Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 944-956.doi: 10.3724/SP.J.1006.2024.34141
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Hui(), ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting()
[1] | 刘娟, 张乃明, 于泓, 张靖宇, 李芳艳, 于畅, 杜红蝶. 重金属污染对水稻土微生物及酶活性影响研究进展. 土壤, 2021, 53: 1152-1159. |
Liu J, Zhang L M, Yu H, Zhang J Y, Li F Y, Yu C, Du H D. Effects of heavy metal pollution on microorganism and enzyme activity in paddy soil: a review. Soils, 2021, 53: 1152-1159. (in Chinese with English abstract) | |
[2] | 苏芸芸. 乙酰胆碱调节烟草Cd胁迫响应的生理机制. 西北农林科技大学博士学位论文, 陕西杨凌, 2021. |
Su Y Y. The Physiological Response Mechanism of Acetylcholine Regulating Cadmium Stress in Tobacco. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2021. (in Chinese with English abstract) | |
[3] |
Järup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharm, 2009, 238: 201-208.
doi: 10.1016/j.taap.2009.04.020 |
[4] |
Shifaw E. Review of heavy metals pollution in China in agricultural and urban soils. J Health Pollut, 2018, 8: 180607.
doi: 10.5696/2156-9614-8.18.180607 |
[5] |
Li D, He T, Saleem M, He G. Metalloprotein-specific or critical amino acid residues: perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress. Int J Mol Sci, 2022, 23: 1734.
doi: 10.3390/ijms23031734 |
[6] |
Yang Z, Yang F, Liu J L, Wu H T, Yang H, Shi Y, Jie L, Zhang Y F, Luo Y R, Chen K M. Heavy metal transporters: functional mechanisms regulation and application in phytoremediation. Sci Total Environ, 2022, 809: 151099.
doi: 10.1016/j.scitotenv.2021.151099 |
[7] |
Haider F U, Cai L Q, Coulter J A, Cheema S A, Wu J, Zhang R Z, Ma W J, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotox Environ Safe, 2021, 211: 111887.
doi: 10.1016/j.ecoenv.2020.111887 |
[8] |
de Araújo R P, de Almeida A A F, Pereira L S, Mangabeira P A O, Souza J O, Pirovani C P, Ahnert D, Baligar V C. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotox Environ Safe, 2017, 144: 148-157.
doi: S0147-6513(17)30331-7 pmid: 28614756 |
[9] |
Dong X X, Yang F, Yang S P, Yan C Z. Subcellular distribution and tolerance of cadmium in Canna indica L. Ecotox Environ Safe, 2019, 185: 109692.
doi: 10.1016/j.ecoenv.2019.109692 |
[10] |
Guo L, Chen A, He N, Yang D, Liu M D. Exogenous silicon alleviates cadmium toxicity in rice seedlings in relation to Cd distribution and ultrastructure changes. J Soil Sediment, 2018, 18: 1691-1700.
doi: 10.1007/s11368-017-1902-2 |
[11] |
Raza A, Habib M, Kakavand S N, Zahid Z, Zahra N, Sharif R. Hasanuzzaman M. Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology, 2020, 9: 177.
doi: 10.3390/biology9070177 |
[12] | Wang B, Wei H, Xue Z, Zhang W H. Gibberellins regulate iron deficiency response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Ann Bot, 2017, 119: 945-956. |
[13] |
Kumari A, Das P, Parida A K, Agarwal P K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci, 2015, 6: 537.
doi: 10.3389/fpls.2015.00537 pmid: 26284080 |
[14] |
Kim J M, To T K, Matsui A, Tanoi K, Kobayashi N I, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S, Bashir1 K, Rasheed S, Ando M, Takeda H, Kawaura K, Kusano M, Fukushima A, Endo T A, Kuromori T, Ishida J, Morosawa T, Tanaka M, Torii C, Takebayashi Y, Sakakibara H, Ogihara Y, Saito K, Shinozaki K, Devoto A, Seki M. Acetate-mediated novel survival strategy against drought in plants. Nat Plants, 2017, 3: 17097.
doi: 10.1038/nplants.2017.97 |
[15] |
Abozeid A, Ying Z, Lin Y, Liu J, Zhang Z, Tang Z. Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Front Plant Sci, 2017, 8: 253.
doi: 10.3389/fpls.2017.00253 pmid: 28286514 |
[16] |
Borgo L, Rabêlo F H S, Budzinski I G F, Cataldi T R, Ramires T G, Schaker P D C, Ribas A F, Labate C A, Lavres J, Cuypers A, Azevedo R A. Proline exogenously supplied or endogenously overproduced induces different nutritional, metabolic, and antioxidative responses in transgenic tobacco exposed to cadmium. J Plant Growth Regul, 2022, 41: 2846-2868.
doi: 10.1007/s00344-021-10480-6 |
[17] |
Xu J, Wang W Y, Sun J H, Zhang Y, Ge Q, Du L G, Yin H X, Liu X J. Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant Soil, 2011, 346: 107-119.
doi: 10.1007/s11104-011-0800-4 |
[18] |
Rosén K, Eriksson J, Vinichuk M. Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris). J Environ Radioac, 2012, 113: 16-20.
doi: 10.1016/j.jenvrad.2012.04.008 |
[19] |
Liu H W, Wang H Y, Ma Y B, Wang H H, Shi Y. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere, 2016, 144: 1960-1965.
doi: 10.1016/j.chemosphere.2015.10.093 |
[20] |
Bush P G, Mayhew T M, Abramovich D R, Aggett P J, Burke M D, Page K R. A quantitative study on the effects of maternal smoking on placental morphology and cadmium concentration. Placenta, 2000, 21: 247-256.
pmid: 10736249 |
[21] |
Li H Q, Wallin M, Barregard L, Sallsten G, Lundh T, Ohlsson C, Mellström D, Andersson E M. Smoking-induced risk of osteoporosis is partly mediated by cadmium from tobacco smoke: the MrOS Sweden Study. J Bone Miner Res, 2020, 35: 1424-1429.
doi: 10.1002/jbmr.4014 pmid: 32191351 |
[22] |
Regassa G, Chandravanshi B S. Levels of heavy metals in the raw and processed Ethiopian tobacco leaves. SpringerPlus, 2016, 5: 232.
doi: 10.1186/s40064-016-1770-z pmid: 27026926 |
[23] |
Wang X K, Shi M, Hao P F, Zheng W T, Cao F B. Alleviation of cadmium toxicity by potassium supplementation involves various physiological and biochemical features in Nicotiana tabacum L. Acta Physiol Plant, 2017, 39: 132.
doi: 10.1007/s11738-017-2424-7 |
[24] |
Edwards K D, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans A D, Bombarely A, Allen F, Hurst R, White B, Kernodle S P, Bromley J R, Sanchez-Tamburrino J P, Lewis R S, Mueller L A. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 2017, 18: 448.
doi: 10.1186/s12864-017-3791-6 pmid: 28625162 |
[25] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 |
[26] |
Eissa M A. Phytoextraction mechanism of Cd by Atriplex lentiform is using some mobilizing agents. Ecol Eng, 2017, 108: 220-226.
doi: 10.1016/j.ecoleng.2017.08.025 |
[27] | Hasan M K, Ahammed G J, Yin L L, Shi K, Xia X J, Zhou Y H, Zhou J. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci, 2015, 6: 601. |
[28] | Cao Z W, Fang Y L, Lu Y H, Tan D X, Du C H, Li Y M, Ma Q L, Yu J M, Chen M Y, Zhou C, Pei L P, Zhang L, Ran H Y, He M D, Yu Z P, Zhou Z. Melatonin alleviates cadmium induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. J Pineal Res, 2017, 62: 12389. |
[29] |
Khanna K, Kohli S K, Ohri P, Bhardwaj R, Ahmad P. Agroecotoxicological aspect of Cd in soil-plant system: uptake, translocation and amelioration strategies. Environ Sci Pollut Res, 2022, 29: 30908-30934.
doi: 10.1007/s11356-021-18232-5 |
[30] | Soniya E V, Srinivasan A, Menon A, Kattupalli D. Transcriptomics in Response of Biotic Stress in Plants. Academic Press, San Diego, CA, USA, 2023. pp 285-303. |
[31] |
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. Plant Cell Rep, 2021, 40: 1471-1494.
doi: 10.1007/s00299-021-02687-4 pmid: 33821356 |
[32] | Abozeid A, Ying Z J, Lin Y C, Liu J, Zhang Z H, Tang Z H. Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Plant Sci, 2017, 8: 253. |
[33] |
Gallego S M, Pena L B, Barcia R A, Azpilicueta C E, Iannone M F, Rosales E P, Zawoznik M S, Groppa M D, Benavides M P. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot, 2012, 83: 33-46.
doi: 10.1016/j.envexpbot.2012.04.006 |
[34] |
De Carvalho C C C R, Caramujo M J. The various roles of fatty acids. Molecules, 2018, 23: 2583.
doi: 10.3390/molecules23102583 |
[35] |
Li C Y, Hong Y, Sun J H, Wang G P, Zhou H N, Xu L T, Wang L, Xu G Y. Temporal transcriptome analysis reveals several key pathways involve in cadmium stress response in Nicotiana tabacum L. Front Plant Sci, 2023, 14: 1143349.
doi: 10.3389/fpls.2023.1143349 |
[36] | 王俊宇, 王晓东, 马元丹, 付璐成, 周欢欢, 王斌, 张汝敏, 高燕. ‛波叶金桂’对干旱和高温胁迫的生理生态响应. 植物生态学报, 2018, 42: 681-691. |
Wang J Y, Wang X D, Ma Y D, Fu L C, Zhou H H, Wang P, Zhang R M, Gao Y. Physiological and ecological responses to drought and heat stresses in Osmanthus fragrans ‘Boyejingui’. J Plant Ecol, 2018, 42: 681-691. (in Chinese with English abstract) | |
[37] |
Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroede J. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
doi: 10.1038/s41580-022-00479-6 |
[38] |
Yosefi A, Mozafari A, Javadi T. Jasmonic acid improved in vitro strawberry (Fragaria × ananassa Duch.) resistance to PEG- induced water stress. Plant Cell Tissue Organ Cult, 2020, 142: 549-558.
doi: 10.1007/s11240-020-01880-9 |
[39] |
Liu J, Shu D F, Tan Z L, Ma M, Gou N, Gao S, Duan G Y, Kuai B K, Hu Y X, Li S P, Cui D Y. The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. New Phytol, 2022, 236: 929-942.
doi: 10.1111/nph.v236.3 |
[40] | Kaya C, Tuna A L, Yokaş I, Ashraf M, Ozturk M, Athar H R. The Role of Plant Hormones in Plants under Salinity Stress. In: Salinity and Water Stress. Dordrecht: Springer Netherlands, 2009. pp 45-50. |
[41] |
Srivastava S, Srivastava A K, Suprasanna P, D’Souza S F. Identification and profiling of arsenic stress-induced miRNAs in Brassica juncea. J Exp Bot, 2013, 64: 303-315.
doi: 10.1093/jxb/ers333 pmid: 23162117 |
[42] |
Hac-Wydro K, Sroka A, Jablonaka K. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on thea alterations caused by lead (II) ions in the organization of model lipid membranes. Colloid Surface B, 2016, 143: 124-130.
doi: 10.1016/j.colsurfb.2016.03.018 |
[43] |
Chen H F, Zhang Q, Lv W, Yu X Y, Zhang Z H. Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice. Environ Pollut, 2022, 302: 119063.
doi: 10.1016/j.envpol.2022.119063 |
[44] |
Hayat S, Ali B, Hasan S A, Ahmad A. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot, 2007, 60: 33-41.
doi: 10.1016/j.envexpbot.2006.06.002 |
[45] |
Chen H, Yang R X, Zhang X, Chen Y H, Xia Y, Xu X M. Foliar application of gibberellin inhibits the cadmium uptake and xylem transport in lettuce (Lactuca sativa L.). Sci Hortic, 2021, 288: 110410.
doi: 10.1016/j.scienta.2021.110410 |
[46] |
Lu Q Y, Chen S M, Li Y Y, Zheng F H, He B, Gu M H. Exogenous abscisic acid (ABA) promotes cadmium (Cd) accumulation in Sedum alfredii Hance by regulating the expression of Cd stress response genes. Environ Sci Pollut Res, 2020, 27: 8719-8731.
doi: 10.1007/s11356-019-07512-w |
[1] | CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146. |
[2] | LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75. |
[3] | SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198. |
[4] | WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461. |
[5] | ZHAO Xiao-Xin, HUANG Shuo-Qi, TAN Wen-Bo, XING Wang, LIU Da-Li. Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet [J]. Acta Agronomica Sinica, 2023, 49(12): 3302-3314. |
[6] | ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716. |
[7] | DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238. |
[8] | QU Meng-Xue, SONG Jie, SUN Jing, HU Dan-Dan, WANG Hong-Zhang, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(11): 2945-2952. |
[9] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[10] | LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334. |
[11] | ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500. |
[12] | PAN Li-Juan,CHEN Na,Ming-CHEN Na,WANG Tong,WANG Mian,CHEN Jing,YANG Zhen,WAN Yong-Shan,YU Shan-Lin,CHI Xiao-Yuan,LIU Feng-Zhen. Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene [J]. Acta Agronomica Sinica, 2019, 45(7): 993-1001. |
[13] | Wei SHANG,Shen-Qing-Yu ZHAO,Jiang-Bo DANG,Qi-Gao GUO,Guo-Lu LIANG,Chao YANG,Yan ZHANG,Yi-Yin CHEN. Identification and Screening of Nicotiana tobacam-N. plumbaginifolia Heterologous Chromosome Plants Based on SSR Marker [J]. Acta Agronomica Sinica, 2018, 44(11): 1640-1649. |
[14] | PENG Zhen,HE Shou-Pu,GONG Wen-Fang,PAN Zhao-E,JIA Yin-Hua,LU Yan-Li,DU Xiong-Ming. Transcriptome Analysis of Transcription Factors Expression PatterninUpland Cotton Seedlings under NaCl Stress [J]. Acta Agron Sin, 2017, 43(03): 354-370. |
[15] | LI Chang-Ning,XIE Jin-Lan,WANG Wei-Zan,LIANG Qiang,LI Yi-Jie,DONG Wen-Bin,LIU Xiao-Yan,YANG Li-Tao*,LI Yang-Rui*. Screening of Differentially Expressed Genes and Analysis of Plant Hormones Related Genes under Water Stress in Sugarcane [J]. Acta Agron Sin, 2015, 41(07): 1127-1135. |
|