Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 871-886.doi: 10.3724/SP.J.1006.2024.34124
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Li-Lan1,2(), YANG Jun1,2, WANG Rang-Jian1,2,*()
[1] |
Wang D, Yoshimura T, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves: I. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J Agric Food Chem, 2000, 48: 5411-5418.
doi: 10.1021/jf000443m |
[2] |
Liu G F, Liu J J, He Z R, Wang F M, Yang H, Yan Y F, Gao M J, Gruber M, Wan X C, Wei S. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant Cell Environ, 2018, 41: 176-186.
doi: 10.1111/pce.v41.1 |
[3] |
Wei K, Wang X, Hao X, Qian Y, Li X, Xu L, Ruan L, Wang Y, Zhang Y, Bai P, Li Q, Aktar S, Hu X, Zheng G, Wang L, Liu B, He W, Cheng H, Wang L. Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis. Plant Biotechnol J, 2022, 20: 414-416.
doi: 10.1111/pbi.v20.3 |
[4] |
Cao K, Yang X, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Wang L. New high-quality peach (Prunus persica L. Batsch) genome assembly to analyze the molecular evolutionary mechanism of volatile compounds in peach fruits. Plant J, 2021, 108: 281-295.
doi: 10.1111/tpj.v108.1 |
[5] |
Gong C, He N, Zhu H, Anees M, Lu X, Liu W. Multi-omics integration to explore the molecular insight into the volatile organic compounds in watermelon. Food Res Int, 2023, 166: 112603.
doi: 10.1016/j.foodres.2023.112603 |
[6] |
Ferrão L F V, Johnson T S, Benevenuto J, Edger P P, Colquhoun T A, Munoz P R. Genome-wide association of volatiles reveals candidate loci for blueberry flavor. New Phytol, 2020, 226: 1725-1737.
doi: 10.1111/nph.16459 pmid: 31999829 |
[7] |
严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105 |
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11105 |
|
[8] |
Xia E H, Li F D, Tong W, Li P H, Wu Q, Zhao H J, Ge R H, Li R P, Li Y Y, Zhang Z Z, Wei C L, Wan X C. Tea Plant Information Archive (TPIA): a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnol J, 2019, 17: 1938-1953.
doi: 10.1111/pbi.v17.10 |
[9] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析. 作物学报, 2023, 49: 1843-1859. |
Wang R J, Yang J, Zhang L L, Gao X F. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots. Acta Agron Sin, 2023, 49: 1843-1859. (in Chinese with English abstract) | |
[10] | Chen J D, He W Z, Chen S, Chen Q Y, Ma J Q, Jin J Q, Ma C L, Moon D G, Ercisli S, Yao M Z, Chen L. TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. Front Plant Sci, 2022, 13: 1056891. |
[11] |
Liu C, Qiao X, Li Q, Zeng W, Wei S, Wang X, Chen Y, Wu X, Wu J, Yin H, Zhang S. Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear (Pyrus bretschneideri). BMC Plant Biol, 2020, 20: 14.
doi: 10.1186/s12870-019-2230-z |
[12] |
Fang K, Xia Z, Li H, Jiang X, Qin D, Wang Q, Wang Q, Pan C, Li B, Wu H. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Hortic Res, 2021, 8: 42.
doi: 10.1038/s41438-021-00477-3 |
[13] |
Hazra A, Kumar R, Sengupta C, Das S. Genome-wide SNP discovery from Darjeeling tea cultivars: their functional impacts and application toward population structure and trait associations. Genomics, 2021, 113: 66-78.
doi: 10.1016/j.ygeno.2020.11.028 |
[14] |
Huang R, Wang J Y, Yao M Z, Ma C L, Chen L. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Hortic Res, 2022, 9: uhab029.
doi: 10.1093/hr/uhab029 |
[15] |
Yamashita H, Uchida T, Tanaka Y, Katai H, Nagano A J, Morita A, Ikka T. Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants. Sci Rep, 2020, 10: 17480.
doi: 10.1038/s41598-020-74623-7 pmid: 33060786 |
[16] |
Heng Z, Xu X, Xu X, Wang H, Liu L, Li Z, Li Z, You Q, Sun B, Gong C, Yin Y, Li Y, Li T. Characterization of odor-contributing volatile in Capsicum chinense ‘JT-1’ fruits during development and transcriptome analysis of key fruit-aroma formation periods. Sci Hortic, 2023, 309: 111691.
doi: 10.1016/j.scienta.2022.111691 |
[17] |
马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析. 作物学报, 2023, 49: 647-661.
doi: 10.3724/SP.J.1006.2023.23023 |
Ma Y J, Bao J X, Gao Y X, Li Y N, Qin W X, Wang Y B, Long Y, Li J P, Dong Z Y, Wan X Y. Genome-wide association analysis of plant height and ear height related traits in maize. Acta Agron Sin, 2023, 49: 647-661. (in Chinese with English abstract) | |
[18] |
董一帆, 任毅, 程宇坤, 王睿, 张志辉, 时晓磊, 耿洪伟. 冬小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2023, 56: 2047-2063.
doi: 10.3864/j.issn.0578-1752.2023.11.002 |
Dong Y F, Ren Y, Cheng Y K, Wang R, Zhang Z H, Shi X L, Geng H W. Genome-wide association study of grain main quality related traits in winter wheat. Sci Agric Sin, 2023, 56: 2047-2063. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2023.11.002 |
|
[19] |
Fan Z, Tieman D M, Knapp S J, Zerbe P, Famula R, Barbey C R, Folta K M, Amadeu R R, Lee M, Oh Y, Lee S, Whitaker V M. A multi-omics framework reveals strawberry flavor genes and their regulatory elements. New Phytol, 2022, 236: 1089-1107.
doi: 10.1111/nph.18416 pmid: 35916073 |
[20] |
Li N, He Q, Wang J, Wang B, Zhao J, Huang S, Yang T, Tang Y, Yang S, Aisimutuola P, Xu R, Hu J, Jia C, Ma K, Li Z, Jiang F, Gao J, Lan H, Zhou Y, Zhang X, Huang S, Fei Z, Wang H, Li H, Yu Q. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat Genet, 2023, 55: 852-860.
doi: 10.1038/s41588-023-01340-y pmid: 37024581 |
[21] |
Wang P, Yu J, Jin S, Chen S, Yue C, Wang W, Gao S, Cao H, Zheng Y, Gu M, Chen X, Sun Y, Guo Y, Yang J, Zhang X, Ye N. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Hortic Res, 2021, 8: 107.
doi: 10.1038/s41438-021-00542-x |
[22] |
Bönisch F, Frotscher J, Stanitzek S, Ruehl E, Wüst M, Bitz O, Schwab W. A UDP-glucose: monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiol, 2014, 165: 561-581.
doi: 10.1104/pp.113.232470 |
[23] |
Li X Y, Wen Y Q, Meng N, Qian X, Pan Q H. Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis vinifera varieties. Front Plant Sci, 2017, 8: 1226.
doi: 10.3389/fpls.2017.01226 |
[24] |
Rodriguez-Bencomo J J, Muñoz-González C, Andujar-Ortiz I, Martín-Álvarez P J, Moreno-Arribas M V, Pozo-Bayón M Á. Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis. J Sci Food Agric, 2011, 91: 2484-2494.
doi: 10.1002/jsfa.4494 |
[25] |
Xia E H, Tong W, Hou Y, An Y, Chen L, Wu Q, Liu Y L, Yu J, Li F, Li R, Li P, Zhao H, Ge R, Huang J, Mallano H I, Zhang Y, Liu S, Deng W, Song C, Zhang Z, Zhao J, Wei S, Zhang Z, Xia T, Wei C, Wan X. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation of tea plants. Mol Plant, 2020, 13: 1013-1026.
doi: 10.1016/j.molp.2020.04.010 |
[26] |
Martin D, Aubourg S, Schouwey M, Daviet L, Schalk M, Toub O, Lund S, Bohlmann J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol, 2010, 10: 226.
doi: 10.1186/1471-2229-10-226 pmid: 20964856 |
[27] |
Boachon B, Burdloff Y, Ruan J X, Rojo R, Junker R R, Vincent B, Nicolè F, Bringel F, Lesot A, Henry L, Bassard J E, Mathieu S, Allouche L, Kaplan I, Dudareva N, Vuilleumier S, Miesch L, André F, Navrot N, Chen X Y, Werck-Reichhart D. A promiscuous CYP706A3 reduces terpene volatile emission from Arabidopsis flowers, affecting florivores and the floral microbiome. Plant Cell, 2019, 31: 2947-2972.
doi: 10.1105/tpc.19.00320 |
[28] |
Dhandapani S, Jin J, Sridhar V, Chua N H, Jang I C. CYP79D73 participates in biosynthesis of floral scent compound 2-phenylethanol in Plumeria rubra. Plant Physiol, 2019, 180: 171-184.
doi: 10.1104/pp.19.00098 pmid: 30804010 |
[29] |
Yuan Y, Ren S, Liu X, Su L, Wu Y, Zhang W, Li Y, Jiang Y, Wang H, Fu R, Bouzayen M, Liu M, Zhang Y. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. New Phytol, 2022, 234: 164-178.
doi: 10.1111/nph.17977 pmid: 35048386 |
[30] |
Cao X, Wei C, Duan W, Gao Y, Kuang J, Liu M, Chen K, Klee H, Zhang B. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis. Plant J, 2021, 106: 785-800.
doi: 10.1111/tpj.v106.3 |
[31] |
Gao Y, Lin Y, Xu M, Bian H, Zhang C, Wang J, Wang H, Xu Y, Niu Q, Zuo J, Fu D Q, Pan Y, Chen K, Klee H, Lang Z, Zhang B. The role and interaction between transcription factor NAC-NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles. New Phytol, 2022, 235: 1913-1926.
doi: 10.1111/nph.v235.5 |
[32] |
Wang R, Shu P, Zhang C, Zhang J, Chen Y, Zhang Y, Du K, Xie Y, Li M, Ma T, Zhang Y, Li Z, Grierson D, Pirrello J, Chen K, Bouzayen M, Zhang B, Liu M. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytol, 2022, 233: 373-389.
doi: 10.1111/nph.v233.1 |
[33] |
Hsiao Y Y, Tsai W C, Kuoh C S, Huang T H, Wang H C, Wu T S, Leu Y L, Chen W H, Chen H H. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol, 2006, 6: 14.
doi: 10.1186/1471-2229-6-14 |
[34] |
Xu Y, Zhou J, Lu S, Wang S, Zhou Y. Cloning and molecular characterization of CfMYBs associated with the regulation of methyl jasmonate biosynthesis in Cymbidium faberi. Hortic J, 2020, 89: 593-601.
doi: 10.2503/hortj.UTD-176 |
[35] |
Wang S, Shi M, Zhang Y, Pan Z, Xie X, Zhang L, Sun P, Feng H, Xue H, Fang C, Zhao J. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. Plant Physiol, 2022, 188: 2146-2165.
doi: 10.1093/plphys/kiac014 pmid: 35043961 |
[36] |
Srivastava S, Sangwan R S. Analysis of Artemisia annua transcriptome for BAHD alcohol acyltransferase genes: identification and diversity of expression in leaf, stem and root. J Plant Biochem Biotechnol, 2012, 21: 108-118.
doi: 10.1007/s13562-012-0141-2 |
[37] |
Wang M, Liu X, Wang R, Li W, Rodermel S, Yu F. Overexpression of a putative Arabidopsis BAHD acyltransferase causes dwarfism that can be rescued by brassinosteroid. J Exp Bot, 2012, 63: 5787-5801.
doi: 10.1093/jxb/ers227 |
[38] |
Bueren E T, Østergård H, Vriend H, Backes G. The role of molecular markers and marker assisted selection in breeding for organic and low-input agriculture. Euphytica, 2010, 175: 51-64.
doi: 10.1007/s10681-010-0169-0 |
[39] |
Eggink P M, Tikunov Y, Maliepaard C, Haanstra J P, de Rooij H, Vogelaar A, Gutteling E W, Freymark G, Bovy A G, Visser R G. Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theor Appl Genet, 2014, 127: 373-390.
doi: 10.1007/s00122-013-2225-3 pmid: 24185820 |
[40] |
王慧玲, 闫爱玲, 王晓玥, 刘振华, 任建成, 徐海英, 孙磊. 葡萄果粒质量相关性状全基因组关联分析. 中国农业科学, 2023, 56: 1561-1573.
doi: 10.3864/j.issn.0578-1752.2023.08.011 |
Wang H L, Yan A L, Wang X Y, Liu Z H, Ren J C, Xu H Y, Sun L. Genome-wide association studies for grape berry weight related traits. Sci Agric Sin, 2023, 56: 1561-1573. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2023.08.011 |
[1] | ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235. |
[2] | MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad Yousof, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103. |
[3] | LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835. |
[4] | MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372. |
[5] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
[6] | YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330. |
[7] | WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087. |
[8] | LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170. |
[9] | WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859. |
[10] | MA Juan, ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun. Multi-locus genome-wide association study and prediction for general combining ability of maize ear length [J]. Acta Agronomica Sinica, 2023, 49(6): 1562-1572. |
[11] | ZHOU Hai-Ping, ZHANG Fan, CHEN Kai, SHEN Cong-Cong, ZHU Shuang-Bing, QIU Xian-Jin, XU Jian-Long. Identification of rice blast resistance in xian and geng germplasms by genome- wide association study [J]. Acta Agronomica Sinica, 2023, 49(5): 1170-1183. |
[12] | YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730. |
[13] | MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661. |
[14] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[15] | YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391. |
|