0.10-7.20 86.60±9.44** 28.34±4.25** 32.74±3.41** 33.94±1.37**

Fig. 3

Comparison of morphology between Haidao 86-2x and Haidao 86-4x A: plants; B: panicles; C: grain length; D: grain width."

Fig. 4

Relative germination energy (A, B, C) and relative germination rate (D, E, F) under saline, alkaline, and osmotic stress A, D: saline stress by NaCl; B, E: alkaline stress by Na2CO3; C, F: osmotic stress by PEG-6000."

Table 3

Damage rate and damage grade under saline, alkaline and osmotic stress"

胁迫物质及浓度
Stress substance and
concentration (mmol L-1)
HD86-2x HD86-4x HHZ
盐碱害率
Damage rate (%)
等级Grade 盐碱害率
Damage rate (%)
等级Grade 盐碱害率
Damage rate (%)
等级Grade
0 (CK) 0±0.00 1 0±0.00 1 0±0.00 1
NaCl 50 0±0.00 b 1 0±0.00 b 1 14.43±1.96 a 1
NaCl 100 1.47±1.68 b 1 1.37±1.72 b 1 17.63±2.06 a 1
NaCl 150 13.97±1.15 a 1 3.17±3.37 b 1 22.07±7.13 a 3
NaCl 200 17.97±1.78 ab 1 9.10±2.10 b 1 29.43±10.86 a 3
NaCl 250 23.70±3.92 b 3 11.73±1.66 b 1 42.60±10.10 a 5
Na2CO3 10 7.80±1.91 b 1 7.80±1.91 b 1 16.67±3.35 a 1
Na2CO3 20 18.90±1.91 ab 1 7.80±1.91 b 1 28.90±15.76 a 3
Na2CO3 30 26.67±8.84 ab 3 15.57±7.68 b 1 38.90±11.69 a 3
Na2CO3 40 35.53±3.87 b 3 26.67±3.35c 3 60.00±3.30 a 5
Na2CO3 50 54.43±1.96 b 5 32.23±3.87 c 3 73.33±3.35 a 7
PEG 10 11.10±1.91 b 1 0±0.00 c 1 20.00±3.30 a 1
PEG 20 37.80±1.91 b 3 21.10±1.91c 3 55.57±5.10 a 5
PEG 30 47.77±7.74 b 5 44.43±9.64 b 5 77.77±3.87 a 7
PEG 40 81.13±7.68 ab 7 72.20±1.91 b 5 88.90±1.91 a 9
PEG 50 100±0.00 a 9 90.43±2.68 b 9 100.00±0.00 a 9

Table 4

Relative shoot length, root length and root number under saline, alkaline and osmotic stress (%)"

胁迫物质及浓度Stress substance and concentration (mmol L-1) 相对芽长Relative shoot length 相对根长Relative root length 相对根数Relative root number
HD86-2x HD86-4x HHZ HD86-2x HD86-4x HHZ HD86-2x HD86-4x HHZ
NaCl 50 86.86±3.00 a 93.75±6.10 a 59.60±12.04 b 76.58±5.58 a 96.65±14.38 a 51.23±13.49 b 89.17±13.46 a 89.44±11.11 a 56.71±3.93 b
NaCl 100 81.01±4.86 a b 88.98±11.51 a 50.92±23.88 b 80.30±2.22 a 93.28±9.37 a 36.86±12.37 b 81.22±10.28 a 87.10±12.67 a 52.46±0.98 b
NaCl 150 83.24±20.63 a 74.64±4.74 a 25.35±9.40 b 62.80±3.28 a 89.83±22.34 a 32.45±5.34 b 78.25±6.34 a 66.51±8.85 a 37.84±1.85 b
NaCl 200 49.98±9.74 ab 61.45±12.82 a 32.58±12.31 b 48.64±4.19 b 78.50±6.70 a 21.31±5.91 c 59.33±13.05 57.06±12.83 37.92±2.33
NaCl 250 64.94±9.10 a 57.09±6.16 a 22.22±5.35 b 43.65±9.55 ab 59.70±18.43 a 18.90±4.82 b 51.09±12.33 a 43.03±5.50 ab 21.23±15.89 b
Na2CO3 10 97.12±2.47 96.80±9.56 96.62±5.14 79.52±3.85 95.11±12.89 80.23±21.33 90.42±8.66 a 86.63±5.80 ab 77.05±4.87 b
Na2CO3 20 66.32±14.34 b 88.97±7.24 a 67.70±5.40 b 57.47±9.61 70.37±3.71 60.30±10.03 83.43±19.51 a 87.11±9.09 a 51.48±7.93 b
Na2CO3 30 63.50±9.61 ab 82.51±18.61 a 36.88±11.40 b 42.63±4.53 ab 58.80±15.00 a 35.17±3.55 b 51.81±17.25 a 68.47±10.08 a 25.73±4.09 b
Na2CO3 40 55.97±15.93 a 69.39±21.32 a 16.39±.9.28 b 28.19±8.24 41.77±17.01 21.36±7.12 48.44±8.87 a 39.28±5.38 a 20.64±5.12 b
Na2CO3 50 39.07±5.72 a 29.11±9.60 a 11.03±1.78 b 30.71±2.87 a 36.08±5.34 a 11.67±3.02 b 25.71±4.32 21.22±7.14 16.64±5.09
PEG 10 80.68±8.24 b 99.01±10.10 a 70.82±3.40 b 53.87±2.20 b 87.56±12.83 a 67.79±6.70 b 58.56±11.38 b 81.18±7.26 a 63.69±4.84 b
PEG 20 76.05±2.56 ab 90.24±19.11 a 58.52±4.83 b 37.31±3.74 51.96±15.36 31.34±18.60 46.48±8.52 45.22±3.21 57.01±1.65
PEG 30 30.35±3.86 b 84.38±16.76 a 55.23±13.28 b 30.80±5.95 ab 38.83±4.71 a 19.17±7.68 b 28.56±11.12 35.46±5.00 28.00±3.28
PEG 40 17.46±4.03 b 37.99±3.66 a 22.05±4.50 b 13.98±2.12 21.13±4.22 25.47±12.35 17.01±5.59 20.34±4.12 13.41±2.99
PEG 50 0±0.00 b 24.44±2.88 a 0±0.00 b 0±0.00 b 29.06±12.64 a 0±0.00 b 0±0.00 b 9.73±1.55 a 0±0.00 b

Fig. 5

Relative water content of seedling under saline, alkaline and osmotic stress A: saline stress by NaCl; B: alkaline stress by Na2CO3; C: osmotic stress by PEG-6000. Different lowercase letters in the same treatment indicate significant difference at the 0.05 probability level."

Fig. 6

Proline (A, B), chlorophyll (C, D), malondialdehyde (E, F) contents and relative electrical conductivity (G, H) under saline- alkaline stress A, C, E, G: saline stress by NaCl; B, D, F, H: alkaline stress by Na2CO3. Different lowercase letters in the same treatment indicate significant difference at the 0.05 probability level."

Fig. 7

Activities of SOD (A, B) and POD (C, D) under saline-alkaline stress A, C: saline stress by NaCl; B, D: alkaline stress by Na2CO3. Different lowercase letters in the same treatment indicate significant difference at the 0.05 probability level."

[1] Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun, 2018, 495: 286-291.
doi: 10.1016/j.bbrc.2017.11.043
[2] Sun H, Meng M H, Yan Z H, Lin Z X, Nie X H, Yang X Y. Genome-wide association mapping of stress tolerance traits in cotton. Crop J, 2019, 7: 77-88.
doi: 10.1016/j.cj.2018.11.002
[3] 巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展. 中国水稻科学, 2022, 36: 551-561.
doi: 10.16819/j.1001-7216.2022.211111
Wu M M, Zeng W, Zhai R R, Ye J, Zhu G F, Yu F M, Zhang X M, Ye S H. Research progress in molecular mechanism and breeding status of salt tolerance in rice. Chin J Rice Sci, 2022, 36: 551-561. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2022.211111
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制. 作物学报, 2022, 48: 1463-1475.
doi: 10.3724/SP.J.1006.2022.12027
Yan J Q, Gu Y B, Xue Z Y, Zhou T Y, Ge Q Q, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C, Zhou Z L, Xu D Y. Different responses of rice cultivars to salt stress and the underlying mechanisms. Acta Agron Sin, 2022, 48: 1463-1475. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12027
[5] 孙平勇, 张武汉, 舒服, 何强, 张莉, 阳祝红, 彭志荣, 谢芸, 邓华凤. 水稻资源芽期和苗期耐盐碱性综合评价及耐盐基因分析. 生物工程学报, 2022, 38: 252-263.
Sun P Y, Zhang W H, Shu F, He Q, Zhang L, Yang Z H, Peng Z R, Xie Y, Deng H F. Comprehensive evaluation of salt-alkali tolerance of rice germplasms at germination and seedling stages and analysis of salt-tolerant genes. Chin J Biotech, 2022, 38: 252-263. (in Chinese with English abstract)
[6] Foolad M R, Jones R A. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet, 1993, 87: 184-192.
doi: 10.1007/BF00223763 pmid: 24190211
[7] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46: 1591-1604.
doi: 10.3724/SP.J.1006.2020.04064
Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination. Acta Agron Sin, 2020, 46: 1591-1604. (in Chinese with English abstract)
[8] 徐婷, 柳延涛, 王海江, 李强, 王鹏, 董红业. 盐碱胁迫对花生种子发芽特性影响及盐害综合鉴定评价. 中国油料作物学报, 2022, 44: 1037-1047.
doi: 10.19802/j.issn.1007-9084.2021245
Xu T, Liu Y T, Wang H J, Li Q, Wang P, Dong H Y. Effects of saline-alkali stress on germination characteristics of peanut seeds and comprehensive identification and evaluation of salt damage. Chin J Oil Crop Sci, 2022, 44: 1037-1047. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2021245
[9] Lee S Y, Ahn J H, Cha Y S, Yun D W, Lee M C, Ko J C, Lee K S, Eun M Y. Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed, 2007, 126: 43-46.
doi: 10.1111/pbr.2007.126.issue-1
[10] 程海涛, 姜华, 薛大伟, 郭龙彪, 曾大力, 张光恒, 钱前. 水稻芽期与幼苗前期耐碱性状QTL定位. 作物学报, 2008, 34: 1719-1727.
doi: 10.3724/SP.J.1006.2008.01719
Cheng H T, Jiang H, Xue D W, Guo L B, Zeng D L, Zhang G H, Qian Q. Mapping of QTLs underlying tolerance to alkali at germination and early seedling stages in rice. Acta Agron Sin, 2008, 34: 1719-1727. (in Chinese with English abstract)
[11] Wang H, Wu Z, Chen Y, Yang C, Shi D. Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil Environ, 2011, 57: 286-294.
doi: 10.17221/36/2011-PSE
[12] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551-1561.
Zhang J, Gao W B, Yan L, Zhang Z W, Zhou H T, Wu B. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.). Acta Agron Sin, 2023, 49: 1551-1561. (in Chinese with English abstract)
[13] 程海涛, 姜华, 颜美仙, 董国军, 钱前, 郭龙彪. 两个水稻DH群体发芽期和幼苗前期耐碱性状QTL定位比较. 分子植物育种, 2008, 6: 439-450.
Cheng H T, Jiang H, Yan M X, Dong G J, Qian Q, Guo L B. QTL-mapping comparison of tolerance to alkali at germination period and early seeding stage between two different double haploid populations in rice. Mol Plant Breed, 2008, 6: 439-450. (in Chinese with English abstract)
[14] 祁栋灵, 郭桂珍, 李明哲, 杨春刚, 张俊国, 曹桂兰, 张三元, 徐锡哲, 周庆阳, 韩龙植. 碱胁迫下粳稻幼苗前期耐碱性的数量性状基因座检测. 作物学报, 2009, 35: 301-308.
doi: 10.3724/SP.J.1006.2009.00301
Qi D L, Guo G Z, Lee M C, Yang C G, Zhang J G, Cao G L, Zhang S Y, Suh S C, Zhou Q Y, Han L Z. Identification of quantitative trait loci for alkaline tolerance at early seedling stage under alkaline stress in japonica rice. Acta Agron Sin, 2009, 35: 301-308. (in Chinese with English abstract)
[15] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot, 2002, 47: 39-50.
doi: 10.1016/S0098-8472(01)00109-5
[16] 武永军, 何国强, 史艳茹, 梁宗锁. 不同pH值缓冲液处理下蚕豆叶片相对含水量、脯氨酸及丙二醛含量的变化. 干旱地区农业研究, 2009, 27(6): 169-172.
Wu Y J, He G Q, Shi Y R, Liang Z S. Change of relative water content, proline content and malondialdehyde content of Vicia faba leaves under different pH buffer treatments. Agric Res Arid Areas, 2009, 27(6): 169-172. (in Chinese with English abstract)
[17] 孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 2017, 53: 470-476.
Sun C C, Zhao H Y, Zheng C X. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling. Plant Physiol J, 2017, 53: 470-476. (in Chinese with English abstract)
[18] Xu S, Li J L, Zhang X Q, Wei H, Cui L J. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot, 2006, 56: 274-285.
doi: 10.1016/j.envexpbot.2005.03.002
[19] 杨升, 张华新, 张丽. 植物耐盐生理生化指标及耐盐植物筛选综述. 西北林学院学报, 2010, 25(3): 59-65.
Yang S, Zhang H X, Zhang L. Physiological and biochemical indices of salt tolerance and scanning of salt-tolerance plants: a review. J Northwest For Univ, 2010, 25(3): 59-65. (in Chinese with English abstract)
[20] 徐涵, 郭容芳, 张玉苗, 李蓉, 肖学宸, 曹子谊, 王姗姗, 张可轩, 陈晓慧, 陈晓东, 陈裕坤, 叶炜, 叶开温, 林玉玲, 赖钟雄. 植物耐盐性: 演化和盐基因组学. 热带作物学报, 2020, 41: 1979-1989.
doi: 10.3969/j.issn.1000-2561.2020.10.005
Xu H, Guo R F, Zhang Y M, Li R, Xiao X C, Cao Z Y, Wang S S, Zhang K X, Chen X H, Chen X D, Chen Y K, Ye W, Ye K W, Lin Y L, Lai Z X. Plant halotolerance: evolution and halogenomics. Chin J Trop Crops, 2020, 41: 1979-1989. (in Chinese with English abstract)
[21] Li Q, Yang A, Zhang W H. Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress. BMC Plant Bio, 2017, 17: 141.
[22] 张晓婷, 王雪松, 贾文飞, 徐振彪, 王颖, 吴林. 植物在盐处理下的研究进展. 北方园艺, 2021, (6): 137-143.
Zhang X T, Wang X S, Jia W F, Xu Z B, Wang Y, Wu L. Research progress of plants under salt treatment. Northern Hortic, 2021, (6): 137-143. (in Chinese with English abstract)
[23] 王宝山. 生物自由基与植物膜伤害. 植物生理学通讯, 1988, (2): 12-16.
Wang B S. Biological free radicals and membrane damage of plants. Plant Physiol Commun, 1988, (2): 12-16. (in Chinese)
[24] Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014, 2014: 701596.
[25] 彭振, 何守朴, 孙君灵, 许菲菲, 贾银华, 潘兆娥, 王立如, 杜雄明. 陆地棉苗期耐盐性的高效鉴定方法. 作物学报, 2014, 40: 476-486.
Peng Z, He S P, Sun J L, Xu F F, Jia Y H, Pan Z E, Wang L R, Du X M. An efficient approach to identify salt tolerance of upland cotton at seedling stage. Acta Agron Sin, 2014, 40: 476-486. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00476
[26] 凌云鹤, 周瑶, 景兵, 李春莲, 肖恩时, 王中华. 盐胁迫对向日葵幼苗生长及生理特性的影响. 干旱地区农业研究, 2019, 37(4): 139-145.
Ling Y H, Zhou Y, Jing B, Li C L, Xiao E S, Wang Z H. Effects of salt stress on growth and physiological characteristics of sunflower at seedling stage. Agric Res Arid Areas, 2019, 37(4): 139-145. (in Chinese with English abstract)
[27] Chen R S, Cheng Y F, Han S Y, Van Handel B, Dong L, Li X M, Xie X Q. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar-sea rice 86. BMC Genomics, 2017, 18: 655.
doi: 10.1186/s12864-017-4037-3
[28] Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6: 836-846.
doi: 10.1038/nrg1711 pmid: 16304599
[29] Fang Z, Morrell P L. Domestication: polyploidy boosts domestication. Nat Plants, 2016, 2: 16116.
doi: 10.1038/nplants.2016.116 pmid: 28221341
[30] Yu H, Lin T, Meng X B, Du H L, Zhang J K, Liu G F, Chen M J, Jing Y H, Kou L Q, Li X X, Gao Q, Liang Y, Liu X D, Fan Z L, Liang Y T, Cheng Z K, Chen M S, Tian Z X, Wang Y H, Chu C C, Zuo J R, Wan J M, Qian Q, Han B, Zuccolo A, Wing R A, Gao C X, Liang C Z, Li J Y. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184: 1-15.
doi: 10.1016/j.cell.2020.12.019
[31] Cao Y, Zhao K L, Xu J X, Wu L, Hao F Y, Sun M P, Dong J, Chao G T, Zhang H, Gong X F, Chen Y G, Chen C L, Qian W, Pires J C, Edger P P, Xiong Z Y. Genome balance and dosage effect drive allopolyploid formation in Brassica. Proc Natl Acad Sci USA, 2023, 120: e2217672120.
doi: 10.1073/pnas.2217672120
[32] Sattler M C, Carvalho C R, Clarindo W R. The polyploidy and its key role in plant breeding. Planta, 2016, 243: 281-296.
doi: 10.1007/s00425-015-2450-x pmid: 26715561
[33] Svacina R, Sourdille P, Kopecky D, Bartos J. Chromosome pairing in polyploid grasses. Front Plant Sci, 2020, 11: 1056.
doi: 10.3389/fpls.2020.01056 pmid: 32733528
[34] 张静昆, 曾鹏, 余泓, 孟祥兵, 李家洋. 多倍体水稻从头驯化: 育种策略与展望. 中国科学: 生命科学, 2021, 51: 1467-1476.
Zhang J K, Zeng P, Yu H, Meng X B, Li J Y. De novo domestication of polyploid rice: a novel breeding strategy and future prospects. Sci Sin (Vitae), 2021, 51: 1467-1476. (in Chinese with English abstract)
[35] Shi Q H, Guo X R, Su H D, Zhang Y X, Hu Z M, Zhang J, Han F P. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. Plant J, 2023, 113: 536-545.
doi: 10.1111/tpj.v113.3
[36] Cai D T, Chen J G, Chen D L, Dai B C, Zhang W, Song Z J, Yang Z F, Du C Q, Tang Z Q, He Y C, Zhang D S, He G C, Zhu Y G. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Sci China (Ser C, Life Sci Edn), 2007, 50: 356-366.
[37] 李懋学, 张赞平. 作物染色体及其研究技术. 北京: 中国农业出版社, 1996. pp 23-39.
Li M X, Zhang Z P. Crop Chromosome and Research Techniques. Beijing: China Agriculture Press, 1996. pp 23-39. (in Chinese)
[38] 盖钧镒. 作物育种学各论(第2版). 北京: 中国农业出版社, 2006. pp 47-49.
Gai J Y. Crop Breeding, 2nd edn. Beijing: China Agriculture Press, 2006. pp 47-49. (in Chinese)
[39] 祁栋灵, 韩龙植, 张三元. 水稻耐盐/碱性鉴定评价方法. 植物遗传资源学报, 2005, 6: 226-231.
Qi D L, Han L Z, Zhang S Y. Methods of characterization and evaluation of salt or alkaline tolerance in rice. J Plant Genet Resour, 2005, 6: 226-231. (in Chinese with English abstract)
[40] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 134-137.
Li H S. Principles and Techniques of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Press, 2000. pp 134-137. (in Chinese)
[41] 汪洪艳. 海稻86耐盐机理及基因定位的研究. 湖南师范大学硕士学位论文, 湖南长沙, 2019.
Wang H Y. Physiological and Gene Mapping for Salt Tolerance of Sea Rice 86. MS Thesis of Hunan Normal University, Changsha, Hunan, China, 2019 (in Chinese with English abstract)
[42] 宋文昌, 张玉华. 水稻四倍化及其对农艺性状和营养成分的影响. 作物学报, 1992, 18: 138-144.
Song W C, Zhang Y H. Rice tetraploid and its effect on agronomic traits and nutritional constituents. Acta Agron Sin, 1992, 18: 137-144. (in Chinese with English abstract)
[43] McKay H M, Mason W L. Physiological indicators of tolerance to cold storage in Sitka spruce and Douglas-fir seedlings. Can J For Res, 1991, 21: 890-901.
doi: 10.1139/x91-124
[44] 蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种的新战略: II.利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001, 27: 110-116.
Cai D T, Yuan L P, Lu X G. A new strategy of rice breeding in the 21st century: II. Searching a new pathway of rice breeding by utilization of double heterosis of wide cross and polyploidization. Acta Agron Sin, 2001, 27: 110-116. (in Chinese with English abstract)
[45] Jiang A M, Gan L, Tu Y, Ma H X, Zhang J M, Song Z J, He Y C, Cai D T, Xue X Q. The effect of genome duplication on seed germination and seedling growth of rice under salt stress. Aust J Crop Sci, 2013, 7: 1814-1821.
[46] Tu Y, Jiang A M, Gan L, Hossain M, Zhang J M, Peng B, Xiong Y G, Song Z J, Cai D T, Xu W F, Zhang J H, He Y C. Genome duplication improves rice root resistance to salt stress. Rice, 2014, 7: 15.
doi: 10.1186/s12284-014-0015-4 pmid: 25184027
[47] Yang P M, Huang Q C, Qin G Y, Zhao S P, Zhou J G. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica, 2014, 52: 193-202.
doi: 10.1007/s11099-014-0020-2
[48] 刘向东, 吴锦文, Shahid M Q. 新型四倍体水稻创制及其杂种优势利用研究进展. 生物技术通报, 2022, 38(1): 44-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0406
Liu X D, Wu J W, Shahid M Q. Development of neo-tetraploid rice and research progress on its heterosis mechanism. Biotechnol Bul, 2022, 38(1): 44-50. (in Chinese with English abstract)
[49] Nakamori E. On the occurrence of the tetraploid plant of rice, Oryza sativa L. Proc Imperial Acad, 1933, 9: 340-341.
doi: 10.2183/pjab1912.9.340
[50] Nayar N M.顾铭洪译. 水稻的起源和细胞遗传. 北京: 农业出版社, 1981. p 4.
Nayar N M. Gu M H, trans trans. Origin and Cytogenetics of Rice. Beijing: Agriculture Press, 1981. p 4. (in Chinese)
[51] 鲍文奎, 严育瑞. 几种禾谷类作物的同源多倍体和双二倍体的研究初报. 植物学报, 1956, 5: 297-316.
Bao W K, Yan Y R. A preliminary report on investigations of auto-polyploids and amphidiploids in some cereal crops. Acta Bot Sin, 1956, 5: 297-316. (in Chinese with English abstract)
[52] 鲍文奎, 秦瑞珍, 吴德瑜, 陈志勇, 宋文昌, 张玉华. 高产四倍体水稻无性系. 中国农业科学, 1985, 18(6): 64-66.
Bao W K, Qin R Z, Wu D Y, Chen Z Y, Song W C, Zhang Y H. High yielding tetraploid rice clones. Sci Agric Sin, 1985, 18(6): 64-66. (in Chinese with English abstract)
[53] 秦瑞珍, 吴德瑜, 陈志勇, 宋文昌, 张玉华, 鲍文奎. 四倍体水稻杂种选株无性系的研究. 作物学报, 1986, 12: 63-65.
Qin R Z, Wu D Y, Chen Z Y, Song W C, Zhang Y H, Bao W K. Investigation on the autotetraploid rice clones derived from elite plants of hybrid progenies. Acta Agron Sin, 1986, 12: 63-65. (in Chinese)
[54] 秦瑞珍, 程治军, 郭秀平. 利用同源四倍体花培途径创建水稻突变体群的研究. 作物学报, 2005, 31: 392-394.
Qin R Z, Cheng Z J, Guo X P. The establishment of mutant pool using anther culture of autotetrapolyploid rice. Acta Agron Sin, 2005, 31: 392-394. (in Chinese with English abstract)
[55] 陈志勇, 吴德瑜, 宋文昌, 张玉华, 秦瑞珍, 鲍文奎. 同源四倍体水稻育种研究的近期进展. 中国农业科学, 1987, 20: 20-24.
Chen Z Y, Wu D Y, Song W C, Zhang Y H, Qin R Z, Bao W K. Recent advanced in the autotetraploid rice breeding. Sci Agric Sin, 1987, 20: 20-24. (in Chinese with English abstract)
[56] 蔡得田, 陈冬玲, 陈建国, 刘幼琪. 组织培养和化学诱导相结合培育水稻多倍体的方法. 中国专利: ZL01133529.7, (2004-05-19).
Cai D T, Chen D L, Chen J G, Liu Y Q. A method of inducing polyploid rice through tissue culture together with chemical agent. Chinese Patent: ZL01133529.7, (2004-05-19). (in Chinese)
[57] Chen R R, Feng Z Y, Zhang X H, Song Z J, Cai D T. A new way of rice breeding: polyploid rice breeding. Plants, 2021, 10: 422.
doi: 10.3390/plants10030422
[58] 黄群策, 孙敬三, 白素兰. 同源四倍体水稻的生殖特性研究. 中国农业科学, 1999, 32(2): 14-18.
Huang Q C, Sun J S, Bai S L. Study on reproductive characters of autotetraploid rice. Sci Agric Sin, 1999, 32(2): 14-18. (in Chinese with English abstract)
[59] 黄春梅, 黄群策, 李志真. 同源四倍体水稻雌雄配子体的多态性. 福建农业大学学报, 1999, 28(1): 18-21.
Huang C M, Huang Q C, Li Z Z. Polymorphism of male and female gametophytes in autotetraploidy rice. J Fujian Agric Univ, 1999, 28(1): 18-21. (in Chinese with English abstract)
[60] 何金华, 程杏安, 陈志雄, 郭海滨, 刘向东, 卢永根. 同源四倍体水稻花粉母细胞减数分裂期间微管骨架组织和结构变化. 作物学报, 2010, 36: 1777-1785.
doi: 10.3724/SP.J.1006.2010.01777
He J H, Cheng X A, Chen Z X, Guo H B, Liu X D, Lu Y G. Changes in the pattern of organization of microtubules during meiosis in pollen mother cell of autotetraploid rice. Acta Agron Sin, 2010, 36: 1777-1785. (in Chinese with English abstract)
doi: 10.1016/S1875-2780(09)60080-8
[61] 张华华, 冯九焕, 卢永根, 杨秉耀, 刘向东. 利用激光扫描共聚焦显微镜观察同源四倍体水稻胚囊的形成与发育. 电子显微学报, 2003, 22: 380-384.
Zhang H H, Feng J H, Lu Y G, Yang B Y, Liu X D. Observation on formation and development of autotetraploid rice embryo sac using laser scanning confocal microscope. J Chin Electr Microscopy Soc, 2003, 22: 380-384. (in Chinese with English abstract)
[62] 郭海滨, 刘向东, 卢永根, 冯九焕. 同源四倍体水稻成熟胚囊的结构及异常现象. 中国水稻科学, 2006, 20: 283-289.
Guo H B, Liu X D, Lu Y G, Feng J H. Structure of mature embryo sac and its abnormal phenomena in autotetraploid rice. Chin J Rice Sci, 2006, 20: 283-289. (in Chinese with English abstract)
[63] 王兰, 刘向东, 卢永根, 冯九焕, 徐雪宾, 徐是雄. 同源四倍体水稻胚乳发育: 极核融合和胚乳细胞化. 中国水稻科学, 2004, 18: 281-289.
Wang L, Liu X D, Lu Y G, Feng J H, Xu X B, Xu S X. Endosperm development in autotetraploid rice: the fusion of polar nuclei and the formation of endosperm cell wall. Chin J Rice Sci, 2004, 18: 281-289. (in Chinese with English abstract)
[64] 张华华, 刘向东, 卢永根, 冯九焕. 同源四倍体水稻受精与胚胎形成过程的观察. 激光生物学报, 2006, 15(1): 9-14.
Zhang H H, Liu X D, Lu Y G, Feng J H. Observation on the double fertilization and embryogenesis in autotetraploid rice. Acta Laser Biol Sini, 2006, 15(1): 9-14 (in Chinese with English abstract).
[65] He Y C, Ge J, Wei Q, Jiang A M, Gan L, Song Z J, Cai D T. Using a polyploid meiosis stability (PMeS) line as a parent improves embryo development and the seed set rate of a tetraploid rice hybrid. Can J Plant Sci, 2011, 91: 325-335.
doi: 10.4141/CJPS09190
[66] Wu J W, Shahid M Q, Guo H B, Yin W, Chen Z X, Wang L, Liu X D, Lu Y G. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. Plant Reprod, 2014, 27: 181-196.
doi: 10.1007/s00497-014-0250-2 pmid: 25262386
[67] Li X, Shahid M Q, Xia J, Lu Z J, Fang N, Wang L, Wu J W, Chen Z X, Liu X D. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice. BMC Genomics, 2017, 18: 129.
doi: 10.1186/s12864-017-3526-8 pmid: 28166742
[68] Li X, Yu H, Jiao Y M, Shahid M Q, Wu J W, Liu X D. Genome-wide analysis of DNA polymorphisms, the methylome and transcriptome revealed that multiple factors are associated with low pollen fertility in autotetraploid rice. PLoS One, 2018, 13: e201854.
[69] Chen L, Shahid M Q, Wu J, Chen Z X, Wang L, Liu X D. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice. Mol Genet Genomics, 2018, 293: 1407-1420.
doi: 10.1007/s00438-018-1471-0 pmid: 29974305
[70] Li X, Shahid M Q, Wen M S, Chen S L, Yu H, Jiao Y M, Lu Z J, Li Y J, Liu X D. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice. BMC Plant Biol, 2020, 20: 82.
doi: 10.1186/s12870-020-2290-0 pmid: 32075588
[71] 涂升斌, 孔繁伦, 徐琼芳, 何涛. 水稻同源四倍体杂种优势利用技术新体系的研究. 中国科学院院刊, 2003, 18: 426-428.
Tu S B, Kong F L, Xu Q F, He T. Breakthrough in hybrid rice breeding with autotetraploid. Bull Chin Acad Sci, 2003, 18: 426-428. (in Chinese with English abstract)
[72] Tu S B, Luan L, Liu Y H, Long W B, Kong F L, He T, Xu Q F, Yan W G, Yu M Q. Production and heterosis analysis of rice autotetraploid hybrids. Crop Sci, 2007, 47: 2356-2363.
doi: 10.2135/cropsci2007.01.0058
[73] Guo H B, Mendrikahy J N, Xie L, Deng J F, Lu Z J, Wu J W, Li X, Shahid M Q, Liu X D. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci Rep, 2017, 7: 40139.
doi: 10.1038/srep40139 pmid: 28071676
[74] Yu H, Shahid M Q, Li Q H, Li Y D, Li C, Lu Z J, Wu J W, Zhang Z M, Liu X D. Production assessment and genome comparison revealed high yield potential and novel specific alleles associated with fertility and yield in neo-tetraploid rice. Rice, 2020, 13: 32.
doi: 10.1186/s12284-020-00387-3 pmid: 32494867
[75] Koide Y, Kuniyoshi D, Kishima Y. Fertile tetraploids: New resources for future rice breeding? Front in Plant Sci, 2020, 11: 1231.
doi: 10.3389/fpls.2020.01231
[76] 刘向东, 吴锦文, 陆紫君, Shahid M Q. 同源四倍体水稻: 低育性机理、改良与育种展望. 遗传, 2023, 45: 781-792.
Liu X D, Wu J W, Lu Z J, Shahid M Q. Autotetraploid rice: challenges and opportunities. Hereditas (Beijing), 2023, 45: 781-792. (in Chinese with English abstract)
[77] 谭禄宾, 孙传清. 四倍体野生稻快速驯化: 启动人类新农业文明. 植物学报, 2021, 56(2): 1-4.
Tan L B, Sun C Q. Rapid domestication of wild allotetraploid rice: starting a new era of human agricultural civilization. Chin Bull Bot, 2021, 56(2): 1-4. (in Chinese with English abstract)
[78] 朱英国. 杂交水稻研究50年. 科学通报, 2016, 61: 3740-3747.
Zhu Y G. Fifty years of hybrid rice research in China. Chin Sci Bull, 2016, 61: 3740-3747. (in Chinese with English abstract)
doi: 10.1360/N972016-01043
[79] 宋兆建, 杜超群, 戴兵成, 陈冬玲, 陈建国, 蔡得田. 两个强优势多倍体籼粳亚种杂交稻生长习性研究. 中国农业科学, 2006, 39: 1-9.
Song Z J, Du C Q, Dai B C, Chen D L, Chen J G, Cai D T. Studies on the growth habits and characteristics of two polyploid indica-japonica hybrid rice with powerful heterosis. Sci Agric Sin, 2006, 39: 1-9. (in Chinese with English abstract)
[80] 刘建新, 陈建国, 陈冬玲, 宋兆建, 戴兵成, 蔡得田. 强优势多倍体杂交水稻亲本的生长特性和开花习性. 中国农业科学, 2008, 41: 3456-3464.
Liu J X, Chen J G, Chen D L, Song Z J, Dai B C, Cai D T. Studies on growth and flowering characteristics of polyploid hybrid rice parents with strong heterosis. Sci Agric Sin, 2008, 41: 3456-3464. (in Chinese with English abstract)
[81] Zhang X H, Zuo B, Song Z J, Wang W, He Y C, Liu Y H, Cai D T. Breeding and study of two new photoperiod- and thermos- sensitive genic male sterile lines of polyploid rice (Oryza sativa L.). Sci Rep, 2017, 7: 14744.
doi: 10.1038/s41598-017-15241-8
[82] Chen Y, Shahid M Q, Wu J W, Deng R L, Chen Z X, Wang L, Liu G Q, Zhou H, Liu X D. Thermo-sensitive genic male sterile lines of neo-tetraploid rice developed through gene editing technology revealed high levels of hybrid vigor. Plants, 2022, 11: 1390.
doi: 10.3390/plants11111390
[83] Gan L, Huang B S, Song Z J, Zhang Y C, Zhang Y J, Chen S, Tong L Q, Wei Z S, Yu L X, Luo X B, Zhang X H, Cai D T, He Y C. Unique glutelin expression patterns and seed endosperm structure facilitate glutelin accumulation in polyploid rice seed. Rice, 2021, 14: 61.
doi: 10.1186/s12284-021-00500-0 pmid: 34224013
[84] 湛明月. 四倍体水稻高蛋白品系的蛋白品质及其机理初步研究. 湖北大学硕士学位论文, 湖北武汉, 2023.
Zhan M Y. Preliminary Studies on the Protein Quality and Its Mechanism of High Protein Tetraploid Rice Lines. MS Thesis of Hubei University, Wuhan, Hubei, China, 2023. (in Chinese with English abstract)
[85] Ge S, Sang T, Lu B R, Hong D Y. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA, 1999, 96: 14400-14405.
doi: 10.1073/pnas.96.25.14400 pmid: 10588717
[86] Wing R A, Purugganan M D, Zhang Q F. The rice genome revolution: from an ancient grain to green super rice. Nat Rev Genet, 2018, 19: 505-517.
doi: 10.1038/s41576-018-0024-z pmid: 29872215
[87] 何光存. 细胞工程与分子生物学相结合: 野生稻优异种质资源利用的有效途径. 生物工程进展, 1998, 18(2): 41-45.
He G C. Cellular and molecular approaches in exploitation of useful genes in wild rice. Prog Biotechnol, 1998, 18(2): 41-45. (in Chinese with English abstract)
[88] Sun C Q, Wang X K, Li Z C, Yoshimura A, Iwata N. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet, 2001, 102: 157-162.
doi: 10.1007/s001220051631
[89] Soltis P S. Ancient and recent polyploid in angiosperm. New Phytol, 2005, 166: 1-5.
doi: 10.1111/nph.2005.166.issue-1
[90] Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131: 452-462.
doi: 10.1016/j.cell.2007.10.022 pmid: 17981114
[91] Jiang W K, Liu Y L, Xia E H, Gao L Z. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol, 2013, 161: 1844-1861.
doi: 10.1104/pp.112.200147
[92] Lagudah E S, Appels R. Wheat as a model system. In: Chapman G P, eds. Grass Evolution and Domestication. Cambridge: Cambridge University Press, 1992. pp 225-265.
[93] Wang A Y, Zhang X H, Yang C H, Song Z J, Du C Q, Chen D L, He Y C, Cai D T. Development and characterization of synthetic amphiploid (AABB) between Oryza sativa and Oryza punctata. Euphytica, 2013, 189: 1-8.
doi: 10.1007/s10681-012-0821-y
[94] Zhang X H, Wang W, Jin J J, Liao S R, Liu X N, Song Z J, Cai D T. Cytomorphological characterization of the backcross progeny of synthetic amphiploid rice (AABB) and tetraploid Oryza sativa (AAAA). J Agric Sci, 2013, 5(12): 30-37.
[95] Zhang X H, Wang A Y, Du C Q, Song Z J, Wang W, He Y C, Cai D T. An efficient method of developing synthetic allopolyploid rice (Oryza spp.). Genet Resour Crop Ev, 2014, 61: 809-816.
doi: 10.1007/s10722-013-0075-0
[96] 王爱云. 水稻异源多倍体的构建及其细胞遗传学研究. 湖北大学硕士学位论文, 湖北武汉, 2003.
Wang A Y. Construction and Cytogenetical Study of Rice Allopolyploid. MS Thesis of Hubei University, Wuhan, Hubei, China, 2003. (in Chinese with English abstract)
[97] 杜超群. 栽培稻/野生稻杂种及杂种多倍体的创造和研究. 湖北大学硕士学位论文, 湖北武汉, 2006.
Du C Q. Creation and Studies of Hybrids and Polyploid Hybrids between Cultivated Rice and Wild Rice. MS Thesis of Hubei University, Wuhan, Hubei, China, 2006. (in Chinese with English abstract)
[98] 祝剑峰, 刘幼琪, 王爱云, 宋兆建, 陈冬玲, 蔡得田. 异源六倍体水稻AACCDD和三倍体水稻ACD生殖特性的细胞胚胎学研究. 植物遗传资源学报, 2008, 9: 350-357.
Zhu J F, Liu Y Q, Wang A Y, Song Z J, Chen D L, Cai D T. Cellular and embryologic studies on allohexaploid rice AACCDD and triploid rice ACD. J Plant Genet Resour, 2008, 9: 350-357. (in Chinese with English abstract)
[99] 宋兆建, 杜超群, 胡亚平, 唐志强, 陈冬玲, 何玉池, 何光存, 蔡得田. 栽培稻与疣粒野生稻杂种二倍体和四倍体的鉴定及比较. 作物学报, 2010, 36: 1144-1152.
doi: 10.3724/SP.J.1006.2010.01144
Song Z J, Du C Q, Hu Y P, Tang Z Q, Chen D L, He Y C, He G C, Cai D T. Identification and comparison of diploid and tetraploid hybrids of Oryza sativa × O. meyeriana. Acta Agron Sin, 2010, 36: 1144-1152. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01144
[100] He W T, Zhang X H, Lv P C, Wang W, Wang J, He Y C, Song Z J, Cai D T. Full‑length transcriptome reconstruction reveals genetic differences in hybrids of Oryza sativa and Oryza punctata with different ploidy and genome compositions. BMC Plant Biol, 2022, 22: 131.
doi: 10.1186/s12870-022-03502-2
[101] 秦瑞珍, 宋文昌, 郭秀平. 同源四倍体水稻花药培养在育种中的应用. 中国农业科学, 1992, 25: 6-13.
Qin R Z, Song W C, Guo X P. Studies on the application of anther culture of autotetraploid rice in breeding. Sci Agric Sin, 1992, 25: 6-13. (in Chinese with English abstract)
[102] 丁乙. 水稻籼粳交四倍体回复二倍体后代的遗传效应分析. 吉林农业大学硕士学位论文, 吉林长春, 2022.
Ding Y. Analysis of Genetic Effects of Tetraploid Reverted Diploid Progenies of Indica-Japonica Rice. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2022. (in Chinese with English abstract)
[103] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探. 作物学报, 2023, 49: 2039-2050.
doi: 10.3724/SP.J.1006.2023.22057
Song Z J, Feng Z Y, Qu T G, Lyu P C, Yang X L, Zhan M Y, Zhang X H, He Y C, Liu Y H, Cai D T. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice. Acta Agron Sin, 2023, 49: 2039-2050. (in Chinese with English abstract)
[1] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[2] ZHANG Jing, GAO Wen-Bo, YAN Lin, ZHANG Zong-Wen, ZHOU Hai-Tao, WU Bin. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1551-1561.
[3] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[4] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
[5] JIAN Hong-Ju,XIAO Yang,LI Jia-Na,MA Zhen-Zhen,WEI Li-Juan,LIU Lie-Zhao. Mappingof QTLs for OilseedGermination RateunderStresses of Salinity and Drought in Brassica napus L. Based on SNP Genetic Map [J]. Acta Agron Sin, 2014, 40(04): 629-635.
[6] GAO Wei, LIU Fang, LI Shao-Hui, WANG Chun-Ying, ZHANG Xiang-Di, WANG Yu-Hong, WANG Kun-Bo. Analysis of Genetic Diversity of Allotetraploid Cotton Based on SSR [J]. Acta Agron Sin, 2010, 36(11): 1902-1909.
[7] HE Jin-Hua, CHENG Xing-An, CHEN Zhi-Xiong, GUO Hai-Bin, LIU Xiang-Dong, LU Yong-Gen. Changes in the Pattern of Organization of Microtubules during Meiosis in Pollen Mother Cell (PMC) of Autotetraploid Rice [J]. Acta Agron Sin, 2010, 36(10): 1777-1785.
[8] YUAN Jun-Hai, CHEN Wan-Quan. Leaf Rust Resistance in 27 Diploids and 10 Tetraploids of Wheat Relatives [J]. Acta Agron Sin, 2010, 36(08): 1393-1400.
[9] HUANG Ming-Li;DENG Xi-Ping;ZHOU Sheng-Lu;ZHAO Yu-Zong;Shinobu INANAGA. Nutrient Uptake and Use Efficiency of Diploid, Tetraploid, and Hexaploid Wheats under Different Water and Nutrition Conditions [J]. Acta Agron Sin, 2007, 33(05): 708-716.
[10] CHEN Hong;QIN Rui-Zhen. Improvement of Callus Induction Efficiency in Anther Culture of Autotetraploid Rice [J]. Acta Agron Sin, 2007, 33(01): 120-125.
[11] ZHAO Ming-Hui;LIU Xiang-Dong;LU Yong-Gen;LI Jin-Quan;GUO Hai-Bin. Chromosome Pairing Behavior and Reproduction in the Hybrid Developed by the Interaction of Different Pollen Sterile Genes in Autotetraploid Rice [J]. Acta Agron Sin, 2006, 32(10): 1472-1478.
[12] LIU Zhi-Peng; YANG Qing-Chuan; HU Tian-Ming; YAN Long-Feng and WANG Chao. Genetic Diversity of Autotetraploid Alfalfa with Different Salt-tolerant Trait Based on SSR Marker Analysis [J]. Acta Agron Sin, 2006, 32(04): 630-632.
[13] XIAO Bo;LIU Xiang-Dong;LU Yong-Gen;LI Jin-Quan;ZHAO Xing-Juan. Structure and Fertilization of Embryo Sac in Intersubspecific Hybrids of Autotetraploid Rice [J]. Acta Agron Sin, 2005, 31(09): 1150-1156.
[14] REN Gan;PENG Min;TANG Wei-Jiang; XU Cai-Guo;XING Yong-Zhong. QTL Associated with Seed Aging in Rice [J]. Acta Agron Sin, 2005, 31(02): 183-187.
[15] WANG Sheng-Hua;CHEN Fang;ZHOU Kai-Da. In vitro Pollen Germination of Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2000, 26(05): 609-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .