Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 932-943.doi: 10.3724/SP.J.1006.2024.34122

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.)

LI Hai-Fen(), LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang()   

  1. Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Center of National Center of Oilseed Crops Improvement / Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
  • Received:2023-07-14 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-14
  • Contact: * E-mail: Liangxuanqiang@gdaas.cn
  • Supported by:
    Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan in Guangdong Province(2022SDZG05);Guangdong Provincial Key Research and Development Program- Modern Seed Industry(2020B020219003);Guangdong Provincial Key Research and Development Program- Modern Seed Industry(2022B0202060004);China Agriculture Research System of MOF and MARA(CARS-13);National Natural Science Foundation of China(32001442);National Natural Science Foundation of China(32172051);Guangdong Basic and Applied Basic Research Foundation(2021A1515010811);Guangdong Basic and Applied Basic Research Foundation(2023A1515010098);Technology Special Fund of Guangdong Province Agriculture and Rural Affairs Department(2019KJ136-02);Guangdong Province Overseas Master Teacher Program(207124505346);Agricultural Competitive Industry Discipline Team Building Project of Guangdong Academy of Agricultural Sciences(202104TD)

Abstract:

Gibberellin 3-beta-dioxygenase (GA3ox) is one of the key enzymes involved in gibberellin biosynthesis, which can regulate plant growth and development by affecting gibberellin formation. There were no systematic studies in peanut genome. In this study, AhGA3ox family genes were identified from the genome database of cultivated peanut species by bioinformatics, and the distribution, structure, evolutionary characteristics, physical and chemical properties, promoter cis-acting elements were also analyzed. The relative expression pattern of AhGA3oxs in different peanut tissues was analyzed by qRT-PCR, and the relative expression level of in shell of two peanut lines with different pod size were also analyzed. The results showed that 7 AhGA3oxs were distributed on 7 chromosomes of peanut, all of which were composed of 1 intron and 2 exons. All the AhGA3ox proteins contained 1 DIOX_N domain and 1 2OG-FeII_Oxy domain. Phylogenetic analysis showed that they were closely related to GA3ox proteins of soybean,. The AhGA3oxs showed obvious tissue expression specificity in root, stem, leaf, flower and peg. The expression levels of AhGA3oxs were not only different in different development stages of the peanut shell, but also different at the same development stage of the two lines. Interestingly, the relative expression levels in large pod lines were significantly higher than those in small pod lines at most development stages. Therefore, we predict that the gene expression of AhGA3ox gene family may promote the formation of large pod.

Key words: peanut, GA3ox, the relative expression analysis, bioinformatics, functional analysis

Table 1

Primers used for qRT-PCR"

引物名称
Primer name
引物序列
Primers sequence (5°-3°)
引物名称
Primer name
引物序列
Primers sequence (5°-3°)
actin-F CCATTGAGAAGACCTACGA Ahy_A09g046613-F CACATACGTCCACATCCAA
actin-R AATCATGGAAGGCTGGAA Ahy_A09g046613-R TGGTTCCAAGGTACTCATTC
Ahy_A06g030353-F TGGATCAAGTGGTTTCTC Ahy_B06g085507-F GTAGTTTCTCCTTTGGTTCCGAAT
Ahy_A06g030353-R CAAGGCTTTGTCAAGATAC Ahy_B06g085507-R GGCTTTGTCAAGATACTTGTCCTT
Ahy_A07g037374-F TGTCCACATGCGAAGCTA Ahy_B09g094759 -F TCCACATCCAAAGCTAATAGGC
Ahy_A07g037374-R TGGTGCCAAGGTACTCATT Ahy_B09g094759 -R GGTTCCAAGGTACTCATTCCAA
Ahy_A08g040809-F ATTCCCACGCATGGTTTCA Ahy_B08g089553-F CGTTACTCTTTGGCTTATTTCC
Ahy_A08g040809-R CGATGATGGGTATGGATGGAAT Ahy_B08g089553-R CTTCACACTAACCCTACGAAAT

Table 2

Prediction of physicochemical properties of AhGA3ox family proteins"

基因编号
Gene ID
CDS大小
CDS size (bp)
外显子
数目
No. of exons
亚细胞定位
Subcellular
localization
等电点
pI
不稳定
参数
Instability index
脂溶指数
Aliphatic index
亲水性
平均数
GRAVY
带正电荷残基数
Asp + Glu
带负电荷残基数Arg+Lys
Ahy_A06g030353 1047 2 细胞核 Nucleus 5.53 39.42 82.66 -0.358 46 36
Ahy_A07g037374 1125 2 细胞核 Nucleus 8.11 37.63 86.29 -0.221 31 33
Ahy_A08g040809 1056 2 细胞质 Cytoplasm 7.30 36.94 77.87 -0.434 40 40
Ahy_A09g046613 1068 2 细胞质和细胞核
Cytoplasm and nucleus
7.68 39.04 87.08 -0.231 30 31
Ahy_B06g085507 1047 2 细胞骨架 Cytoskeleton 5.53 39.09 82.66 -0.370 46 36
Ahy_B08g089553 1062 2 细胞质 Cytoplasm 6.49 37.31 75.79 -0.462 43 39
Ahy_B09g094759 1092 2 细胞核 Nucleus 8.08 39.45 85.71 -0.287 31 33

Fig. 1

Chromosomal distribution GA3ox gene family in peanut genome The black bars represent the chromosomes. GA3ox genes are marked to the right of the chromosomes. The scale bar on the left indicates the length of the chromosomes."

Fig. 2

Phylogenetic and structural analysis of AhGA3ox gene family and encoded proteins in peanut (A) phylogenetic tree is constructed with amino acid sequences of AhGA3ox; (B) the structure of AhGA3ox genes. Green rectangles, yellow rectangles, and black line represent UTR, CDS, and introns; (C) the structure of AhGA3ox protein. Blue and purple rectangles represent DIOX_N and 2OG-FeII_Oxy domains."

Fig. 3

Phylogenetic analysis of GA3ox family The light blue background was tetraploid wild peanut (Arachis moticolar), the green area was cultivated soybean (Glycine max), the blue area was rice (Oryza sativa), the light gray area was Arabidopsis (Arabidopsis thaliana), the yellow area was A genomic diploid wild peanut (Arachis duranensis), the brown area was wild peanut with B genome diploid (Arachis ipaensis), the purple area was wild soybean (Glycine soja), the red area was tetraploid cultivated peanut (Arachis hypogaea L.). Phylogenetic relationships among 71 GA3ox proteins in peanut, arabidopsis, rice, soybean and wild soybean. GA3ox proteins were divided into 4 classes. The phylogenetic tree is built on the basis of the complete amino acid sequences of GA3ox proteins by MEGA-X with maximum likelihood method. Bootstrap=1000."

Fig. 4

Distribution of conserved motifs in GA3ox proteins Phantom analysis is performed by MEME program. The height of different amino acid represents repeatability. The scale bar at the bottom indicates the length of the motif protein sequence. On the left are the names of the protein series. The different colors on the right correspond to the positions of different conserved motifs on the series, respectively."

Fig. 5

Prediction of cis-acting elements in the promoters of AhGA3ox gene family Different colored boxes represent different cis-elements, and the scale at the bottom represents the length of the promoter sequence."

Table 3

Comparison of agronomic traits of two peanut lines"

性状Trait P92 P92-1
株高 Plant height (cm) 36.59±1.11 38.33±1.82
分枝数 Branching number 10.33±0.47 9.67±0.47
结果数 Pod number 39.00±0.83 36.00±0.50
荚壳厚度 Pod shell thickness(mm) 1.15±0.06 1.48±0.22*
荚果长 Pod length (mm) 19.21±1.03 35.11±1.59**
荚果宽 Pod width (mm) 12.73±0.19 15.39±0.26**

Fig. 6

Relative expression pattern of AhGA3ox genes family in different plant tissues of P92 and P92-1 Different lowercase letters means significant difference at the 0.05 probability level in peanut tissue."

Fig. 7

Relative expression pattern of AhGA3ox gene family in the shell of two peanut lines with different pod size S1-S5 represents the 10th, 17th, 24th, 31st, and 38th day after the gynophore enters the soil, respectively. *, ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

[1] Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochem J, 2012, 444: 11-25.
doi: 10.1042/BJ20120245 pmid: 22533671
[2] Yamaguchi S, Kamiya Y. Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol, 2000, 41: 251-257.
doi: 10.1093/pcp/41.3.251 pmid: 10805587
[3] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378
[4] Hedden P. Gibberellin metabolism and its regulation. J Plant Growth Regul, 2001, 20: 317-318.
doi: 10.1007/s003440010039 pmid: 11986757
[5] Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909-8914.
doi: 10.1073/pnas.141239398 pmid: 11438692
[6] Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523-530.
doi: 10.1016/s1360-1385(00)01790-8 pmid: 11120474
[7] Würschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. A modern Green Revolution gene for reduced height in wheat. Plant J, 2017, 92: 892-903.
doi: 10.1111/tpj.2017.92.issue-5
[8] Pearce S, Huttly A K, Prosser I M, Li Y D, Vaughan S P, Gallova B, Patil A, Coghill J A, Dubcovsky J, Hedden P, Phillips A L. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol, 2015, 15: 130.
doi: 10.1186/s12870-015-0520-7
[9] Nomura T, Jager C E, Kitasaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takatsuto S, Fujioka S, Smith J J, Kerckhoffs L H J, Reid J B, Yokota T. Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in thelk mutant of pea. Plant Physiol, 2004, 135: 2220-2229.
doi: 10.1104/pp.104.043786
[10] Cheng J, Zhang M, Tan B, Jiang Y, Zheng X, Ye X, Guo Z, Xiong T, Wang W, Li J, Feng J. A single nucleotide mutation in GID 1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach. Plant Biotechnol J, 2019, 17: 1723-1735.
doi: 10.1111/pbi.13094 pmid: 30776191
[11] Chiang H H, Hwang I, Goodman H M. Isolation of the Arabidopsis GA4 locus. Plant Cell, 1995, 7: 195-201.
pmid: 7756830
[12] 殷小林, 张超, 王有成, 袁定阳, 谭炎宁, 段美娟. 水稻赤霉素3β羟化酶基因(OsGA3ox1)同源基因的生物信息学分析. 分子植物育种, 2019, 17: 1054-1060.
Yin X L, Zhang C, Wang Y S, Yuan D Y, Tan Y N, Duan M J. Bioinformatics analysis of homologous genes of gibberellin 3β hydroxylase gene (OsGA3ox1) in rice. Mol Plant Breed, 2019, 17: 1054-1060. (in Chinese with English abstract)
[13] He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J. Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape (Vitis vinifera L.). Genes (Basel), 2019, 10: 680.
doi: 10.3390/genes10090680
[14] Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, Mccarty D R, Tan B. The maize DWARF1 encodes a gibberellin 3-Oxidase and is dual localized to the nucleus and cytosol. Plant Physiol, 2014, 166: 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533
[15] Dalmadi A, Kalo P, Jakab J, Saskoi A, Petrovics T, Deak G, Kiss G B. Dwarf plants of diploid Medicago sativa carry a mutation in the gibberellin 3-beta-hydroxylase gene. Plant Cell Rep, 2008, 27: 1271-1279.
doi: 10.1007/s00299-008-0546-5 pmid: 18504589
[16] Wei C, Zhu C, Yang L, Zhao W, Ma R, Li H, Zhang Y, Ma J, Yang J, Zhang X. A point mutation resulting in a 13 bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon. Hortic Res, 2019, 6: 132.
doi: 10.1038/s41438-019-0213-8
[17] Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S, Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D. Downregulation of a gibberellin 3beta-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol, 2022, 235: 502-517.
doi: 10.1111/nph.v235.2
[18] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[19] Davière J, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147-1151.
doi: 10.1242/dev.087650
[20] Tudzynski B, Kawaide H, Kamiya Y. Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curr Genet, 1998, 34: 234-240.
pmid: 9745028
[21] van Schie C C, Ament K, Schmidt A, Lange T, Haring M A, Schuurink R C. Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J, 2007, 52: 752-762.
doi: 10.1111/j.1365-313X.2007.03273.x pmid: 17877699
[22] Appleford N E, Evans D J, Lenton J R, Gaskin P, Croker S J, Devos K M, Phillips A L, Hedden P. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta, 2006, 223: 568-582.
doi: 10.1007/s00425-005-0104-0 pmid: 16160850
[23] Sun Y, Zhang H, Fan M, He Y, Guo P. A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon (Citrullus lanatus L.). Sci Rep, 2020, 10: 14915.
doi: 10.1038/s41598-020-71861-7
[24] Fukazawa J, Mori M, Watanabe S, Miyamoto C, Ito T, Takahashi Y. DELLA-GAF1 Complex is a main component in gibberellin feedback regulation of GA20 oxidase 2. Plant Physiol, 2017, 175: 1395-1406.
doi: 10.1104/pp.17.00282 pmid: 28916594
[25] Mitchum M G, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun T P. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J, 2006, 45: 804-818.
doi: 10.1111/tpj.2006.45.issue-5
[26] 赵慧君, 仝宗勇, 余海忠, 孙永林. 苹果赤霉素3-氧化酶1 (MdGA3ox1)启动子区的克隆及序列分析. 中国农学通报, 2012, 28(10): 146-150.
Zhao H J, Tong Z Y, Yu H Z, Sun Y L. Cloning and sequence analysis of the promoter region of gibberellin 3-oxidase 1 (MdGA3ox1) in apple. Chin Agric Sci Bull, 2012, 28(10): 146-150. (in Chinese with English abstract)
[27] 赵慧君, 余海忠, 王海燕, 朱文权. 苹果赤霉素3-氧化酶1 (MdGA3ox1)在烟草中的表达研究, 湖北文理学报, 36(2): 17-19.
Zhao H J, Yu H Z, Wang H Y, Zhu W Q. Study on the expression of gibberellin 3-oxidase 1 (MdGA3ox1) in apple in tobacco. Hubei J Arts Sci, 36(2): 17-19. (in Chinese with English abstract)
[28] Radi A, Lange T, Niki T, Koshioka M, Lange M J. Ectopic expression of pumpkin gibberellin oxidases alters gibberellin biosynthesis and development of transgenic Arabidopsis plants. Plant Physiol, 2006, 140: 528-536.
doi: 10.1104/pp.105.073668
[29] Reinecke D M, Wickramarathna A D, Ozga J A, Kurepin L V, Jin A L, Good A G, Pharis R P. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea. Plant Physiol, 2013, 163: 929-945.
doi: 10.1104/pp.113.225987 pmid: 23979969
[30] Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T. Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development. Plant Physiol, 2004, 135: 221-230.
pmid: 15122019
[1] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[2] WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813.
[3] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[4] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[5] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[6] ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41.
[7] WANG Heng-Bo, FENG Chun-Yan, ZHANG Yi-Xing, XIE Wan-Jie, DU Cui-Cui, WU Ming-Xing, ZHANG Ji-Sen. Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence [J]. Acta Agronomica Sinica, 2024, 50(1): 110-125.
[8] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[9] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[10] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[11] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[12] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[13] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[14] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[15] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .