Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 897-813.doi: 10.3724/SP.J.1006.2024.31046
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Tian-Ning1(), FENG Ya-Lan2, JU Ji-Hao1, WU Yi1, ZHANG Jun1, MA Chao1,*()
[1] |
Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[2] |
Claus S, Michael B. The regulation of transcription factor activity in plants. Trends Plant Sci, 1998, 3: 378-383.
doi: 10.1016/S1360-1385(98)01302-8 |
[3] |
Karam B S, Rhonda C F, Luis O. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430-436.
doi: 10.1016/s1369-5266(02)00289-3 pmid: 12183182 |
[4] |
Du W X, Yang J F, Li Q, Su Q, Yi D X, Pang Y Z. Genome-wide identification and characterization of growth regulatory factor family genes in Medicago. Int J Mol Sci, 2022, 23: 6905.
doi: 10.3390/ijms23136905 |
[5] |
Wang F D, Qiu N W, Ding Q, Li J J, Zhang Y H, Li H Y, Gao J W. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genom, 2014, 15: 807.
doi: 10.1186/1471-2164-15-807 |
[6] |
van der Knaap, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000, 122: 695-704.
doi: 10.1104/pp.122.3.695 pmid: 10712532 |
[7] |
Kim J H, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J, 2003, 36: 94-104.
doi: 10.1046/j.1365-313X.2003.01862.x |
[8] |
Zhang D F, Li B, Jia G Q, Zhang T F, Dai J R, Li J S, Wang S C. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.). Plant Sci, 2008, 175: 809-817.
doi: 10.1016/j.plantsci.2008.08.002 |
[9] |
Choi D, Kim J H, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol, 2004, 45: 897-904.
doi: 10.1093/pcp/pch098 |
[10] |
Huang W D, He Y Q, Yang L, Lu C, Zhu Y X, Sun C, Ma D F, Yin J L. Genome-wide analysis of growth-regulating factors (GRFs) in Triticum aestivum. PeerJ, 2021, 9: e10701.
doi: 10.7717/peerj.10701 |
[11] |
Yi W, Luan A P, Liu C Y, Wu J, Zhang W, Zhong Z Q, Wang Z P, Yang M Z, Chen C J, He Y H. Genome-wide identification, phylogeny, and expression analysis of GRF transcription factors in pineapple (Ananas comosus). Front Plant Sci, 2023, 14: 1159223.
doi: 10.3389/fpls.2023.1159223 |
[12] |
Zan T, Zhang L, Xie T T, Li L Q. Genome-Wide identification and analysis of the growth-regulating factor (GRF) gene family and GRF-Interacting factor family in Triticum aestivum L. Biochem Genet, 2020, 58: 1-20.
doi: 10.1007/s10528-019-09927-z |
[13] |
Kim J H, Kende H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 13374-13379.
doi: 10.1073/pnas.0405450101 |
[14] |
Kim J H. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants. BMB Rep, 2019, 52: 227-238.
pmid: 30885290 |
[15] |
Liang G, He H, Li Y, Wang F, Yu D Q. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol, 2014, 164: 249-258.
doi: 10.1104/pp.113.225144 pmid: 24285851 |
[16] |
Liu X, Guo L X, Jin L F, Liu Y Z, Liu T, Fan Y H, Peng S A. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development. Mol Biol Rep, 2016, 43: 1059-1067.
doi: 10.1007/s11033-016-4048-1 pmid: 27491940 |
[17] |
Kuijt S J H, Greco R, Agalou A, Shao J, Hoen C C J, Overnäs E, Osnato M, Curiale S, Meynard D, van Gulik R, de Faria M S, Atallah M, de Kam R J, Lamers G E M, Guiderdoni E, Rossini L, Meijer A H, Ouwerkerk P B F. Interaction between the growth-regulating factor and knotted1-like homeobox families of transcription factors. Plant Physiol, 2014, 164: 1952-1966.
doi: 10.1104/pp.113.222836 pmid: 24532604 |
[18] |
Li S C, Gao F Y, Xie K L, Zeng X H, Cao Y, Zeng J, He Z S, Ren Y, Li W B, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016, 14: 2134-2146.
doi: 10.1111/pbi.12569 pmid: 27107174 |
[19] |
Wang P, Xiao Y, Yan M, Yan Y, Lei X J, Di P, Wang Y P. Whole- genome identification and expression profiling of growth- regulating factor (GRF) and GRF-interacting factor (GIF) gene families in Panax ginseng. BMC Genom, 2023, 24: 334.
doi: 10.1186/s12864-023-09435-w |
[20] |
Zhang S W, Li G G, Wang Y D, Anwar A, He B, Zhang J W, Chen C M, Hao Y W, Chen R Y, Song S W. Genome-wide identification of BcGRF genes in flowering Chinese cabbage and preliminary functional analysis of BcGRF8 in nitrogen metabolism. Front Plant Sci, 2023, 14: 1144748.
doi: 10.3389/fpls.2023.1144748 |
[21] |
Yarra R, Krysan P J. GRF-GIF duo and GRF-GIF-BBM: novel transformation methodologies for enhancing regeneration efficiency of genome-edited recalcitrant crops. Planta, 2023, 257: 60.
doi: 10.1007/s00425-023-04096-1 pmid: 36801980 |
[22] |
Liu Y T, Guo P, Wang J, Xu Z Y. Growth-regulating factors: conserved and divergent roles in plant growth and development and potential value for crop improvement. Plant J, 2022, 113: 1122-1145.
doi: 10.1111/tpj.v113.6 |
[23] |
Daniela L, Javier F P. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol, 2020, 53: 31-42.
doi: S1369-5266(19)30077-9 pmid: 31726426 |
[24] |
Montenegro J D, Golicz A A, Bayer P E, Hurgobin B, Lee H, Chan C K, Visendi P, Lai K, Doležel J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. Plant J, 2017, 90: 1007-1013.
doi: 10.1111/tpj.2017.90.issue-5 |
[25] |
Etienne P, Pierre S, Jérôme S, Cyrille S, Frédéric C, Philippe L, Abraham K, Monika M, Shahryar K, Wolfgang S, Evans L, Daryl S, Andrzej K, Michael A, Sonia V, Hélène B, Kellye E, Rudi A, Jan S, Hana S, Jaroslav D, Michel B, Catherine F. A physical map of the 1-Gigabase bread wheat chromosome 3B. Science, 2008, 322: 101-104.
doi: 10.1126/science.1161847 pmid: 18832645 |
[26] |
Zhang M, Qiu X B. Genetic basis of genome size variation of wheat. Funct Integr Genomic, 2023, 23: 285-285.
doi: 10.1007/s10142-023-01194-x pmid: 37648783 |
[27] |
El B M, Murat F, Veyssiere M, Molinier M, Flores R, Burlot L, Alaux M, Quesneville H, Pont C, Salse J. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). New Phytol, 2017, 213: 1477-1486.
doi: 10.1111/nph.14113 pmid: 27551821 |
[28] | 魏益民. 中国小麦的起源、传播及进化. 麦类作物学报, 2021, 41: 305-309. |
Wei Y M. Origin, spread and evolution of wheat in China. J Triticeae Crops, 2021, 41: 305-309. (in Chinese with English abstract) | |
[29] |
Chen F, Yang Y Z, Luo X F, Zhou W G, Dai Y J, Zheng C, Liu W G, Yang W Y, Shu K. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biol, 2019, 19: 1-13.
doi: 10.1186/s12870-018-1600-2 |
[30] |
Chen H L, Ge W N. Identification, molecular characteristics, and evolution of GRF gene family in foxtail millet (Setaria italica L.). Front Genet, 2022, 12: 727674.
doi: 10.3389/fgene.2021.727674 |
[31] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[32] |
Chen C J, Chen H, Zhang Y, Thomas H R, Margaret H F, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[33] |
Li C, Li Q G, Dunwell J M, Zhang Y M. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol, 2012, 29: 3227-3236.
pmid: 22586327 |
[34] | Timothy L B, Charles E. Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers. Menlo Park, California: AAAI Press, 1994. pp 28-36. |
[35] |
Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40: e49.
doi: 10.1093/nar/gkr1293 |
[36] |
Khadiza K, Arif H K R, Park J, Ujjal K N, Chang K K, Ki-Byung L, Ill S N, Mi-Young C, Hikmet B. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones. Int J Mol Sci, 2017, 18: 1056.
doi: 10.3390/ijms18051056 |
[37] |
Noon J B, Hewezi T, Baum T J. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J Exp Bot, 2019, 70: 1653-1668.
doi: 10.1093/jxb/erz022 pmid: 30715445 |
[38] | 张立全, 张浩林, 李丛丛, 姚磊, 魏建华, 张杰伟. 谷子GRF基因家族鉴定与分析. 西南农业学报, 2021, 34: 2340-2347. |
Zhang L Q, Zhang H L, Li C C, Yao L, Wei J H, Zhang J W. Genome-wide analysis and identification of GRF gene family in foxtail millet (Setaria italica). Southwest China J Agric Sci, 2021, 34: 2340-2347. (in Chinese with English abstract) | |
[39] |
时丕彪, 何冰, 费月跃, 王军, 王伟义, 魏福友, 吕远大, 顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析. 作物学报, 2019, 45: 1841-1850.
doi: 10.3724/SP.J.1006.2019.94049 |
Shi P B, He B, Fei Y Y, Wang J, Wang W Y, Wei F Y, Lyu Y D, Gu M F. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa. Acta Agron Sin, 2019, 45: 1841-1850. (in Chinese with English abstract) | |
[40] |
马超, 宋鹏, 尚申申, 杨夏夏, 杨金华, 韩群威, 李记民, 冯雅岚. 二穗短柄草GRFs基因家族的鉴定及表达模式分析. 核农学报, 2020, 34: 1152-1162.
doi: 10.11869/j.issn.100-8551.2020.06.1152 |
Ma C, Song P, Shang S S, Yang X X, Yang J H, Han Q W, Li J M, Feng Y L. Whole genome identification and analysis of GRFs gene family in Brachypodium distachyon. Acta Agric Nucl Sci, 2020, 34: 1152-1162. (in Chinese with English abstract) | |
[41] |
Jiao Y N, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H Y, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, de Pamphilis C W. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473: 97-100.
doi: 10.1038/nature09916 |
[42] |
赵旭博, 李爱丽, 毛龙. 植物多倍化过程中小分子RNA调控基因表达机制研究进展. 作物学报, 2013, 39: 1331-1338.
doi: 10.3724/SP.J.1006.2013.01331 |
Zhao X B, Li A L, Mao L. Progress on gene regulatory mechanisms by small RNAs during plant poly-ploidization. Acta Agron Sin, 2013, 39: 1331-1338. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01331 |
|
[43] |
Panchy N, Lehti-Shiu M, Shiu S H. Evolution of gene duplication in plants. Plant Physiol, 2016, 171: 2294-2316.
doi: 10.1104/pp.16.00523 pmid: 27288366 |
[44] |
Kong F L, Wang J, Cheng L, Liu S Y, Wu J, Peng Z, Lu G. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene, 2012, 499: 108-120.
doi: 10.1016/j.gene.2012.01.048 |
[45] |
Tao Y, Wang F T, Jia D M, Li J T, Zhang Y M, Jia C G, Wang D P, Pan H Y. Cloning and functional analysis of the promoter of a stress-inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2015, 33: 200-208.
doi: 10.1007/s11105-014-0741-1 |
[46] |
Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol, 2013, 56: 115-121.
doi: 10.1007/s12374-012-0377-3 |
[47] |
Lee S J, Lee B H, Jung J H, Park S K, Song J T, Kim J H. Growth- regulating factor and GRF-interacting factor specify meristematic cells of gynoecia and anthers. Plant Physiol, 2018, 176: 717-729.
doi: 10.1104/pp.17.00960 |
[1] | LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311. |
[2] | CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206. |
[3] | QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090. |
[4] | ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990. |
[5] | LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943. |
[6] | XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896. |
[7] | HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003. |
[8] | JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792. |
[9] | ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589. |
[10] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
[11] | ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733. |
[12] | FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413. |
[13] | ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477. |
[14] | TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513. |
[15] | LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353. |
|