Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 944-956.doi: 10.3724/SP.J.1006.2024.34141

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome analysis of tobacco in response to cadmium stress

ZHANG Hui(), ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting()   

  1. College of Life Sciences, Jianghan University / Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Wuhan 430056, Hubei, China
  • Received:2023-08-15 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-15
  • Contact: * E-mail: yangtingYT2016@163.com
  • Supported by:
    Natural Science Foundation of Hubei Province of China(2022CFB909);Youth Fund Project of the National Natural Science Foundation of China(31900095);First-Class Discipline Construction and Special Program of Jianghan University(2023XKZ016)

Abstract:

With the development of industrialization process in society, the problem of cadmium (Cd) pollution in soil is increasing. However, Nicotiana tabacum has a strong Cd enrichment capacity in leaves, which seriously affects its economic value. To investigate the mechanism by which tobacco responds to Cd stress, tobacco leaves were harvested from the culture solution with Cd concentrations of 0 μmol L-1 and 500 μmol L-1 for subsequent transcriptome sequencing. In this study, a total of 76.94 Gb clean data was obtained, with Q30 base percentage exceeding 95.43%. The results showed that 7735 differentially expressed genes (DEGs) were screened under Cd stress conditions, including 4833 up-regulated genes and 2902 down-regulated genes. The reliability of transcriptome data was verified by qRT-PCR analysis to detect the expression patterns of candidate gene. Gene ontology (GO) annotation as well as Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed on differentially expressed transcripts. GO functional enrichment revealed that the differentially expressed genes were mainly distributed in metabolic processes, response to stimulus, cellular anatomical entity, catalytic activity, and transcription regulator activity. Meanwhile, KEGG analysis showed that the up-regulated differentially expressed genes were mainly involved in biosynthesis of amino acids, carbon metabolism, oxidative phosphorylation, and citrate cycle. Down-regulated differentially expressed genes were primarily enriched in photosynthesis, biosynthesis of secondary metabolites, metabolic pathways, and plant hormone signal transduction. Further analysis of plant hormone signal transduction pathways revealed that there were eight plant hormone pathways involved in response to cadmium stress in tobacco, and the relative expression patterns of different hormone gene member were also different. Experimental results from plant hormone application on tobacco leaves demonstrated that the regulation of gibberellins, brassinosteroids, and jasmonic acid pathways played roles in tobacco’s response to cadmium stress. The experimental results of Arabidopsis hormone signal mutant showed that plants respond to cadmium stress by regulating ethylene, gibberellin, brassinosteroid, and jasmonic acid pathways. In conclusion, this study not only explores the regulatory network of tobacco resistance to Cd stress, but also lays a theoretical foundation for the genetic improvement of crop resistance.

Key words: Nicotiana tabacum, cadmium stress, transcriptome analysis, regulatory mechanism, plant hormone

Table 1

Primers used for qRT-PCR in this study"

基因编号
Gene ID
正向引物序列
Forward sequences (5°-3')
反向引物序列
Reverse sequences (5°-3')
NtEF1α GCTGTAACAAGATGGATGC AGATGGGGACAAAGGGGAT
Nitab4.5_0001799g0060 TGATCGAACGGACCATTAT AAGCCTTATTCCAACTCTG
Nitab4.5_0000137g0100 GATCTTCTGAGTACCCGTAT CAACTTGATTCCTCCTTC
Nitab4.5_0001834g0020 GTAGCTGCATTGGCCCTTAG CTGTTGCTGCCTTCATTTCC
Nitab4.5_0001603g0110 ATAGTCAACAACTCCCTC CCTTCCAGCAGAATTAGA
Nitab4.5_0002739g0090 GTTGTTGTCGGAACTATGT ACCAGGCTTCTGATAAACT
Nitab4.5_0000303g0130 TCTCAGTCTCCGTTCCTCTA CTTTAAGCCTCTGGGTGTAG
Nitab4.5_0000786g0090 TCAACCTTTCTCGCTTCTGC CTGACCTCCCAAATTGCCTA

Fig. 1

Cd inhibited the growth of tobacco A: phenotypic changes of tobacco under Cd stress conditions; B: measurements of physiological parameter. The error line represents the mean ± standard deviation; *: P < 0.05; **: P < 0.01. The unit of leaf length, leaf width, and root length is cm; The unit of fresh weight is g. CK: 0 μmol L-1 Cd; Cd: 500 μmol L-1 Cd."

Table 2

Quality assessment of sample sequencing output data"

样品
Sample
原始读长
Raw reads
有效读长
Clean reads
有效碱基
Clean bases
GC含量
GC content (%)
Q30%
Cd-1 117,197,630 114,117,568 16.28 51.24 96.27
Cd-2 92,057,888 89,923,200 12.87 52.87 95.43
Cd-3 92,277,960 89,807,396 12.79 52.84 96.01
CK-1 80,695,074 79,549,980 11.55 52.49 95.62
CK-2 90,502,566 88,261,644 12.36 53.06 96.45
CK-3 78,412,514 77,125,276 11.09 52.56 96.25

Fig. 2

Sample correlation and differential gene analysis A: sample correlation analysis; B: volcano map of differentially expressed genes."

Table 3

Differentially expressed genes in the transcriptome"

基因编号
Gene ID
倍数变化
log2 (Fold Change)
校正后P
Padj -value
显著性
Significant
相关功能
Related functions
Nitab4.5_0001799g0060 6.01645779051992 5.58600524883223E-53 上调Up NADH氧化酶 NADHoxidase
Nitab4.5_0000137g0100 4.93283684860978 5.82620770685452E-36 上调Up 脂氧合酶 Lipoxygenase
Nitab4.5_0001834g0020 2.2757421379006 0.00106352851309622 上调Up AP2/ERF结构域 AP2/ERFdomain
Nitab4.5_0001603g0110 2.27445197002978 5.39888738311809E-07 上调Up WRKY转录因子 DNA-bindingWRKY
Nitab4.5_0002739g0090 -2.11819490857942 3.37346132804127E-19 下调Down 光系统天线蛋白Photosystemantennaprotein-like
Nitab4.5_0000303g0130 -1.68510291076442 2.83044174648409E-15 下调Down 核糖体蛋白L21 RibosomalproteinL21
Nitab4.5_0000786g0090 -2.10064535366169 1.06320970799878E-18 下调Down 植物抗坏血酸过氧化物酶Plantascorbateperoxidase

Fig. 3

Verification of the differentially expressed genes by qRT-PCR The error line represents the mean ± standard deviation; *: P < 0.05; **: P < 0.01."

Table 4

Differentially expressed genes related to cadmium transport pathway in tobacco leaves"

基因编号
Gene ID
倍数变化
log2 (Fold Change)
校正后P
Padj -value
显著性
Significant
基因符号
Gene symbol
Nitab4.5_0001331g0110 2.29205916646639 0.0000160056470884177 上调Up ABCC10
Nitab4.5_0001898g0080 2.22733652858828 0.000386104024008464 上调Up ABCC15
Nitab4.5_0000106g0390 1.31870696593661 0.0212689692966056 上调Up ABCG3
Nitab4.5_0000496g0120 -2.59158544291489 1.60564591983942E-08 下调Down ABCG5
Nitab4.5_0006252g0030 1.31746228592749 0.0341152515360627 上调Up ABCG20
Nitab4.5_0000221g0040 2.28821296882979 0.00370517654747173 上调Up ABCG21
Nitab4.5_0002381g0060 10.210671343785 0.0000908617814568147 上调Up CAX18
Nitab4.5_0002478g0050 2.03423844364883 2.69008075629427E-06 上调Up HMA1
Nitab4.5_0003524g0040 2.10793204476971 0.0000026522303535919 上调Up HMA3
Nitab4.5_0000492g0070 2.09307506718162 0.000256620985201009 上调Up HMA5
Nitab4.5_0000267g0020 -1.05182186076751 0.0000603639575690097 下调Down HMA32
Nitab4.5_0000915g0200 1.48223660266316 0.0032272780694283 上调Up HMA39
Nitab4.5_0001119g0080 2.64624606789856 7.33048509501148E-08 上调Up NRAMP 3
Nitab4.5_0004147g0050 5.31130934808622 9.33236566781447E-10 上调Up NRAMP 6
Nitab4.5_0004048g0010 3.17293738846753 2.66390391106025E-12 上调Up PT2.11
Nitab4.5_0000081g0170 -1.37360555768205 7.90967873459083E-09 下调Down PT4.5
Nitab4.5_0000417g0150 2.1229862013314 0.00122100988376109 上调Up PT4.6
Nitab4.5_0003449g0030 1.30297458667808 0.011869363195499 上调Up PT6.4
Nitab4.5_0000166g0100 7.21539127135386 1.40896298333894E-45 上调Up PT7.3

Fig. 4

GO functional annotation of DEGs The left vertical axis in the figure represents the proportion of genes annotated to a certain GO term to the total number of genes annotated with GO, the right vertical axis represents the number of genes annotated to a certain GO term, and the horizontal axis represents each detailed classification of GO."

Fig. 5

KEGG enrichment scatter plot A: KEGG pathway up-regulated gene top 30 enrichment scatter plot; B: KEGG pathway down-regulated gene top 30 enrichment scatter plot. The Y-axis represents the enriched KEGG pathways, while the X-axis represents ratio of enriched DEGs in KEGG pathways to the total amount of DEGs."

Fig. 6

Schematic diagram of plant hormone signal transduction The colors in the figure represent differentially significant genes. Red shows genes that are significantly up-regulated. Yellow shows genes that are significantly down-regulated. Blue indicates that there are both significantly up-regulated and down-regulated genes."

Fig. 7

Regulation of hormones on plant response to Cd stress A: the effects of hormone on tobacco phenotype under Cd stress conditions; B: the quantitative analysis of shoot biomass; C: the phenotypes of Arabidopsis mutants and wild-type plants under Cd stress conditions; D: the determination of Arabidopsis root length; E: determination of Arabidopsis fresh weight. The error line represents the mean ± standard deviation; *: P < 0.05; **: P < 0.01. The unit of root length is cm; The fresh weight unit of Arabidopsis is mg, and the fresh weight unit of tobacco is g."

[1] 刘娟, 张乃明, 于泓, 张靖宇, 李芳艳, 于畅, 杜红蝶. 重金属污染对水稻土微生物及酶活性影响研究进展. 土壤, 2021, 53: 1152-1159.
Liu J, Zhang L M, Yu H, Zhang J Y, Li F Y, Yu C, Du H D. Effects of heavy metal pollution on microorganism and enzyme activity in paddy soil: a review. Soils, 2021, 53: 1152-1159. (in Chinese with English abstract)
[2] 苏芸芸. 乙酰胆碱调节烟草Cd胁迫响应的生理机制. 西北农林科技大学博士学位论文, 陕西杨凌, 2021.
Su Y Y. The Physiological Response Mechanism of Acetylcholine Regulating Cadmium Stress in Tobacco. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2021. (in Chinese with English abstract)
[3] Järup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharm, 2009, 238: 201-208.
doi: 10.1016/j.taap.2009.04.020
[4] Shifaw E. Review of heavy metals pollution in China in agricultural and urban soils. J Health Pollut, 2018, 8: 180607.
doi: 10.5696/2156-9614-8.18.180607
[5] Li D, He T, Saleem M, He G. Metalloprotein-specific or critical amino acid residues: perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress. Int J Mol Sci, 2022, 23: 1734.
doi: 10.3390/ijms23031734
[6] Yang Z, Yang F, Liu J L, Wu H T, Yang H, Shi Y, Jie L, Zhang Y F, Luo Y R, Chen K M. Heavy metal transporters: functional mechanisms regulation and application in phytoremediation. Sci Total Environ, 2022, 809: 151099.
doi: 10.1016/j.scitotenv.2021.151099
[7] Haider F U, Cai L Q, Coulter J A, Cheema S A, Wu J, Zhang R Z, Ma W J, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotox Environ Safe, 2021, 211: 111887.
doi: 10.1016/j.ecoenv.2020.111887
[8] de Araújo R P, de Almeida A A F, Pereira L S, Mangabeira P A O, Souza J O, Pirovani C P, Ahnert D, Baligar V C. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotox Environ Safe, 2017, 144: 148-157.
doi: S0147-6513(17)30331-7 pmid: 28614756
[9] Dong X X, Yang F, Yang S P, Yan C Z. Subcellular distribution and tolerance of cadmium in Canna indica L. Ecotox Environ Safe, 2019, 185: 109692.
doi: 10.1016/j.ecoenv.2019.109692
[10] Guo L, Chen A, He N, Yang D, Liu M D. Exogenous silicon alleviates cadmium toxicity in rice seedlings in relation to Cd distribution and ultrastructure changes. J Soil Sediment, 2018, 18: 1691-1700.
doi: 10.1007/s11368-017-1902-2
[11] Raza A, Habib M, Kakavand S N, Zahid Z, Zahra N, Sharif R. Hasanuzzaman M. Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology, 2020, 9: 177.
doi: 10.3390/biology9070177
[12] Wang B, Wei H, Xue Z, Zhang W H. Gibberellins regulate iron deficiency response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Ann Bot, 2017, 119: 945-956.
[13] Kumari A, Das P, Parida A K, Agarwal P K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci, 2015, 6: 537.
doi: 10.3389/fpls.2015.00537 pmid: 26284080
[14] Kim J M, To T K, Matsui A, Tanoi K, Kobayashi N I, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S, Bashir1 K, Rasheed S, Ando M, Takeda H, Kawaura K, Kusano M, Fukushima A, Endo T A, Kuromori T, Ishida J, Morosawa T, Tanaka M, Torii C, Takebayashi Y, Sakakibara H, Ogihara Y, Saito K, Shinozaki K, Devoto A, Seki M. Acetate-mediated novel survival strategy against drought in plants. Nat Plants, 2017, 3: 17097.
doi: 10.1038/nplants.2017.97
[15] Abozeid A, Ying Z, Lin Y, Liu J, Zhang Z, Tang Z. Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Front Plant Sci, 2017, 8: 253.
doi: 10.3389/fpls.2017.00253 pmid: 28286514
[16] Borgo L, Rabêlo F H S, Budzinski I G F, Cataldi T R, Ramires T G, Schaker P D C, Ribas A F, Labate C A, Lavres J, Cuypers A, Azevedo R A. Proline exogenously supplied or endogenously overproduced induces different nutritional, metabolic, and antioxidative responses in transgenic tobacco exposed to cadmium. J Plant Growth Regul, 2022, 41: 2846-2868.
doi: 10.1007/s00344-021-10480-6
[17] Xu J, Wang W Y, Sun J H, Zhang Y, Ge Q, Du L G, Yin H X, Liu X J. Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant Soil, 2011, 346: 107-119.
doi: 10.1007/s11104-011-0800-4
[18] Rosén K, Eriksson J, Vinichuk M. Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris). J Environ Radioac, 2012, 113: 16-20.
doi: 10.1016/j.jenvrad.2012.04.008
[19] Liu H W, Wang H Y, Ma Y B, Wang H H, Shi Y. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere, 2016, 144: 1960-1965.
doi: 10.1016/j.chemosphere.2015.10.093
[20] Bush P G, Mayhew T M, Abramovich D R, Aggett P J, Burke M D, Page K R. A quantitative study on the effects of maternal smoking on placental morphology and cadmium concentration. Placenta, 2000, 21: 247-256.
pmid: 10736249
[21] Li H Q, Wallin M, Barregard L, Sallsten G, Lundh T, Ohlsson C, Mellström D, Andersson E M. Smoking-induced risk of osteoporosis is partly mediated by cadmium from tobacco smoke: the MrOS Sweden Study. J Bone Miner Res, 2020, 35: 1424-1429.
doi: 10.1002/jbmr.4014 pmid: 32191351
[22] Regassa G, Chandravanshi B S. Levels of heavy metals in the raw and processed Ethiopian tobacco leaves. SpringerPlus, 2016, 5: 232.
doi: 10.1186/s40064-016-1770-z pmid: 27026926
[23] Wang X K, Shi M, Hao P F, Zheng W T, Cao F B. Alleviation of cadmium toxicity by potassium supplementation involves various physiological and biochemical features in Nicotiana tabacum L. Acta Physiol Plant, 2017, 39: 132.
doi: 10.1007/s11738-017-2424-7
[24] Edwards K D, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans A D, Bombarely A, Allen F, Hurst R, White B, Kernodle S P, Bromley J R, Sanchez-Tamburrino J P, Lewis R S, Mueller L A. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 2017, 18: 448.
doi: 10.1186/s12864-017-3791-6 pmid: 28625162
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262
[26] Eissa M A. Phytoextraction mechanism of Cd by Atriplex lentiform is using some mobilizing agents. Ecol Eng, 2017, 108: 220-226.
doi: 10.1016/j.ecoleng.2017.08.025
[27] Hasan M K, Ahammed G J, Yin L L, Shi K, Xia X J, Zhou Y H, Zhou J. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci, 2015, 6: 601.
[28] Cao Z W, Fang Y L, Lu Y H, Tan D X, Du C H, Li Y M, Ma Q L, Yu J M, Chen M Y, Zhou C, Pei L P, Zhang L, Ran H Y, He M D, Yu Z P, Zhou Z. Melatonin alleviates cadmium induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. J Pineal Res, 2017, 62: 12389.
[29] Khanna K, Kohli S K, Ohri P, Bhardwaj R, Ahmad P. Agroecotoxicological aspect of Cd in soil-plant system: uptake, translocation and amelioration strategies. Environ Sci Pollut Res, 2022, 29: 30908-30934.
doi: 10.1007/s11356-021-18232-5
[30] Soniya E V, Srinivasan A, Menon A, Kattupalli D. Transcriptomics in Response of Biotic Stress in Plants. Academic Press, San Diego, CA, USA, 2023. pp 285-303.
[31] Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. Plant Cell Rep, 2021, 40: 1471-1494.
doi: 10.1007/s00299-021-02687-4 pmid: 33821356
[32] Abozeid A, Ying Z J, Lin Y C, Liu J, Zhang Z H, Tang Z H. Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Plant Sci, 2017, 8: 253.
[33] Gallego S M, Pena L B, Barcia R A, Azpilicueta C E, Iannone M F, Rosales E P, Zawoznik M S, Groppa M D, Benavides M P. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot, 2012, 83: 33-46.
doi: 10.1016/j.envexpbot.2012.04.006
[34] De Carvalho C C C R, Caramujo M J. The various roles of fatty acids. Molecules, 2018, 23: 2583.
doi: 10.3390/molecules23102583
[35] Li C Y, Hong Y, Sun J H, Wang G P, Zhou H N, Xu L T, Wang L, Xu G Y. Temporal transcriptome analysis reveals several key pathways involve in cadmium stress response in Nicotiana tabacum L. Front Plant Sci, 2023, 14: 1143349.
doi: 10.3389/fpls.2023.1143349
[36] 王俊宇, 王晓东, 马元丹, 付璐成, 周欢欢, 王斌, 张汝敏, 高燕. ‛波叶金桂’对干旱和高温胁迫的生理生态响应. 植物生态学报, 2018, 42: 681-691.
Wang J Y, Wang X D, Ma Y D, Fu L C, Zhou H H, Wang P, Zhang R M, Gao Y. Physiological and ecological responses to drought and heat stresses in Osmanthus fragrans ‘Boyejingui’. J Plant Ecol, 2018, 42: 681-691. (in Chinese with English abstract)
[37] Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroede J. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
doi: 10.1038/s41580-022-00479-6
[38] Yosefi A, Mozafari A, Javadi T. Jasmonic acid improved in vitro strawberry (Fragaria × ananassa Duch.) resistance to PEG- induced water stress. Plant Cell Tissue Organ Cult, 2020, 142: 549-558.
doi: 10.1007/s11240-020-01880-9
[39] Liu J, Shu D F, Tan Z L, Ma M, Gou N, Gao S, Duan G Y, Kuai B K, Hu Y X, Li S P, Cui D Y. The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. New Phytol, 2022, 236: 929-942.
doi: 10.1111/nph.v236.3
[40] Kaya C, Tuna A L, Yokaş I, Ashraf M, Ozturk M, Athar H R. The Role of Plant Hormones in Plants under Salinity Stress. In: Salinity and Water Stress. Dordrecht: Springer Netherlands, 2009. pp 45-50.
[41] Srivastava S, Srivastava A K, Suprasanna P, D’Souza S F. Identification and profiling of arsenic stress-induced miRNAs in Brassica juncea. J Exp Bot, 2013, 64: 303-315.
doi: 10.1093/jxb/ers333 pmid: 23162117
[42] Hac-Wydro K, Sroka A, Jablonaka K. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on thea alterations caused by lead (II) ions in the organization of model lipid membranes. Colloid Surface B, 2016, 143: 124-130.
doi: 10.1016/j.colsurfb.2016.03.018
[43] Chen H F, Zhang Q, Lv W, Yu X Y, Zhang Z H. Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice. Environ Pollut, 2022, 302: 119063.
doi: 10.1016/j.envpol.2022.119063
[44] Hayat S, Ali B, Hasan S A, Ahmad A. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot, 2007, 60: 33-41.
doi: 10.1016/j.envexpbot.2006.06.002
[45] Chen H, Yang R X, Zhang X, Chen Y H, Xia Y, Xu X M. Foliar application of gibberellin inhibits the cadmium uptake and xylem transport in lettuce (Lactuca sativa L.). Sci Hortic, 2021, 288: 110410.
doi: 10.1016/j.scienta.2021.110410
[46] Lu Q Y, Chen S M, Li Y Y, Zheng F H, He B, Gu M H. Exogenous abscisic acid (ABA) promotes cadmium (Cd) accumulation in Sedum alfredii Hance by regulating the expression of Cd stress response genes. Environ Sci Pollut Res, 2020, 27: 8719-8731.
doi: 10.1007/s11356-019-07512-w
[1] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[2] LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75.
[3] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[4] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[5] ZHAO Xiao-Xin, HUANG Shuo-Qi, TAN Wen-Bo, XING Wang, LIU Da-Li. Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet [J]. Acta Agronomica Sinica, 2023, 49(12): 3302-3314.
[6] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[7] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[8] QU Meng-Xue, SONG Jie, SUN Jing, HU Dan-Dan, WANG Hong-Zhang, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(11): 2945-2952.
[9] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[10] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[11] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[12] PAN Li-Juan,CHEN Na,Ming-CHEN Na,WANG Tong,WANG Mian,CHEN Jing,YANG Zhen,WAN Yong-Shan,YU Shan-Lin,CHI Xiao-Yuan,LIU Feng-Zhen. Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene [J]. Acta Agronomica Sinica, 2019, 45(7): 993-1001.
[13] Wei SHANG,Shen-Qing-Yu ZHAO,Jiang-Bo DANG,Qi-Gao GUO,Guo-Lu LIANG,Chao YANG,Yan ZHANG,Yi-Yin CHEN. Identification and Screening of Nicotiana tobacam-N. plumbaginifolia Heterologous Chromosome Plants Based on SSR Marker [J]. Acta Agronomica Sinica, 2018, 44(11): 1640-1649.
[14] PENG Zhen,HE Shou-Pu,GONG Wen-Fang,PAN Zhao-E,JIA Yin-Hua,LU Yan-Li,DU Xiong-Ming. Transcriptome Analysis of Transcription Factors Expression PatterninUpland Cotton Seedlings under NaCl Stress [J]. Acta Agron Sin, 2017, 43(03): 354-370.
[15] LI Chang-Ning,XIE Jin-Lan,WANG Wei-Zan,LIANG Qiang,LI Yi-Jie,DONG Wen-Bin,LIU Xiao-Yan,YANG Li-Tao*,LI Yang-Rui*. Screening of Differentially Expressed Genes and Analysis of Plant Hormones Related Genes under Water Stress in Sugarcane [J]. Acta Agron Sin, 2015, 41(07): 1127-1135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .