Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 887-896.doi: 10.3724/SP.J.1006.2024.31044

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers

XU Nai-Yin1(), JIN Shi-Qiao2,*(), JIN Fang2, LIU Li-Hua3, XU Jian-Wen1, LIU Feng-Ze2, REN Xue-Zhen2, SUN Quan2, XU Xu1, PANG Bin-Shuang3,*()   

  1. 1Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2National Agricultural Technical Extension and Service Center, Beijing 100125, China
    3Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
  • Received:2023-07-20 Accepted:2023-10-23 Online:2024-04-12 Published:2023-10-27
  • Contact: * E-mail: jinshiqiao@agri.gov.cn; E-mail: 1492196201@qq.com E-mail:naiyin@126.com;jinshiqiao@agri.gov.cn;1492196201@qq.com
  • Supported by:
    National Scientific and Technological Innovation Major Project(2022ZD04019)

Abstract:

The accuracy estimation of genetic similarity detection of crop varieties is an indispensable supplement and improvement to the application of SNP marker method in crop variety detection technology system. In this study, based on the cross-laboratory collaborative validation test data using SNP molecular marker method in 2021, the genetic similarity among wheat varieties and the accuracy of SNP molecular marker method in variety similarity detection were analyzed. The results showed as follows: (1) The overall accuracy of marker locus similarity detection among 55 wheat variety combinations by 10 laboratories was approximately 98%. (2) The genetic relationship between varieties view of GGE biplot delineated the genetic relationship between varieties. The genetic similarity between seven combinations of wheat varieties was over 95%, and the genetic similarity of other combinations was relatively lower. (3) The “trueness-precision” view and “accuracy ranking” view of GGE biplot identified that the similarity detection accuracy of the variety combination Jinmai 47/Linkang 11 was on average, Jimai 22/Yingbo 700 was relatively lower, while Luohan 7/Luohan 11 and other variety combinations were relatively high. (4) Significant differences were existed in detection accuracy among the 10 laboratories, and the performances in detection trueness, precision and accuracy of two laboratories were significantly worse than those of other laboratories. (5) The tolerance error of the trueness of each laboratory ranged from 1.3% to 1.9%, with an average of 1.5%. The tolerance error of accuracy was distributed between 1.5% and 2.0%, with an average of 1.7%. Among them, the tolerance errors of the detection trueness and accuracy of Lab2 and Lab3 were significantly worse than those of the other laboratories. In this study, the detection accuracy statistical model of SNP marker method in detecting crop variety similarity was constructed to analyze the detection accuracy and the corresponding tolerance error of variety combination in different laboratories, and the GGE biplot techniques were adopted to visualize the detection trueness, precision, and accuracy, so as to verify the accuracy and reliability of the detection method for variety locus similarity in each laboratory. Therefore, the findings in this study could provide the theoretical support and application examples for the accuracy evaluation of SNP marker detection technique system for genetic similarity among crop varieties.

Key words: wheat (Triticum aestivum L.), GGE biplot, SNP marker, genetic similarity, locus similarity, accuracy

Table 1

Information of sampled wheat varieties and laboratories involved in variety genetic similarity identification based on SNP molecular markers"

实验室信息 Laboratory information 品种信息 Variety information
实验室
Laboratory
所在省(市)
Province (city)
检测平台
Detection platform
品种编号
Variety code
品种名称
Variety name
Lab1 北京Beijing IMAP W01 济麦22 Jimai 22
Lab2 北京Beijing LGC SNP line W02 婴泊700 Yingbo 700
Lab3 甘肃Gansu Quantitative PCR W03 晋麦47 Jinmai 47
Lab4 河北Hebei LGC SNP line W04 临抗11 Linkang 11
Lab5 河南Henan LGC SNP line W05 洛旱7号Luohan 7
Lab6 山西Shanxi LGC SNP line W06 洛旱11 Luohan 11
Lab7 陕西Shaanxi LGC SNP line W07 扬麦158 Yangmai 158
Lab8 四川Sichuan Array tape W08 扬麦11 Yangmai 11
Lab9 北京Beijing Quantitative PCR W09 扬麦12 Yangmai 12
Lab10 北京Beijing LGC SNP line W10 中科麦138 Zhongkemai 138
REF# 北京Beijing LGC SNP line W11 中科麦36 Zhongkemai 36

Table 2

Matrix of average SNP locus similarity and testing accuracy of wheat sampling varieties (%)"

编号
Code
品种
Variety
W01 W02 W03 W04 W05 W06 W07 W08 W09 W10 W11
W01 济麦22 Jimai 22 97.8 97.1 97.4 98.2 97.4 97.2 97.3 97.7 97.7 97.0
W02 婴泊700 Yingbo 700 94.7 97.3 98.1 97.0 96.5 96.4 97.8 97.3 95.6 95.8
W03 晋麦47 Jinmai 47 52.1 55.5 98.6 96.7 96.2 97.2 97.7 96.2 97.2 97.6
W04 临抗11 Linkang 11 50.8 52.4 96.1 98.5 98.0 98.5 98.6 96.8 98.2 98.2
W05 洛旱7号 Luohan 7 60.2 58.2 53.0 54.1 99.1 98.1 98.0 97.0 98.0 98.3
W06 洛旱11 Luohan 11 59.3 57.4 52.8 53.9 96.9 97.0 97.0 97.0 98.2 98.3
W07 扬麦158 Yangmai 158 50.3 49.1 48.2 47.7 48.5 47.7 98.7 98.9 98.3 98.1
W08 扬麦11 Yangmai 11 49.5 48.2 51.0 50.5 49.5 48.7 96.1 98.8 98.6 98.9
W09 扬麦12 Yangmai 12 51.4 50.2 48.7 47.9 48.8 48.0 98.2 94.8 98.0 97.6
W10 中科麦138 Zhongkemai 138 44.9 42.0 49.9 51.1 47.1 46.9 61.3 62.0 61.8 99.2
W11 中科麦36 Zhongkemai 36 43.6 42.8 53.3 52.7 47.8 47.6 60.6 61.3 61.0 96.3

Fig. 1

“variety genetic relationship” view of GGE biplot based on the average SNP locus similarity (a) and the “variety combination relationship + error” view of GGE biplot (b) The uppercase W followed by the numbers represents variety codes and the specific name of the breeding is shown in Table 1. The angle between the cultivar vectors indicates the genetic correlation between the cultivars, and the smaller the angle, the stronger the correlation. The blue dot in Fig. 1-b represents the similarity mark of variety combination tested by each laboratory, and the length of the line from it to the variety combination mark represents the error size, and the longer the line, the larger the error."

Fig. 2

“trueness-precision” view (a) and “accuracy ranking” view (b) of GGE biplot analysis displaying wheat varieties genetic similarity detection accuracy in different laboratories based on the standard reference value The uppercase W followed by numbers represents variety combination codes. For example, W01/02 indicates the wheat variety W01 compared to W02. See Table 1 for detail. PC1 corresponds to the trueness in variety locus similarity detection and the absolute value of PC2 corresponds to the precision. In Fig. 2-a, the single-arrowed horizontal axis points to the direction of higher accuracy, while the double-arrowed vertical axis points to the direction of lower precision. The origin of concentric circles in Figure 2-b is the ideal variety combination mark, and the Euclidean distance from the variety combination mark to the origin represents the detection accuracy. The smaller the distance, the better the accuracy. The plus sign “+” stand for variety comparison combination mark."

Fig. 3

“trueness-precision” view (a) and “accuracy ranking” view (b) of GGE biplot analysis displaying wheat varieties genetic similarity detection accuracy in different laboratories Lab codes prefixed with star sign “*” are the same as those given in Table 1. The plus sign “+” stands for variety comparison combination mark. PC1 corresponds to the trueness in variety locus similarity detection and the absolute value of PC2 corresponds to the precision. The origin of concentric circles in Fig. 3-b is the standard reference mark, and the Euclidean distance from the variety combination mark to the origin represents the detection accuracy. The smaller the distance, the better the accuracy."

Table 3

The detection accuracy parameters and the corresponding tolerance error estimation for different laboratories using SNP markers"

实验室
Laboratory
所在省(市)
Province (city)
正确度
Trueness (%)
精确度
Precision (%)
准确度
Accuracy (%)
容许误差 Tolerance error (%)
正确度Trueness 准确度Accuracy
Lab8 四川Sichuan 99.08 a 1.05 e 98.48 a 1.31 e 1.52 e
Lab9 北京Beijing 98.90 ab 1.13 de 98.30 ab 1.37 de 1.58 de
Lab1 北京Beijing 98.70 abc 1.21 cde 98.11 abc 1.43 cde 1.62 cde
Lab7 陕西Shaanxi 98.60 abc 1.28 cd 98.01 abc 1.46 cd 1.64 cd
Lab4 河北Hebei 98.59 abc 1.25 cde 97.99 abc 1.45 cde 1.64 cd
Lab10 北京Beijing 98.41 bcd 1.36 bc 97.82 bcd 1.52 bc 1.69 bcd
Lab5 河南Henan 98.32 cd 1.37 bc 97.72 cd 1.55 bc 1.73 bc
Lab6 山西Shanxi 98.01 d 1.50 b 97.42 d 1.62 b 1.79 b
Lab2 北京Beijing 97.23 e 1.79 a 96.65 e 1.80 a 1.94 a
Lab3 甘肃Gansu 96.81 e 1.90 a 96.23 e 1.91 a 2.04 a
平均Mean 98.27 1.38 97.67 1.54 1.72
[1] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管. 作物学报, 2022, 48: 1853-1870.
doi: 10.3724/SP.J.1006.2022.23001
Xu Y B, Wang B B, Zhang J, Zhang J N, Li J S. Enhancement of plant variety protection and regulation using molecular marker technology. Acta Agron Sin, 2022, 48: 1853-1870. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.23001
[2] 李巧英, 郑戈文. SNP分子标记技术在农作物种子检测中的研究与应用. 中国种业, 2019, (11): 16-18.
Li Q Y, Zheng G W. Research and application of SNP molecular marker technology in crop seed detection. China Seed Industry, 2019, (11): 16-18. (in Chinese)
[3] 庞斌双, 任雪贞, 刘丽华, 赵昌平, 张明明, 金石桥, 李宏博, 刘阳娜, 周泽宇, 张风廷, 张立平, 张胜全, 马锦绣, 权威, 王穆穆, 张旭, 侯建, 关海涛, 傅友兰, 王卫红. 小麦品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, 2021, NY/T 4021-2021.
Pang B S, Ren X Z, Liu L H, Zhao C P, Zhang M M, Jin S Q, Li H B, Liu Y N, Zhou Z Y, Zhang F T, Zhang L P, Zhang S Q, Ma J X, Quan W, Wang M M, Zhang X, Hou J, Guan H T, Fu Y L, Wang W H. Wheat (Triticum aestivum L.) variety genuineness identification: SNP based method. Agricultural Industry Standards of the People’s Republic of China, 2021, NY/T 4021-2021. (in Chinese)
[4] 王凤格, 晋芳, 田红丽, 易红梅, 赵久然, 金石桥, 杨扬, 王蕊, 葛建镕, 支巨振, 赵建宗. 玉米品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, 2021, NY/T 4022-2021.
Wang F G, Jin F, Tian H L, Yi H M, Zhao J R, Jin S Q, Yang Y, Wang R, Ge J R, Zhi J Z, Zhao J Z. Maize (Zea mays L.) variety genuineness identification: SNP based method. Agricultural Industry Standards of the People’s Republic of China, 2021, NY/T 4022-2021. (in Chinese)
[5] 魏兴华, 刘丰泽, 韩斌, 徐群, 冯旗, 赵妍, 支巨振, 周泽宇, 杨窑龙, 冯跃, 任雪贞, 王珊, 章孟臣. 水稻品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, 2021, NY/T 2745-2021.
Wei X H, Liu F Z, Han B, Xu Q, Feng Q, Zhao Y, Zhi J Z, Zhou Z Y, Yang Y L, Feng Y, Ren X Z, Wang S, Zhang M C. Rice (Oryza sativa L.) variety genuineness identification: SNP based method. Agricultural Industry Standards of the People’s Republic of China, 2021, NY/T 2745-2021. (in Chinese)
[6] 田红丽, 张如养, 范亚明, 杨扬, 张云龙, 易红梅, 邢锦丰, 王凤格, 赵久然. Maize 6H-60K芯片在玉米实质性派生品种鉴定中的应用分析. 作物学报, 49: 2876-2885.
Tian H L, Zhang R Y, Fan Y M, Yang Y, Zhang Y L, Yi H M, Xing J F, Wang F G, Zhao J R. Application of maize 6H-60K chip in identification of maize essentially derived varieties. Acta Agron Sin, 49: 2876-2885. (in Chinese with English abstract)
[7] International Seed Testing Association. Method Validation Reports on Rules Proposals for the International Rules for Seed Testing 2023 Edition, Wallisellen, Switzerland, 2023.
[8] 李成明, 冯士雍, 张震坤, 姜健, 周崎, 丁文兴, 宋武元, 于振凡, 李政军, 肖惠, 刘建斌, 陈玉忠. 测量方法与结果的准确度(正确度与精密度) 第6部分:准确度值的实际应用. 中华人民共和国国家标准, 2009, GB/T 6379.6-2009.
Li C M, Feng S Y, Zhang Z K, Jiang J, Zhou Q, Ding W X, Song W Y, Yu Z F, Li Z J, Xiao H, Liu J B, Chen Y Z. Accuracy (trueness and precision) of measurement methods and results-Part 6: Use in practice of accuracy values. National Standards of the People’s Republic of China, 2009, GB/T 6379.6-2009. (in Chinese)
[9] 严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11105
[10] Xu N, Qiao Y, Zhao S, Yang X, Li J, Fok M. Optimizing the test locations and replicates in multi-environmental cotton registration trials in southern Xinjiang, China. Crop Sci, 2022, 62: 1866-1879.
doi: 10.1002/csc2.v62.5
[11] 许乃银, 李健. 利用GGE双标图划分长江流域棉花纤维品质生态区. 作物学报, 2014, 40: 891-898.
doi: 10.3724/SP.J.1006.2014.00891
Xu N Y, Li J. Ecological regionalization of cotton fiber quality based on GGE biplot in Yangtze River valley. Acta Agron Sin, 2014, 40: 891-898. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00891
[12] Yan W. GGEbiplot: a Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron J, 2001, 93: 1111-1118.
doi: 10.2134/agronj2001.9351111x
[13] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805
Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805-1819. (in Chinese with English abstract)
[14] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析. 作物学报, 2023, 49: 1262-1271.
Xu N Y, Wang Y, Wang D T, Ning H J, Yang X N, Qiao Y T. Construction of cotton fiber quality index and WGT biplot analysis. Acta Agron Sin, 2023, 49: 1262-1271. (in Chinese with English abstract)
[15] Jighly A, Hayden M, Daetwyler H. Integrating genomic selection with a genotype plus genotype × environment (GGE) model improves prediction accuracy and computational efficiency. Plant Cell Environ, 2021, 44: 3459-3470.
doi: 10.1111/pce.v44.10
[16] 于振凡, 冯士雍, 刘文, 姜健, 丁文兴, 王斗文, 肖惠, 李成明. 测量方法与结果的准确度(正确度与精密度) 第1部分:总则与定义. 中华人民共和国国家标准, 2004, GB/T 6379.1-2004.
Yu Z F, Feng S Y, Liu W, Jiang J, Ding W X, Wang D W, Xiao H, Li C M. Accuracy (trueness and precision) of measurement methods and results. Part 1: General principles and definitions. National Standards of the People’s Republic of China, 2004, GB/T 6379.1-2004. (in Chinese)
[17] 盖钧镒. 试验统计方法. 北京: 中国农业出版社, 2006.
Gai J Y. Methods of Experimental Statistics. Beijing: China Agriculture Press, 2006. (in Chinese)
[18] Wilson E B. Probable inference, the law of succession, and statistical inference. J Am Stat Assoc, 1927, 22: 209-212.
doi: 10.1080/01621459.1927.10502953
[19] Yan W, Kang M S, Ma B, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643-655.
doi: 10.2135/cropsci2006.06.0374
[20] Yan W. A systematic narration of some key concepts and procedures in plant breeding. Front Plant Sci, 2021, 12: 724517.
doi: 10.3389/fpls.2021.724517
[21] 刘丽华, 庞斌双, 刘阳娜, 李宏博, 王娜, 王拯, 赵昌平. 基于SNP标记的小麦高通量身份鉴定模式. 麦类作物学报, 2018, 38: 529-534.
Liu L H, Pang B S, Liu Y N, Li H B, Wang N, Wang Z, Zhao C P. High-throughput Identification mode for wheat varieties based on SNP markers. J Triticeae Crops, 2018, 38: 529-534. (in Chinese with English abstract)
[22] 王立新, 季伟, 李宏博, 葛玲玲, 信爱华, 王丽霞, 常利芳, 赵昌平. 以DNA位点纯合率评价小麦品种的一致性和稳定性. 作物学报, 2009, 35: 2197-2204.
doi: 10.3724/SP.J.1006.2009.02197
Wang L X, Ji W, Li H B, Ge L L, Xin A H, Wang L X, Chang L F, Zhao C P. Evaluating uniformity and stability of wheat cultivars based on ratio of homozygous DNA locus. Acta Agron Sin, 2009, 35: 2197-2204. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.02197
[23] 田红丽, 赵紫薇, 杨扬, 范亚明, 班秀丽, 易红梅, 杨洪明, 刘少荣, 高玉倩, 刘亚维, 王凤格. 290个吉林省审定玉米品种SSR-DNA指纹构建及遗传多样性分析. 作物学报, 2022, 48: 2994-3003.
doi: 10.3724/SP.J.1006.2022.13076
Tian H L, Zhao Z W, Yang Y, Fan Y M, Ban X L, Yi H M, Yang H M, Liu S R, Gao Y Q, Liu Y W, Wang F G. Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin province, China. Acta Agron Sin, 2022, 48: 2994-3003. (in Chinese with English abstract)
[24] Xu N, Fok M, Zhang G, Li J, Zhou Z. The application of GGE biplot analysis for evaluating test locations and mega-environment investigation of cotton regional trials. J Integr Agric, 2014, 13: 1921-1933.
doi: 10.1016/S2095-3119(13)60656-5
[25] Yan W. Crop Variety Trials:Data Management and Analysis. New York: John Wiley & Sons, 2014.
[26] 许乃银, 李健. 棉花区试中品种多性状选择的理想试验环境鉴别. 作物学报, 2014, 40: 1936-1945.
doi: 10.3724/SP.J.1006.2014.01936
Xu N Y, Li J. Identification of ideal test environments for multiple traits selection in cotton regional trials. Acta Agron Sin, 2014, 40: 1936-1945. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01936
[1] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[2] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[3] SHAO Yang, GUO Yan-Ping, ZHOU Bing-Yue, ZHANG Feng, ZHANG Xin-Ming, WANG Yu-Ping. Analysis of genotype × environment interaction and stability of yield components in faba bean lines [J]. Acta Agronomica Sinica, 2024, 50(1): 149-160.
[4] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[5] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[6] WEN Ming-Xing, XIAO Jin, XU Tao, SUN Li, WANG Zong-Kuan, WANG Hai-Yan, WANG Xiu-E. Mapping and effect analysis of QTL for phenology traits in wheat using 55K chip technology [J]. Acta Agronomica Sinica, 2023, 49(12): 3188-3203.
[7] XU Yunbi, WANG Bing-Bing, ZAHNG Jian, ZHANG Jia-Nan, LI Jian-Sheng. Enhancement of plant variety protection and regulation using molecular marker technology [J]. Acta Agronomica Sinica, 2022, 48(8): 1853-1870.
[8] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[9] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[10] ZHANG Xiao-Wen, LI Shi-Jiao, ZHANG Xiao-Jun, LI Xin, YANG Zu-Jun, ZHANG Shu-Wei, CHEN Fang, CHANG Li-Fang, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. QTL mapping for salt tolerance in wheat line CH7034 [J]. Acta Agronomica Sinica, 2022, 48(10): 2654-2662.
[11] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[12] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[13] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[14] Xi-Miao YE,Xin CHENG,Cong-Cong AN,Jian-Long YUAN,Bin YU,Guo-Hong WEN,Gao-Feng LI,Li-Xiang CHENG,Yu-Ping WANG,Feng ZHANG. Genotype × environment interaction and stability of yield components for potato lines [J]. Acta Agronomica Sinica, 2020, 46(3): 354-364.
[15] Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .