Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 897-813.doi: 10.3724/SP.J.1006.2024.31046

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species

WANG Tian-Ning1(), FENG Ya-Lan2, JU Ji-Hao1, WU Yi1, ZHANG Jun1, MA Chao1,*()   

  1. 1Henan University of Science and Technology, Agronomy College, Luoyang 471000, Henan, China
    2Wuchang University of Technology, College of Life Science, Wuhan 430223, Hubei, China
  • Received:2023-08-04 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-10
  • Contact: * E-mail: machao840508@163.com
  • Supported by:
    National Natural Science Foundation of China(32372227);National Natural Science Foundation of Henan Province(222300420430);Training Program for University Young Key Teachers in Henan Province(2021GGJS050)

Abstract:

Growth-regulating factors (GRFs) play important roles in plant growth, stress response, and hormone signal transduction. Systematic analysis of the distribution, structure, evolution, and expression characteristics of the GRF transcription factor family members in the genome of wheat and its ancestral species is of great significance for in-depth research on the biological functions of GRF family and the evolution of wheat. In this study, bioinformatics methods were used to identify the whole genome of GRF members from five species (Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum turgidum, and Triticum aestivum), and their physical and chemical properties, phylogenetic relationships, gene structure, promoter cis-regulatory element, and expression characteristics were also analyzed. The results showed that there were 15, 12, 19, 29, and 53 GRF members in Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum turgidum, and Triticum aestivum, respectively. Through interspecific colinearity analysis, we found that 18 and 29 members of TtGRFs were colinear with TuGRFs and AesGRFs, and 36 and 37 members of TaGRFs were colinear with TtGRFs and AetGRFs, respectively. The prediction of promoter cis-regulatory element found that GRF gene had basic transcription elements and some binding elements with growth, development, and stress response. RT-qPCR analysis revealed that most GRF genes up-regulated under exogenous IAA, GA, and drought stress, but down-regulated under high temperature stress, indicating that members of the GRF family exerted a crucial influence in hormone response and stress. Phylogenetic analysis evidenced that there was a conserved and complex evolutionary relationship between the GRF members of wheat and its ancestral species. The above results provide a theoretical basis for the evolution and functional research of the GRF transcription factor family.

Key words: wheat, ancestral species, GRF, bioinformatics, phylogenetic analysis

Table 1

Primers used in this study"

基因Gene 上游引物Forward primer (5'-3') 下游引物Reverse primer (5'-3')
TaGRF5-4A (XM_044510474.1) GAACCACCTTCTCCTTCGCCAG CCACAGGCTTTCTTGAACGG
TaGRF5-7A (XM_044569525.1) GCCTCGTCATACGGCAACAAAT AGAAGAAGCTCAGTTCACCCACG
TaGRF5-7D (XM_044584291.1) CAGGAAACAACAACAGGGGA CGGCTCAAAGTGGGAATACGA
TuGRF5-UN (XM_048693163.1) GCCTCGTCATACGGCAACAAAT AGAAGAAGCTCAGTTCACCCACG
AesGRF5-UN (AespeY2032UN01G008400.1) GAACCACCTTCTCCTTCGCCA CCACAGGCTTTCTTGAACGG
AetGRF5-7D (XM_020303029.3) CAGGAAACAACAACAGGGGA CGGCTCAAAGTGGGAATACGA
TtGRF5-4A (TRITD_4Av1G251150-2) GAACCACCTTCTCCTTCGCCAG CCACAGGCTTTCTTGAACGG
TtGRF5-7A (TRITD_7Av1G011750-2) GCCTCGTCATACGGCAACAAAT AGAAGAAGCTCAGTTCACCCACG
TaGRF11-2A (XM_044600790.1) ACACTCTGCTTGGACTTCGG CCACGATGCATATGGCGTTC
TaGRF11-2B (XM_044467676.1) TGGAAGAGTGTTACCGGTGC GGTTCTGGGCTCTTCCCAAA
TaGRF11-2D (XM_044476137.1) CTGAAGGCGCGCAGAATTAC TCTCCAGCATCGCCACTTTT
TuGRF11-2A (XM_048703523.1) ACACTCTGCTTGGACTTCGG CCACGATGCATATGGCGTTC
AesGRF11-2B (AespeY2032CH2S01G240700.1) TGGAAGAGTGTTACCGGTGC GGTTCTGGGCTCTTCCCAAA
AetGRF11-2D (XM_020298039.3) CTGAAGGCGCGCAGAATTAC TCTCCAGCATCGCCACTTTT
TtGRF11-2A (TRITD_2Av1G117900) ACACTCTGCTTGGACTTCGG CCACGATGCATATGGCGTTC
TtGRF11-2B (TRITD_2Bv1G105550-2) TGGAAGAGTGTTACCGGTGC GGTTCTGGGCTCTTCCCAAA
Actin (XM_044554036.1) TATGCCAGCGGTCGAACAAC GGAACAGCACCTCAGGGCAC
GAPDH (AK456344.1) TAAGGGTGGTGCCAAGAAGGT AGCAAGAGGAGCAAGGCAGTT

Table S1

Physicochemical properties and subcellular localization of GRF protein in wheat and its ancestor species"

基因名称
Gene name
登录号
Accession number
氨基酸数目
Number of amino acid
相对分子质量
Molecular weight
等电点
Theoretical pI
不稳定指数
Instability index
脂肪系数
Aliphatic index
平均疏水指数
Grand average of hydropathicity
亚细胞定位
Subcellular localization
TuGRF10-6A (XM_048677422.1) XM_048677422.1 212 22605.56 9.64 57.97 67.83 −0.393 nucleus
TuGRF13-6A (XM_048677685.1) XM_048677685.1 309 32548.58 10.01 59.63 66.34 −0.760 chloroplast
TuGRF1-6A (XM_048677760.1) XM_048677760.1 409 44786.45 7.22 51.42 46.65 −0.833 nucleus
TuGRF2-7A (XM_048685991.1) XM_048685991.1 311 34358.18 8.55 65.88 51.03 −0.841 nucleus
TuGRF2-7A (XM_048685992.1) XM_048685992.1 310 34287.11 8.55 66.34 50.87 −0.850 nucleus
TuGRF5-UN (XM_048693163.1) XM_048693163.1 370 40016.38 8.78 60.44 46.24 −0.760 nucleus
TuGRF14-UN (XM_048693245.1) XM_048693245.1 290 31954.68 7.57 59.98 54.21 −0.899 nucleus
TuGRF6-UN (XM_048693253.1) XM_048693253.1 607 63999.27 6.72 51.77 64.93 −0.428 nucleus
TuGRF8-UN (XM_048695887.1) XM_048695887.1 196 21264.79 8.59 39.77 63.47 −0.640 chloroplast
TuGRF12-2A (XM_048697161.1) XM_048697161.1 225 23851.86 9.68 51.60 64.36 −0.448 nucleus
TuGRF3-2A (XM_048703059.1) XM_048703059.1 384 42335.86 6.78 60.09 54.35 −0.628 nucleus
TuGRF11-2A (XM_048703523.1) XM_048703523.1 265 28286.31 4.72 55.17 62.26 −0.668 nucleus
TuGRF9-4A (XM_048713185.1) XM_048713185.1 408 45353.73 9.00 62.33 55.54 −0.850 nucleus
TuGRF15-4A (XM_048716712.1) XM_048716712.1 395 43318.03 6.99 68.77 55.54 −0.787 nucleus
TuGRF15-4A (XM_048718295.1) XM_048718295.1 390 42618.24 7.90 61.82 65.08 −0.653 mitochondrion
AesGRF2-7B (AespeY2032CH7S01G162000.1) AespeY2032CH7S01G162000.1 310 34313.19 9.05 64.92 50.55 −0.851 nucleus
AesGRF2-7B (AespeY2032CH7S01G147800.1) AespeY2032CH7S01G147800.1 315 34849.78 9.05 62.70 51.30 −0.841 nucleus
AesGRF6-6B (AespeY2032CH6S01G269500.1) AespeY2032CH6S01G269500.1 311 33561.65 8.12 40.72 67.97 −0.412 mitochondrion
AesGRF1-6B (AespeY2032CH6S01G467300.1) AespeY2032CH6S01G467300.1 307 33626.73 9.52 66.07 46.22 −0.735 nucleus
AesGRF9-4B (AespeY2032CH4S01G027900.1) AespeY2032CH4S01G027900.1 403 44535.84 9.01 61.60 56.03 −0.818 nucleus
AesGRF6-4B (AespeY2032CH4S01G078800.1) AespeY2032CH4S01G078800.1 615 64726.95 6.74 53.11 64.42 −0.433 nucleus
AesGRF3-2B (AespeY2032CH2S01G448800.1) AespeY2032CH2S01G448800.1 356 39440.66 7.00 54.62 53.90 −0.692 nucleus
AesGRF12-2B (AespeY2032CH2S01G398500.1) AespeY2032CH2S01G398500.1 229 24236.21 9.54 49.84 63.23 −0.470 nucleus
AesGRF11-2B (AespeY2032CH2S01G240700.1) AespeY2032CH2S01G240700.1 263 28126.14 4.72 55.31 63.12 −0.685 nucleus
AesGRF5-UN (AespeY2032UN01G008400.1) AespeY2032UN01G008400.1 266 28604.02 9.14 56.79 56.32 −0.624 nucleus
AesGRF14-1B (AespeY2032CH1S01G408000.1) AespeY2032CH1S01G408000.1 360 38840.69 8.28 66.92 56.17 −0.784 chloroplast
AesGRF10-6B (AespeY2032CH6S01G376400.1) AespeY2032CH6S01G376400.1 176 18162.52 10.83 61.40 70.23 −0.286 nucleus
AetGRF2-7D (XM_020291396.3) XM_020291396.3 321 35476.32 8.26 63.25 50.65 −0.873 nucleus
AetGRF2-7D (XM_020291397.3) XM_020291397.3 320 35405.24 8.26 63.68 50.50 −0.882 nucleus
AetGRF11-2D (XM_020298039.3) XM_020298039.3 264 28168.18 4.75 55.20 62.16 −0.692 nucleus
AetGRF1-6D (XM_020300487.3) XM_020300487.3 414 45263.95 7.24 51.94 46.09 −0.835 nucleus
AetGRF5-7D (XM_020303029.3) XM_020303029.3 366 39566.92 8.78 57.38 47.02 −0.727 nucleus
AetGRF3-2D (XM_020308591.3) XM_020308591.3 393 42893.44 7.04 62.06 52.88 −0.621 nucleus
AetGRF4-6D (XM_020309598.3) XM_020309598.3 409 43620.48 8.16 64.18 52.40 −0.559 nucleus
AetGRF6-6D (XM_020319993.2) XM_020319993.2 311 33231.24 6.85 44.20 66.78 −0.402 mitochondrion
AetGRF10-6D (XM_020324838.3) XM_020324838.3 215 22773.80 9.90 55.13 68.74 −0.359 nucleus
AetGRF6-4D (XM_020331699.3) XM_020331699.3 578 61162.10 6.58 53.81 64.43 −0.450 nucleus
AetGRF12-2D (XM_020332526.3) XM_020332526.3 229 24221.30 9.57 49.91 64.10 −0.443 nucleus
AetGRF5-7D (XM_040395388.2) XM_040395388.2 330 36154.22 8.58 54.38 46.24 −0.754 nucleus
AetGRF13-6D (XM_020297920.3) XM_020297920.3 304 32077.13 9.79 60.82 63.95 −0.754 nucleus
AetGRF13-7D (XM_020306383.3) XM_020306383.3 255 26078.93 10.18 54.79 55.33 −0.763 chloroplast
AetGRF13-7D (XM_020306384.3) XM_020306384.3 254 25991.86 10.18 54.21 55.55 −0.763 chloroplast
AetGRF15-5D (XM_020330238.3) XM_020330238.3 389 42721.28 6.99 63.51 55.94 −0.769 mitochondrion
AetGRF15-5D (XM_020330240.3) XM_020330240.3 404 44491.00 6.17 64.90 56.04 −0.821 nucleus
AetGRF14-1D (XM_040391509.2) XM_040391509.2 361 39248.11 7.56 71.15 56.84 −0.761 nucleus
AetGRF15-5D (XM_045229328.1) XM_045229328.1 397 43646.97 6.16 66.28 54.58 −0.846 nucleus
TtGRF14-1A (TRITD_1Av1G209470) TRITD_1Av1G209470 365 39597.35 8.00 67.98 54.60 −0.823 nucleus
TtGRF14-1B (TRITD_1Bv1G214800) TRITD_1Bv1G214800 339 36993.59 8.01 60.06 59.32 −0.742 nucleus
TtGRF13-2A (TRITD_2Av1G077710-2) TRITD_2Av1G077710-2 627 67054.64 4.85 68.21 55.06 −0.983 nucleus
TtGRF11-2A (TRITD_2Av1G117900) TRITD_2Av1G117900 260 27872.84 4.72 56.04 61.19 −0.715 nucleus
TtGRF12-2A (TRITD_2Av1G235170) TRITD_2Av1G235170 225 23793.83 9.82 51.22 64.36 −0.434 nucleus
TtGRF3-2A (TRITD_2Av1G251570) TRITD_2Av1G251570 384 42326.85 6.76 61.22 54.61 −0.623 nucleus
TtGRF11-2B (TRITD_2Bv1G105550-2) TRITD_2Bv1G105550-2 263 28160.15 4.72 54.07 61.63 −0.689 nucleus
TtGRF12-2B (TRITD_2Bv1G197140) TRITD_2Bv1G197140 227 24103.25 9.82 51.75 64.23 −0.459 chloroplast
TtGRF3-2B (TRITD_2Bv1G214250) TRITD_2Bv1G214250 387 42478.01 7.03 61.20 52.40 −0.620 nucleus
TtGRF6-4A (TRITD_4Av1G187110-2) TRITD_4Av1G187110-2 607 63953.28 6.87 51.64 65.58 −0.416 nucleus
TtGRF9-4A (TRITD_4Av1G200390-2) TRITD_4Av1G200390-2 433 48568.80 9.19 57.27 64.27 −0.661 nucleus
TtGRF15-4A (TRITD_4Av1G222610) TRITD_4Av1G222610 393 43127.45 5.51 67.44 56.13 −0.818 nucleus
TtGRF15-4A (TRITD_4Av1G223320) TRITD_4Av1G223320 391 42951.53 6.99 68.24 54.37 −0.794 nucleus
TtGRF5-4A (TRITD_4Av1G251150-2) TRITD_4Av1G251150-2 371 40019.38 8.77 62.57 46.39 −0.748 nucleus
TtGRF9-4B (TRITD_4Bv1G006160) TRITD_4Bv1G006160 404 44678.98 8.93 60.76 56.58 −0.799 nucleus
TtGRF6-4B (TRITD_4Bv1G019740-2) TRITD_4Bv1G019740-2 611 64277.53 6.72 51.31 65.01 −0.423 nucleus
TtGRF10-6A (TRITD_6Av1G164980) TRITD_6Av1G164980 212 22625.61 9.54 52.82 68.25 −0.373 nucleus
TtGRF4-6A (TRITD_6Av1G170910) TRITD_6Av1G170910 408 43471.22 7.65 63.22 52.28 −0.573 nucleus
TtGRF13-6A (TRITD_6Av1G195840) TRITD_6Av1G195840 184 19379.22 10.66 45.82 77.39 −0.454 cytosol
TtGRF1-6A (TRITD_6Av1G201020-3) TRITD_6Av1G201020-3 409 44786.45 7.22 51.42 46.65 −0.833 nucleus
TtGRF10-6B (TRITD_6Bv1G150350) TRITD_6Bv1G150350 211 22347.22 9.64 53.20 67.68 −0.382 nucleus
TtGRF4-6B (TRITD_6Bv1G157700-2) TRITD_6Bv1G157700-2 408 43678.55 8.66 65.27 52.77 −0.581 nucleus
TtGRF1-6B (TRITD_6Bv1G196330-3) TRITD_6Bv1G196330-3 410 44724.40 7.21 51.02 45.83 −0.821 nucleus
TtGRF5-7A (TRITD_7Av1G011750-2) TRITD_7Av1G011750-2 279 30182.21 8.83 58.80 44.09 −0.865 nucleus
TtGRF2-7A (TRITD_7Av1G053020-2) TRITD_7Av1G053020-2 310 34199.09 8.93 65.08 51.48 −0.813 nucleus
TtGRF2-7B (TRITD_7Bv1G027670) TRITD_7Bv1G027670 316 34886.68 8.55 66.25 49.59 −0.882 nucleus
TtGRF6-4A (TRITD_4Av1G187110) TRITD_4Av1G187110 490 52799.36 6.16 51.77 73.71 −0.274 mitochondrion
TtGRF3-6A (TRITD_6Av1G013860) TRITD_6Av1G013860 247 27740.32 5.00 77.10 79.80 −0.456 nucleus
TtGRF3-6A (TRITD_6Av1G211060) TRITD_6Av1G211060 247 28061.02 5.07 70.80 87.25 −0.388 nucleus
TaGRF12-2B (XM_044464321.1) XM_044464321.1 227 24077.17 9.82 53.68 62.51 −0.479 nucleus
TaGRF11-2B (XM_044467676.1) XM_044467676.1 263 28160.15 4.72 54.07 61.63 −0.689 nucleus
TaGRF11-2B (XM_044467677.1) XM_044467677.1 258 27746.68 4.72 54.92 60.54 −0.736 nucleus
TaGRF3-2B (XM_044469953.1) XM_044469953.1 387 42454.97 7.01 61.92 52.40 −0.621 nucleus
TaGRF12-2D (XM_044472604.1) XM_044472604.1 229 24221.30 9.57 49.91 64.10 −0.443 nucleus
TaGRF11-2D (XM_044476137.1) XM_044476137.1 264 28182.20 4.76 55.93 62.16 −0.692 nucleus
TaGRF3-2D (XM_044478186.1) XM_044478186.1 391 42780.33 7.04 60.85 53.40 −0.620 nucleus
TaGRF14-1A (XM_044491129.1) XM_044491129.1 364 39469.22 8.00 67.24 54.75 −0.816 nucleus
TaGRF15-4A (XM_044505037.1) XM_044505037.1 391 42973.46 6.63 68.13 55.12 −0.805 nucleus
TaGRF9-4A (XM_044505809.1) XM_044505809.1 546 60568.73 9.15 68.70 53.13 −0.916 nucleus
TaGRF6-4A (XM_044508878.1) XM_044508878.1 607 63953.28 6.87 51.64 65.58 −0.416 nucleus
TaGRF15-4A (XM_044509907.1) XM_044509907.1 391 42920.51 6.99 68.10 54.37 −0.789 nucleus
TaGRF5-4A (XM_044510474.1) XM_044510474.1 371 39941.33 8.50 61.23 47.44 −0.726 nucleus
TaGRF9-4B (XM_044511958.1) XM_044511958.1 404 44678.98 8.93 60.76 56.58 −0.799 nucleus
TaGRF6-4B (XM_044512340.1) XM_044512340.1 611 64277.53 6.72 51.31 65.01 −0.423 nucleus
TaGRF6-4B (XM_044512341.1) XM_044512341.1 598 62948.00 6.60 52.00 64.13 −0.442 nucleus
TaGRF6-4B (XM_044512342.1) XM_044512342.1 579 60297.62 9.29 56.44 69.46 −0.442 nucleus
TaGRF6-4D (XM_044517570.1) XM_044517570.1 578 61162.10 6.58 53.81 64.43 −0.450 nucleus
TaGRF15-5B (XM_044538321.1) XM_044538321.1 377 42148.30 9.60 68.01 59.55 −0.707 nucleus
TaGRF13-5D (XM_044540830.1) XM_044540830.1 199 22033.98 4.25 72.48 58.84 −0.863 cytosol
TaGRF15-5D (XM_044544157.1) XM_044544157.1 404 44491.00 6.17 64.90 56.04 −0.821 nucleus
TaGRF15-5D (XM_044546482.1) XM_044546482.1 389 42721.28 6.99 63.51 55.94 −0.769 mitochondrion
TaGRF4-6A (XM_044548020.1) XM_044548020.1 408 43457.29 7.65 65.49 52.03 −0.579 nucleus
TaGRF1-6A (XM_044548647.1) XM_044548647.1 409 44786.45 7.22 51.42 46.65 −0.833 nucleus
TaGRF10-6A (XM_044550602.1) XM_044550602.1 212 22597.56 9.54 52.41 67.36 −0.384 nucleus
TaGRF13-6A (XM_044550808.1) XM_044550808.1 304 31967.89 10.50 58.17 64.87 −0.784 chloroplast
TaGRF10-6B (XM_044553553.1) XM_044553553.1 211 22347.22 9.64 53.20 67.68 −0.382 nucleus
TaGRF13-6B (XM_044553828.1) XM_044553828.1 318 33481.63 9.57 64.42 63.90 −0.753 nucleus
TaGRF4-6B (XM_044557754.1) XM_044557754.1 406 43435.28 8.46 64.46 53.03 −0.571 nucleus
TaGRF1-6B (XM_044558455.1) XM_044558455.1 410 44724.40 7.21 51.02 45.83 −0.821 nucleus
TaGRF6-6D (XM_044560555.1) XM_044560555.1 311 33231.24 6.85 44.20 66.78 −0.402 mitochondrion
TaGRF10-6D (XM_044560736.1) XM_044560736.1 215 22750.77 9.90 55.13 68.74 −0.360 nucleus
TaGRF4-6D (XM_044564540.1) XM_044564540.1 409 43620.48 8.16 64.18 52.40 −0.559 nucleus
TaGRF13-6D (XM_044565096.1) XM_044565096.1 304 32105.19 9.79 60.82 64.57 −0.746 nucleus
TaGRF1-6D (XM_044565199.1) XM_044565199.1 414 45263.95 7.24 51.94 46.09 −0.835 nucleus
TaGRF14-1B (XM_044565877.1) XM_044565877.1 364 39490.49 7.55 67.53 56.87 −0.775 nucleus
TaGRF5-7A (XM_044569525.1) XM_044569525.1 370 40161.60 8.78 59.57 46.24 −0.762 nucleus
TaGRF2-7A (XM_044571651.1) XM_044571651.1 310 34285.13 8.55 65.17 51.48 −0.832 nucleus
TaGRF2-7A (XM_044571652.1) XM_044571652.1 309 34214.05 8.55 65.62 51.33 −0.841 nucleus
TaGRF2-7B (XM_044575454.1) XM_044575454.1 316 34886.68 8.55 66.25 49.59 −0.882 nucleus
TaGRF13-7D (XM_044583768.1) XM_044583768.1 255 26078.93 10.18 54.79 55.33 −0.763 chloroplast
TaGRF13-7D (XM_044583769.1) XM_044583769.1 254 25991.86 10.18 54.21 55.55 −0.763 chloroplast
TaGRF5-7D (XM_044584291.1) XM_044584291.1 368 39895.24 8.57 58.69 46.77 −0.750 nucleus
TaGRF2-7D (XM_044587055.1) XM_044587055.1 321 35476.32 8.26 63.25 50.65 −0.873 nucleus
TaGRF2-7D (XM_044587056.1) XM_044587056.1 320 35405.24 8.26 63.68 50.50 −0.882 nucleus
TaGRF14-1D (XM_044595886.1) XM_044595886.1 361 39205.09 7.04 69.57 57.92 −0.739 chloroplast
TaGRF14-1D (XM_044595887.1) XM_044595887.1 361 39205.09 7.04 69.57 57.92 −0.739 chloroplast
TaGRF14-1D (XM_044595888.1) XM_044595888.1 361 39205.09 7.04 69.57 57.92 −0.739 chloroplast
TaGRF12-2A (XM_044597639.1) XM_044597639.1 225 23823.85 9.82 54.41 64.36 −0.436 nucleus
TaGRF11-2A (XM_044600790.1) XM_044600790.1 265 28286.31 4.72 55.17 62.26 −0.668 nucleus
TaGRF3-2A (XM_044602884.1) XM_044602884.1 384 42326.85 6.76 61.22 54.61 −0.623 nucleus
TaGRF3-6A (XM_044551538.1) XM_044551538.1 108 12319.67 5.62 73.33 66.94 −0.825 mitochondrion
TaGRF3-6A (XM_044551539.1) XM_044551539.1 107 12191.54 5.62 72.12 67.57 −0.800 mitochondrion

Table S2

Secondary structure prediction of GRF in wheat and its ancestor species (%)"

基因名称
Gene Name
α-螺旋
Alpha helix (Hh)
β-转角
Beta turn (Tt)
延伸链
Extended strand (Ee)
无规则卷曲
Random coil (Cc)
TuGRF10-6A (XM_048677422.1) 24.53 4.25 13.21 58.02
TuGRF13-6A (XM_048677685.1) 16.50 8.09 12.30 63.11
TuGRF1-6A (XM_048677760.1) 16.63 5.62 9.78 67.97
TuGRF2-7A (XM_048685991.1) 27.33 4.18 7.72 60.77
TuGRF2-7A (XM_048685992.1) 26.45 4.84 8.06 60.65
TuGRF5-UN (XM_048693163.1) 20.27 4.05 9.46 66.22
TuGRF14-UN (XM_048693245.1) 31.38 3.10 9.66 55.86
TuGRF6-UN (XM_048693253.1) 26.03 3.13 8.07 62.77
TuGRF8-UN (XM_048695887.1) 43.37 9.18 10.71 36.73
TuGRF12-2A (XM_048697161.1) 20.44 4.44 9.33 65.78
TuGRF3-2A (XM_048703059.1) 23.70 3.12 5.73 67.45
TuGRF11-2A (XM_048703523.1) 35.85 7.17 13.58 43.40
TuGRF9-4A (XM_048713185.1) 25.25 2.45 8.33 63.97
TuGRF15-4A (XM_048716712.1) 25.06 0.51 6.58 67.85
TuGRF15-4A (XM_048718295.1) 25.13 2.56 8.97 63.33
AesGRF2-7B (AespeY2032CH7S01G162000.1) 27.42 4.84 7.74 60.00
AesGRF2-7B (AespeY2032CH7S01G147800.1) 26.35 4.44 7.94 61.27
AesGRF6-6B (AespeY2032CH6S01G269500.1) 37.94 6.75 14.47 40.84
AesGRF1-6B (AespeY2032CH6S01G467300.1) 16.29 7.82 13.68 62.21
AesGRF9-4B (AespeY2032CH4S01G027900.1) 26.80 4.47 8.19 60.55
AesGRF6-4B (AespeY2032CH4S01G078800.1) 25.85 4.23 11.54 58.37
AesGRF3-2B (AespeY2032CH2S01G448800.1) 23.88 3.37 7.58 65.17
AesGRF12-2B (AespeY2032CH2S01G398500.1) 20.09 6.11 12.23 61.57
AesGRF11-2B (AespeY2032CH2S01G240700.1) 31.56 6.08 14.07 48.29
AesGRF5-UN (AespeY2032UN01G008400.1) 16.54 4.51 6.02 72.93
AesGRF14-1B (AespeY2032CH1S01G408000.1) 29.44 2.22 7.78 60.56
AesGRF10-6B (AespeY2032CH6S01G376400.1) 35.80 4.55 11.36 48.30
AetGRF2-7D (XM_020291396.3) 26.48 3.74 6.54 63.24
AetGRF2-7D (XM_020291397.3) 24.06 2.81 7.81 65.31
AetGRF11-2D (XM_020298039.3) 34.09 7.95 15.91 42.05
AetGRF1-6D (XM_020300487.3) 20.29 5.31 10.14 64.25
AetGRF5-7D (XM_020303029.3) 15.30 3.83 7.92 72.95
AetGRF3-2D (XM_020308591.3) 22.90 3.82 5.09 68.19
AetGRF4-6D (XM_020309598.3) 18.83 3.91 5.38 71.88
AetGRF6-6D (XM_020319993.2) 42.12 8.36 13.50 36.01
AetGRF10-6D (XM_020324838.3) 32.09 6.05 11.63 50.23
AetGRF6-4D (XM_020331699.3) 25.26 3.81 9.34 61.59
AetGRF12-2D (XM_020332526.3) 24.02 6.11 9.61 60.26
AetGRF5-7D (XM_040395388.2) 15.76 3.94 9.39 70.91
AetGRF13-6D (XM_020297920.3) 14.80 8.55 13.16 63.49
AetGRF13-7D (XM_020306383.3) 25.49 5.49 11.76 57.25
AetGRF13-7D (XM_020306384.3) 20.87 6.69 10.24 62.20
AetGRF15-5D (XM_020330238.3) 31.11 2.31 8.48 58.10
AetGRF15-5D (XM_020330240.3) 26.73 1.49 9.65 62.13
AetGRF14-1D (XM_040391509.2) 29.92 1.39 6.65 62.05
AetGRF15-5D (XM_045229328.1) 23.93 0.76 10.08 65.24
TtGRF14-1A (TRITD_1Av1G209470) 30.41 3.01 7.40 59.18
TtGRF14-1B (TRITD_1Bv1G214800) 31.13 2.48 8.26 58.13
TtGRF13-2A (TRITD_2Av1G077710-2) 33.49 6.54 9.25 50.72
TtGRF11-2A (TRITD_2Av1G117900) 31.92 7.31 15.77 45.00
TtGRF12-2A (TRITD_2Av1G235170) 20.00 4.44 9.33 66.22
TtGRF3-2A (TRITD_2Av1G251570) 27.08 3.12 4.95 64.84
TtGRF11-2B (TRITD_2Bv1G105550-2) 33.46 6.84 13.31 46.39
TtGRF12-2B (TRITD_2Bv1G197140) 18.94 5.29 8.37 67.40
TtGRF3-2B (TRITD_2Bv1G214250) 21.45 3.36 5.17 70.03
TtGRF6-4A (TRITD_4Av1G187110-2) 27.51 3.62 8.90 59.97
TtGRF9-4A (TRITD_4Av1G200390-2) 28.18 5.08 10.16 56.58
TtGRF15-4A (TRITD_4Av1G222610) 23.41 2.04 8.65 65.90
TtGRF15-4A (TRITD_4Av1G223320) 26.85 1.28 7.16 64.71
TtGRF5-4A (TRITD_4Av1G251150-2) 19.95 4.04 11.05 64.96
TtGRF9-4B (TRITD_4Bv1G006160) 22.77 2.72 9.41 65.10
TtGRF6-4B (TRITD_4Bv1G019740-2) 23.90 4.42 10.31 61.37
TtGRF10-6A (TRITD_6Av1G164980) 29.25 2.83 11.32 56.60
TtGRF4-6A (TRITD_6Av1G170910) 19.61 2.45 6.62 71.32
TtGRF13-6A (TRITD_6Av1G195840) 16.85 10.87 16.85 55.43
TtGRF1-6A (TRITD_6Av1G201020-3) 16.63 5.62 9.78 67.97
TtGRF10-6B (TRITD_6Bv1G150350) 32.70 2.84 8.53 55.92
TtGRF4-6B (TRITD_6Bv1G157700-2) 14.46 3.19 7.60 74.75
TtGRF1-6B (TRITD_6Bv1G196330-3) 19.76 6.34 13.17 60.73
TtGRF5-7A (TRITD_7Av1G011750-2) 15.41 3.23 6.09 75.27
TtGRF2-7A (TRITD_7Av1G053020-2) 26.13 4.52 8.06 61.29
TtGRF2-7B (TRITD_7Bv1G027670) 27.85 3.80 6.96 61.39
TtGRF6-4A (TRITD_4Av1G187110) 27.96 5.92 17.14 48.98
TtGRF3-6A (TRITD_6Av1G013860) 38.46 5.67 8.50 47.37
TtGRF3-6A (TRITD_6Av1G211060) 36.44 4.86 10.53 48.18
TaGRF12-2B (XM_044464321.1) 18.94 5.29 9.69 66.08
TaGRF11-2B (XM_044467676.1) 33.46 6.84 13.31 46.39
TaGRF11-2B (XM_044467677.1) 32.56 7.75 12.79 46.90
TaGRF3-2B (XM_044469953.1) 24.29 4.39 8.27 63.05
TaGRF12-2D (XM_044472604.1) 24.02 6.11 9.61 60.26
TaGRF11-2D (XM_044476137.1) 34.09 7.95 15.91 42.05
TaGRF3-2D (XM_044478186.1) 23.02 3.58 5.37 68.03
TaGRF14-1A (XM_044491129.1) 29.40 3.02 7.69 59.89
TaGRF15-4A (XM_044505037.1) 26.09 1.79 7.93 64.19
TaGRF9-4A (XM_044505809.1) 24.36 4.03 10.26 61.36
TaGRF6-4A (XM_044508878.1) 27.51 3.62 8.90 59.97
TaGRF15-4A (XM_044509907.1) 26.09 0.77 8.18 64.96
TaGRF5-4A (XM_044510474.1) 16.17 4.04 10.51 69.27
TaGRF9-4B (XM_044511958.1) 22.77 2.72 9.41 65.10
TaGRF6-4B (XM_044512340.1) 23.90 4.42 10.31 61.37
TaGRF6-4B (XM_044512341.1) 24.75 3.18 10.54 61.54
TaGRF6-4B (XM_044512342.1) 37.48 4.84 10.02 47.67
TaGRF6-4D (XM_044517570.1) 25.26 3.81 9.34 61.59
TaGRF15-5B (XM_044538321.1) 22.55 3.45 7.96 66.05
TaGRF13-5D (XM_044540830.1) 30.65 4.02 16.08 49.25
TaGRF15-5D (XM_044544157.1) 26.73 1.49 9.65 62.13
TaGRF15-5D (XM_044546482.1) 31.11 2.31 8.48 58.10
TaGRF4-6A (XM_044548020.1) 16.18 3.43 7.35 73.04
TaGRF1-6A (XM_044548647.1) 16.63 5.62 9.78 67.97
TaGRF10-6A (XM_044550602.1) 26.42 4.25 14.62 54.72
TaGRF13-6A (XM_044550808.1) 16.45 8.22 12.83 62.50
TaGRF10-6B (XM_044553553.1) 32.70 2.84 8.53 55.92
TaGRF13-6B (XM_044553828.1) 16.98 5.97 10.06 66.98
TaGRF4-6B (XM_044557754.1) 17.49 2.96 7.88 71.67
TaGRF1-6B (XM_044558455.1) 19.76 6.34 13.17 60.73
TaGRF6-6D (XM_044560555.1) 42.12 8.36 13.50 36.01
TaGRF10-6D (XM_044560736.1) 29.77 5.58 12.56 52.09
TaGRF4-6D (XM_044564540.1) 18.83 3.91 5.38 71.88
TaGRF13-6D (XM_044565096.1) 14.80 8.55 13.16 63.49
TaGRF1-6D (XM_044565199.1) 20.29 5.31 10.14 64.25
TaGRF14-1B (XM_044565877.1) 29.40 1.65 8.24 60.71
TaGRF5-7A (XM_044569525.1) 24.05 3.78 8.38 63.78
TaGRF2-7A (XM_044571651.1) 26.13 4.84 6.77 62.26
TaGRF2-7A (XM_044571652.1) 26.86 3.24 7.44 62.46
TaGRF2-7B (XM_044575454.1) 27.85 3.80 6.96 61.39
TaGRF13-7D (XM_044583768.1) 25.49 5.49 11.76 57.25
TaGRF13-7D (XM_044583769.1) 20.87 6.69 10.24 62.20
TaGRF5-7D (XM_044584291.1) 18.21 11.96 11.96 66.30
TaGRF2-7D (XM_044587055.1) 26.48 3.74 6.54 63.24
TaGRF2-7D (XM_044587056.1) 24.06 2.81 7.81 65.31
TaGRF14-1D (XM_044595886.1) 29.92 2.22 7.48 60.39
TaGRF14-1D (XM_044595887.1) 29.92 2.22 7.48 60.39
TaGRF14-1D (XM_044595888.1) 29.92 2.22 7.48 60.39
TaGRF12-2A (XM_044597639.1) 32.44 6.22 9.78 51.56
TaGRF11-2A (XM_044600790.1) 35.85 7.17 13.58 43.40
TaGRF3-2A (XM_044602884.1) 27.08 3.12 4.95 64.84
TaGRF3-6A (XM_044551538.1) 38.89 11.11 4.63 45.37
TaGRF3-6A (XM_044551539.1) 33.64 11.21 7.48 47.66

Fig. 1

Prediction of protein secondary structure and tertiary structure of GRF5 in wheat and its ancestral species"

Fig. 2

Phylogenetic tree of GRF family members in wheat and its ancestral species"

Fig. 3

Chromosome mapping of GRF genes in wheat and its ancestral species"

Fig. 4

GRF genes structure and conserved domain in wheat and its ancestral species"

Fig. 5

Promoter cis-regulatory element of the GRF genes in wheat and its ancestral species"

Fig. 6

Chromosomal positions and synteny relationships of GRF genes in wheat and its ancestral species All syntenic blocks and genes are linked by the grey lines, and red lines represent the fragment-repeat gene pair of the GRF genes."

Fig. 7

The collinearity of GRF genes among wheat and its ancestral species"

Table S3

The Ka/Ks ratios of GRF duplication events in wheat and its ancestral species"

非同义替换率
Ka
同义替换率
Ks
非同义替换/同义替换
Ka/Ks
有效长度
Effective length
平均S位点
Average S-sites
0.1863 0.4703 0.3962 618 162.9167
0.3536 0.5820 0.6077 507 138.7500
0.0087 0.0343 0.2543 930 238.5000
0.3058 0.3947 0.7748 894 223.7500
0.2048 0.4338 0.4720 1101 277.5000
0.1760 0.4206 0.4183 612 163.5833
0.0441 0.1302 0.3385 1053 246.8333
0.0068 0.0450 0.1509 774 183.0000
0.0122 0.0950 0.1284 675 179.2500
0.1970 0.3967 0.4967 612 162.8333
0.1833 0.4039 0.4538 612 163.5833
0.0346 0.0753 0.4596 1137 279.2500
0.1968 0.4185 0.4704 612 162.9167
0.1812 0.3579 0.5062 603 161.3333
0.1962 0.4414 0.4445 1080 270.5000
0.1884 0.4276 0.4406 1074 270.2500
0.0595 0.2097 0.2839 1173 261.5000
0.0220 0.0312 0.7073 624 163.7500
0.0236 0.0869 0.2714 1209 304.6667
0.0043 0.0896 0.0484 1221 296.1667
0.3078 0.4399 0.6997 888 221.5833
0.3095 0.4099 0.7550 888 221.9167
0.0194 0.0441 0.4401 912 233.5000
0.0060 0.0818 0.0736 681 180.5833
0.1910 0.4081 0.4681 612 162.8333
0.1782 0.3482 0.5119 603 161.2500
0.1786 0.4224 0.4228 612 163.0833
0.0281 0.0546 0.5148 1155 284.9167
0.1916 0.4266 0.4492 1065 268.1667
0.1893 0.4372 0.4329 1074 270.4167
0.1897 0.4357 0.4354 1074 270.0833
0.1870 0.3705 0.5047 612 163.3333
0.1762 0.3775 0.4668 612 164.0833
0.1788 0.4100 0.4361 612 163.5833
0.2148 0.4374 0.4909 1107 278.3333
0.2136 0.4598 0.4647 1095 275.1667
0.2166 0.4457 0.4858 1101 276.5000
0.0414 0.1427 0.2904 1089 257.8333
0.0274 0.0738 0.3710 1074 256.0000
0.0156 0.1087 0.1439 1209 271.8333
0.0112 0.0971 0.1154 1800 450.3333
0.0116 0.0776 0.1497 1734 433.8333
0.0122 0.0978 0.1244 1101 272.5833
0.0109 0.0891 0.1226 1104 273.8333
0.0108 0.0777 0.1395 1734 433.3333
0.0237 0.0905 0.2615 1206 304.9167
0.0331 0.0735 0.4507 1218 307.2500
0.0043 0.0896 0.0484 1221 296.1667
0.0032 0.0821 0.0393 1227 295.8333
0.3071 0.3902 0.7872 894 224.0833
0.0198 0.0312 0.6356 624 163.7500
0.0216 0.0432 0.4998 636 166.5833
0.0648 0.1136 0.5705 888 227.6667
0.0593 0.1258 0.4715 873 224.4167
0.4300 0.6799 0.6324 678 176.3333
0.0195 0.0497 0.3931 633 166.3333
0.0303 0.0534 0.5680 906 232.9167
0.4408 0.6248 0.7055 672 176.5000
0.0134 0.0651 0.2063 1206 304.6667
0.0054 0.0739 0.0729 1230 298.3333
0.3095 0.4099 0.7550 888 221.9167
0.3124 0.3876 0.8059 879 221.0833
0.4380 0.6030 0.7265 651 169.7500
0.3058 0.3872 0.7899 894 223.7500
0.0343 0.1253 0.2734 1077 255.6667
0.0085 0.0574 0.1478 1101 271.4167
0.0185 0.0417 0.4437 918 234.1667
0.0220 0.0213 1.0303 930 237.6667
0.0129 0.0429 0.3014 942 239.8333
0.0122 0.0889 0.1371 675 178.8333
0.0102 0.0640 0.1588 675 179.4167
0.1969 0.4083 0.4822 612 162.5000
0.1860 0.4155 0.4476 612 163.2500
0.1886 0.4501 0.4190 612 162.7500
0.0067 0.0383 0.1744 789 187.5000
0.0100 0.0380 0.2636 792 188.9167
0.0346 0.0674 0.5137 1137 279.4167
0.0237 0.0402 0.5892 1140 281.3333

Fig. 8

Expression analysis of 16 GRF genes in response to exogenous hormones * indicates significant differences between the stress conditions and the control condition at P < 0.05."

Fig. 9

Expression analysis of 16 GRF genes in response to environmental stress * indicates significant differences between the stress conditions and the control condition at P < 0.05."

[1] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[2] Claus S, Michael B. The regulation of transcription factor activity in plants. Trends Plant Sci, 1998, 3: 378-383.
doi: 10.1016/S1360-1385(98)01302-8
[3] Karam B S, Rhonda C F, Luis O. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430-436.
doi: 10.1016/s1369-5266(02)00289-3 pmid: 12183182
[4] Du W X, Yang J F, Li Q, Su Q, Yi D X, Pang Y Z. Genome-wide identification and characterization of growth regulatory factor family genes in Medicago. Int J Mol Sci, 2022, 23: 6905.
doi: 10.3390/ijms23136905
[5] Wang F D, Qiu N W, Ding Q, Li J J, Zhang Y H, Li H Y, Gao J W. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genom, 2014, 15: 807.
doi: 10.1186/1471-2164-15-807
[6] van der Knaap, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000, 122: 695-704.
doi: 10.1104/pp.122.3.695 pmid: 10712532
[7] Kim J H, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J, 2003, 36: 94-104.
doi: 10.1046/j.1365-313X.2003.01862.x
[8] Zhang D F, Li B, Jia G Q, Zhang T F, Dai J R, Li J S, Wang S C. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.). Plant Sci, 2008, 175: 809-817.
doi: 10.1016/j.plantsci.2008.08.002
[9] Choi D, Kim J H, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol, 2004, 45: 897-904.
doi: 10.1093/pcp/pch098
[10] Huang W D, He Y Q, Yang L, Lu C, Zhu Y X, Sun C, Ma D F, Yin J L. Genome-wide analysis of growth-regulating factors (GRFs) in Triticum aestivum. PeerJ, 2021, 9: e10701.
doi: 10.7717/peerj.10701
[11] Yi W, Luan A P, Liu C Y, Wu J, Zhang W, Zhong Z Q, Wang Z P, Yang M Z, Chen C J, He Y H. Genome-wide identification, phylogeny, and expression analysis of GRF transcription factors in pineapple (Ananas comosus). Front Plant Sci, 2023, 14: 1159223.
doi: 10.3389/fpls.2023.1159223
[12] Zan T, Zhang L, Xie T T, Li L Q. Genome-Wide identification and analysis of the growth-regulating factor (GRF) gene family and GRF-Interacting factor family in Triticum aestivum L. Biochem Genet, 2020, 58: 1-20.
doi: 10.1007/s10528-019-09927-z
[13] Kim J H, Kende H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 13374-13379.
doi: 10.1073/pnas.0405450101
[14] Kim J H. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants. BMB Rep, 2019, 52: 227-238.
pmid: 30885290
[15] Liang G, He H, Li Y, Wang F, Yu D Q. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol, 2014, 164: 249-258.
doi: 10.1104/pp.113.225144 pmid: 24285851
[16] Liu X, Guo L X, Jin L F, Liu Y Z, Liu T, Fan Y H, Peng S A. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development. Mol Biol Rep, 2016, 43: 1059-1067.
doi: 10.1007/s11033-016-4048-1 pmid: 27491940
[17] Kuijt S J H, Greco R, Agalou A, Shao J, Hoen C C J, Overnäs E, Osnato M, Curiale S, Meynard D, van Gulik R, de Faria M S, Atallah M, de Kam R J, Lamers G E M, Guiderdoni E, Rossini L, Meijer A H, Ouwerkerk P B F. Interaction between the growth-regulating factor and knotted1-like homeobox families of transcription factors. Plant Physiol, 2014, 164: 1952-1966.
doi: 10.1104/pp.113.222836 pmid: 24532604
[18] Li S C, Gao F Y, Xie K L, Zeng X H, Cao Y, Zeng J, He Z S, Ren Y, Li W B, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016, 14: 2134-2146.
doi: 10.1111/pbi.12569 pmid: 27107174
[19] Wang P, Xiao Y, Yan M, Yan Y, Lei X J, Di P, Wang Y P. Whole- genome identification and expression profiling of growth- regulating factor (GRF) and GRF-interacting factor (GIF) gene families in Panax ginseng. BMC Genom, 2023, 24: 334.
doi: 10.1186/s12864-023-09435-w
[20] Zhang S W, Li G G, Wang Y D, Anwar A, He B, Zhang J W, Chen C M, Hao Y W, Chen R Y, Song S W. Genome-wide identification of BcGRF genes in flowering Chinese cabbage and preliminary functional analysis of BcGRF8 in nitrogen metabolism. Front Plant Sci, 2023, 14: 1144748.
doi: 10.3389/fpls.2023.1144748
[21] Yarra R, Krysan P J. GRF-GIF duo and GRF-GIF-BBM: novel transformation methodologies for enhancing regeneration efficiency of genome-edited recalcitrant crops. Planta, 2023, 257: 60.
doi: 10.1007/s00425-023-04096-1 pmid: 36801980
[22] Liu Y T, Guo P, Wang J, Xu Z Y. Growth-regulating factors: conserved and divergent roles in plant growth and development and potential value for crop improvement. Plant J, 2022, 113: 1122-1145.
doi: 10.1111/tpj.v113.6
[23] Daniela L, Javier F P. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol, 2020, 53: 31-42.
doi: S1369-5266(19)30077-9 pmid: 31726426
[24] Montenegro J D, Golicz A A, Bayer P E, Hurgobin B, Lee H, Chan C K, Visendi P, Lai K, Doležel J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. Plant J, 2017, 90: 1007-1013.
doi: 10.1111/tpj.2017.90.issue-5
[25] Etienne P, Pierre S, Jérôme S, Cyrille S, Frédéric C, Philippe L, Abraham K, Monika M, Shahryar K, Wolfgang S, Evans L, Daryl S, Andrzej K, Michael A, Sonia V, Hélène B, Kellye E, Rudi A, Jan S, Hana S, Jaroslav D, Michel B, Catherine F. A physical map of the 1-Gigabase bread wheat chromosome 3B. Science, 2008, 322: 101-104.
doi: 10.1126/science.1161847 pmid: 18832645
[26] Zhang M, Qiu X B. Genetic basis of genome size variation of wheat. Funct Integr Genomic, 2023, 23: 285-285.
doi: 10.1007/s10142-023-01194-x pmid: 37648783
[27] El B M, Murat F, Veyssiere M, Molinier M, Flores R, Burlot L, Alaux M, Quesneville H, Pont C, Salse J. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). New Phytol, 2017, 213: 1477-1486.
doi: 10.1111/nph.14113 pmid: 27551821
[28] 魏益民. 中国小麦的起源、传播及进化. 麦类作物学报, 2021, 41: 305-309.
Wei Y M. Origin, spread and evolution of wheat in China. J Triticeae Crops, 2021, 41: 305-309. (in Chinese with English abstract)
[29] Chen F, Yang Y Z, Luo X F, Zhou W G, Dai Y J, Zheng C, Liu W G, Yang W Y, Shu K. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biol, 2019, 19: 1-13.
doi: 10.1186/s12870-018-1600-2
[30] Chen H L, Ge W N. Identification, molecular characteristics, and evolution of GRF gene family in foxtail millet (Setaria italica L.). Front Genet, 2022, 12: 727674.
doi: 10.3389/fgene.2021.727674
[31] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491
[32] Chen C J, Chen H, Zhang Y, Thomas H R, Margaret H F, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[33] Li C, Li Q G, Dunwell J M, Zhang Y M. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol, 2012, 29: 3227-3236.
pmid: 22586327
[34] Timothy L B, Charles E. Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers. Menlo Park, California: AAAI Press, 1994. pp 28-36.
[35] Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40: e49.
doi: 10.1093/nar/gkr1293
[36] Khadiza K, Arif H K R, Park J, Ujjal K N, Chang K K, Ki-Byung L, Ill S N, Mi-Young C, Hikmet B. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones. Int J Mol Sci, 2017, 18: 1056.
doi: 10.3390/ijms18051056
[37] Noon J B, Hewezi T, Baum T J. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J Exp Bot, 2019, 70: 1653-1668.
doi: 10.1093/jxb/erz022 pmid: 30715445
[38] 张立全, 张浩林, 李丛丛, 姚磊, 魏建华, 张杰伟. 谷子GRF基因家族鉴定与分析. 西南农业学报, 2021, 34: 2340-2347.
Zhang L Q, Zhang H L, Li C C, Yao L, Wei J H, Zhang J W. Genome-wide analysis and identification of GRF gene family in foxtail millet (Setaria italica). Southwest China J Agric Sci, 2021, 34: 2340-2347. (in Chinese with English abstract)
[39] 时丕彪, 何冰, 费月跃, 王军, 王伟义, 魏福友, 吕远大, 顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析. 作物学报, 2019, 45: 1841-1850.
doi: 10.3724/SP.J.1006.2019.94049
Shi P B, He B, Fei Y Y, Wang J, Wang W Y, Wei F Y, Lyu Y D, Gu M F. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa. Acta Agron Sin, 2019, 45: 1841-1850. (in Chinese with English abstract)
[40] 马超, 宋鹏, 尚申申, 杨夏夏, 杨金华, 韩群威, 李记民, 冯雅岚. 二穗短柄草GRFs基因家族的鉴定及表达模式分析. 核农学报, 2020, 34: 1152-1162.
doi: 10.11869/j.issn.100-8551.2020.06.1152
Ma C, Song P, Shang S S, Yang X X, Yang J H, Han Q W, Li J M, Feng Y L. Whole genome identification and analysis of GRFs gene family in Brachypodium distachyon. Acta Agric Nucl Sci, 2020, 34: 1152-1162. (in Chinese with English abstract)
[41] Jiao Y N, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H Y, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, de Pamphilis C W. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473: 97-100.
doi: 10.1038/nature09916
[42] 赵旭博, 李爱丽, 毛龙. 植物多倍化过程中小分子RNA调控基因表达机制研究进展. 作物学报, 2013, 39: 1331-1338.
doi: 10.3724/SP.J.1006.2013.01331
Zhao X B, Li A L, Mao L. Progress on gene regulatory mechanisms by small RNAs during plant poly-ploidization. Acta Agron Sin, 2013, 39: 1331-1338. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01331
[43] Panchy N, Lehti-Shiu M, Shiu S H. Evolution of gene duplication in plants. Plant Physiol, 2016, 171: 2294-2316.
doi: 10.1104/pp.16.00523 pmid: 27288366
[44] Kong F L, Wang J, Cheng L, Liu S Y, Wu J, Peng Z, Lu G. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene, 2012, 499: 108-120.
doi: 10.1016/j.gene.2012.01.048
[45] Tao Y, Wang F T, Jia D M, Li J T, Zhang Y M, Jia C G, Wang D P, Pan H Y. Cloning and functional analysis of the promoter of a stress-inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2015, 33: 200-208.
doi: 10.1007/s11105-014-0741-1
[46] Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol, 2013, 56: 115-121.
doi: 10.1007/s12374-012-0377-3
[47] Lee S J, Lee B H, Jung J H, Park S K, Song J T, Kim J H. Growth- regulating factor and GRF-interacting factor specify meristematic cells of gynoecia and anthers. Plant Physiol, 2018, 176: 717-729.
doi: 10.1104/pp.17.00960
[1] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[2] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[3] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
[4] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[5] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[6] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[7] HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003.
[8] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[9] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[10] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[11] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[12] FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413.
[13] ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477.
[14] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[15] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .