Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 857-870.doi: 10.3724/SP.J.1006.2024.32010

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1

YU Yao1(), WANG Zi-Yao1, ZHOU Si-Rui1, LIU Peng-Cheng1, YE Ya-Feng2, MA Bo-Jun1, LIU Bin-Mei2,*(), CHEN Xi-Feng1,*()   

  1. 1College of Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui, China
  • Received:2023-03-27 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-23
  • Contact: * E-mail: liubm@ipp.ac.cnl; E-mail: xfchen@zjnu.cn E-mail:2315318441@qq.com;liubm@ipp.ac.cnl;xfchen@zjnu.cn
  • Supported by:
    National Natural Science Foundation of China(32071987);National Natural Science Foundation of China(32101697);Natural Science Foundation of Zhejiang Province(LQ22C130005);Natural Science Foundation of Zhejiang Province(LZ23C130004)

Abstract:

Lesion mimic mutants are important genetic materials for studying molecular mechanisms of plant cell death and disease resistance. Through radiation mutagenesis of a japonica rice cultivar ‘Wuyunjing 7’, a rare lesion mimic and disease-susceptible mutant lms1 was obtained. Compared to the wild type, the leaves of this mutant spontaneously appeared reddish-brown spots, and its plant height, panicle length, number of grains per panicle, and yield per plant decreased, but the weight of 1000-grain increased. In addition, the resistance of lms1 to rice bacterial blight decreased significantly, and tissue staining showed significant cell death and excessive accumulation of reactive oxygen species in the mutant leaves. Genetic analysis showed that the phenotype of the lms1 mutant was controlled by a single recessive nuclear gene, and the lms1 gene was finely located between two molecular markers, Indel7 and Indel8, on chromosome 9 of rice with a physical distance of 62 kb. PCR amplification and sequencing of candidate genes in the localization interval showed that a 654 bp sequence was inserted into the first exon of the OsLMP1 (Lesion Mimic Phenotype 1) gene, which encodes a ubiquitin carboxyl-terminal hydrolase, resulting in premature termination of protein translation. The protein compositions of lms1 mutants and WT controls were analyzed by a proteomics technology, which identified a total of 19 differentially accumulated proteins (7 upregulated and 12 down-regulated), mainly involved in redox, chlorophyll synthesis, photosynthesis, and other metabolic pathways. The above results provide a reference for further research on the function of the OsLMP1 gene and its molecular mechanism of regulating programmed cell death and disease resistance.

Key words: rice, lesion mimic, lms1, gene mapping, proteomic analysis

Table 1

Molecular markers and their sequences used for fine mapping"

名称
Name
正向引物序列
Former primer (5′-3′)
反向引物序列
Reverse primer (5′-3′)
Indel1 ATGCAAATGACCTCGCTTCC GCCTGCCACTGACTCTGTTC
Indel2 TACAGGGAGATAAGAGGAAG CAAGTCGGAGGAACGAACAA
Indel3 CTTACCTCCGTCTCCAAA GTCATATTAACAGTCCCATT
Indel4 GCTTCACCCGCTTCTTCAC CAGGTTCTCGGCCCAATC
Indel5 AGAGGGTTGAGGGAGGCTGA TTCCATGCGGTCCATAAGTG
Indel6 ATGGCTGGAGGAGTGAATGA CTCGTGAGCGGATTATAGTTG
Indel7 GTATTTCCCGATGACTTCC ACATTTATTGATTGCTCCC
Indel8 AGGCTTAGTGATGGAGTAGAA CATGATGCCATTTGATTTGA

Table 2

Primer pairs used for PCR amplification and identification of target gene"

名称
Name
正向引物序列
Former primer (5′-3′)
反向引物序列
Reverse primer (5′-3′)
OsLMP1-1 GGGGATTTCTGTTGGTGTAGG GTTGCATCATCAATAGGGTTTT
OsLMP1-2 GTCATGTGCTTCTGTGCCTAA CATGGACAGTGGGACCTCTTA
OsLMP1-3 AGTATGCCTTCCCATCTGTA AGGCCAACTGGACTCAATCAAA
lms1-Chr.9 AGCAGCAGCAGAAGAAGAAA AGCCCTCTGATTACACTACCAT
lms1-Chr.3 CAGTGATGAACACCTGAGAAC GCCGCAGTAGTTAGATGTTGT

Fig. 1

Lesion mimic and disease resistance phenotype of lms1 mutant A: plants at the seedling stage; B: plants at the mature stage; C: flag leaves. D: chlorophyll contents. E: leaves before staining; F-H: leaves stained by TB, NBT, and DAB, respectively; I: photographs of the leaves infected by Xoo strains; J: statistical results of the lesion length in the leaves infected by Xoo strains (Measure the length of the diseased spot with a graduated ruler, measure at least 15 sword leaves for each type of rice, and finally take the average value as its diseased spot length). A two-tailed unpaired Student’s t-test determined the statistical significance (hereafter). *: P < 0.05; **P < 0.01. Bar: 2 cm in (A, C-G, I-J), 10 cm in (B)."

Fig. 2

Comparison of main agronomic traits between the lms1 mutant and WT Statistical results of plant height (A), flag-leaf length (B) and width (C), effective tiller number (D), panicle length (E), grains number per panicle (F), setting ratio (G), grain length (H), grain width (I), grain thickness (J), 1000-grain weight (K), and yield per plant (L); photograph of 10 grains in length (M), width (N) and thickness (O) between WT and lms1 mutant, scale bar: 1 cm."

Fig. 3

Fine mapping and identification of the candidate gene of lms1 A and B: preliminary and fine mapping genetic map of the lms1 mutant; ‘n’ refers to the number of F2 mutants used; the number under each marker represents the recombinants detected by corresponding marker. C: annotation genes in the 62-kb region, and the mutation site of the candidate gene of lms1; a 654-bp fragment was inserted into target gene at the 625 bp from the first codon. D: sequencing results of lms1 gene in the mutation site comparing to WT, and the sequence boxed is the whole fragment inserted. E: model diagram of chromosome translocation in lms1 mutant. DSB, DNA double-strand break. NHEJ, non-homologous end joining; F: electrophoresis of PCR products amplified from WT and lms1 using primers pair flanking by the mutation sites. M: molecular marker DL2000."

Fig. 4

Conservation domain and phylogenetic tree analysis of OsLMP1 protein A: sequence alignment of OsLMP1 and its homologous proteins, and the conservation domain were underlined or boxed; B: phylogenetic tree of OsLMP1 proteins. The Maximum-Likelihood tree was generated by MEGA v7.0 with bootstrap-1000 repeats tests."

Table 3

Basic information of differentially accumulated proteins"

蛋白序号a
Protein IDa
基因序号b
Gene IDb
描述
Description
表达量差异倍数
FC
分数
Score
趋势(下调/下调)
Trend (down/up)
Q8W250 LOC_Os01g01710 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0 16.768 Down
Q9LGQ6 LOC_Os01g09010 Acyl transferase 9 0 11.008 Down
Q6Z2T6 LOC_Os02g51080 Geranylgeranyl diphosphate reductase 0 57.381 Down
Q75L11 LOC_Os05g02300 Histone H2A.6 0 139.17 Down
A2Y8E0 LOC_Os06g01850 Leaf-type ferredoxin-NADP+ oxidoreductase 0 5.7841 Down
Q69TY4 LOC_Os06g42000 Peroxiredoxin-2E-1 0 4.344 Down
Q53JF7 LOC_Os11g06720 Abscisic stress-ripening protein 5 0 323.31 Down
B6RGY0 LOC_Os01g37510 Peptide deformylase 0.2145 7.3262 Down
Q7XBW5 LOC_Os10g42500 Probable plastid-lipid-associated protein 3 0.2309 27.554 Down
Q71U98 LOC_Os03g27310 Histone H3.3 0.2328 203.14 Down
Q6ENC8 LOC_Os10g21358 50S ribosomal protein L23 0.2462 55.05 Down
Q53RM0 LOC_Os03g36540 Magnesium-chelatase subunit ChlI 0.3060 71.42 Down
P30298 LOC_Os06g09450 Sucrose synthase 2.0059 121.52 Up
Q9LSU0 LOC_Os01g59600 Proteasome subunit alpha type-3 2.5953 11.201 Up
Q7F1U0 LOC_Os07g48020 Peroxidase 3.3684 109.27 Up
Q84YK8 LOC_Os08g39850 Lipoxygenase 4.7947 20.507 Up
Q75IM9 LOC_Os05g03480 Isovaleryl-CoA dehydrogenase 8.1778 12.587 Up
Q6ZCR3 LOC_Os08g13440 Cupin domain containing protein 27468000 6.2905 Up
Q0JG75 LOC_Os01g71190 Photosystem II reaction center PSB28 protein 189290000 323.31 Up

Fig. 5

Proteomic comparison of lms1 mutant and WT A: GO analysis of the differentially-expressed proteins (DEPs) between lms1 mutant and WT; B: KEGG enrichment of the DEPs. The X-axis indicates the enrichment ratio, the Y-axis indicates the KEGG pathway, and the bubble size indicates the number of proteins. The color represents the enriched Q-value; C: content of H2O2. D: POD activity."

[1] Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997; 88: 685-694.
pmid: 9054508
[2] Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell, 1997, 89: 25-31.
doi: 10.1016/s0092-8674(00)80179-8 pmid: 9094711
[3] Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Friiters A, van Daelen R, van der Lee T, Dierggaarda P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695-705.
doi: 10.1016/s0092-8674(00)81912-1 pmid: 9054509
[4] Yamanouchi U, Yano M, Lin H, Askikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Pro Natl Acad Sci USA, 2002, 99: 7530-7535.
doi: 10.1073/pnas.112209199
[5] Ma H G, Li J, Ma L, Wang P, Xue Y, Yin P, Xiao J H, Wang S P. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632.
doi: 10.1016/j.molp.2021.01.008
[6] Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y G, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313-324.
doi: 10.1111/j.1467-7652.2007.00243.x pmid: 17309686
[7] Tong X H, Qi J F, Zhu X D, Mao B Z, Zeng L J, Wang B H, Li Q, Zhou G X, Xu X J, Lou Y G, He Z H. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J, 2012, 71: 763-775.
doi: 10.1111/tpj.2012.71.issue-5
[8] Wang Z H, Wang Y, Hong X, Hu D H, Liu C X, Yang J, Li Y, Hung Y Q, Feng Y Q, Gong H Y, Li Y, Fang G, Tang H R, Li Y S. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. J Exp Bot, 2015, 66: 973-987.
doi: 10.1093/jxb/eru456 pmid: 25399020
[9] Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, Wang Y F, Zhang H, Wang F, Tan Y Q, Wang Y P, Jin X, Luo S, Zhou C L, Zhang X, Liu J L, Wang S, Meng L Z, Wang Y H, Chen X, Lin Q B, Zhang X, Guo X P, Cheng Z J, Wang J L, Tian Y L, Liu S J, Jiang L, Wu C Y, Wang E T, Zhou J M, Wang Y F, Wang H Y, Wan J M. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820-831.
doi: 10.1038/s41422-019-0219-7 pmid: 31444468
[10] Zhang Y, Liu Q, Zhang Y X, Chen Y Y, Yu N, Cao Y R, Zhan X D, Cheng S H, Cao L Y. LMM24 encodes receptor-like cytoplasmic kinase 109, which regulates cell death and defense responses in rice. In J Mol Sci, 2019, 20: 3243.
doi: 10.3390/ijms20133243
[11] Wang L J, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microb Interact, 2005, 18: 375-384.
doi: 10.1094/MPMI-18-0375
[12] Wang S H, Lim J H, Kim S S, Cjo S H, Yoo S C, Koh H J, Sakuraba Y, Paek N C. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. J Exp Bot, 2015, 66: 7045-7059.
doi: 10.1093/jxb/erv401
[13] Liu J, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X S, Liu W, Ning Y, Kawano Y, Wang G L. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog, 2015, 11: e1004629.
doi: 10.1371/journal.ppat.1004629
[14] Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847-860.
doi: 10.1007/s11103-006-9130-y pmid: 17273822
[15] Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Haegawa M, Sugano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009, 22: 820-829.
doi: 10.1094/MPMI-22-7-0820
[16] You Q Y, Zhai K R, Yang D L, Yang W B, Wu J N, Liu J Z, Pan W B, Wang J J, Zhu X D, Jian Y K, Liu J Y, Zhang Y Y, Deng Y W, Li Q, Lou Y G, Xie Q, He Z H. An E3 Ubiquitin ligase-BAG protein module controls plant innate immunity and broad- spectrum disease resistance. Cell Host Microbe, 2016, 20: 758-769.
doi: 10.1016/j.chom.2016.10.023
[17] Koji K, Yaeno T, Kusumi K, Mstsumura H, Fujisawa S, Terauchi R, Iba K. Regulatory mechanisms of ROI generation are affected by rice spl mutations. Plant Cell Physiol, 2006, 47: 1035-1044.
doi: 10.1093/pcp/pcj074 pmid: 16816407
[18] 王小虎. 水稻类病变早衰基因LMES3LMES4的克隆与功能研究. 扬州大学博士学位论文, 江苏扬州, 2018.
Wang X H. Map-based Cloning and Function Analysis of Two Lesion Mimic and Early Senescence Gene LMES3 and LMES4 in Rice. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2018. (in Chinese with English abstract)
[19] Jiang J, Yang G Z, Xin Y F, Wang Z G, Yan W, Chen Z F, Tang X Y, Xia J X. Overexpression of OsMed16 inhibits the growth of rice and causes spontaneous cell death. Genes, 2021, 12: 656.
doi: 10.3390/genes12050656
[20] Cui Y J, Peng Y L, Zhang Q, Xia S S, Ruan B P, Xu Q K, Yu X Q, Zhou T T, Liu H, Zeng D, Zhang G H, Gao Z Y, Hu J, Zhu L, Shen L, Guo L B, Qian Q, Ren D Y. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J, 2021, 105: 942-956.
doi: 10.1111/tpj.v105.4
[21] Ma J, Wang Y F, Ma X D, Meng L Z, Jing R N, Wang F, Wang S, Cheng Z J, Zhang X, Jiang L, Wang J L, Wang J, Zhao Z C, Guo X P, Lin Q B, Wu F Q, Zhu S S, Wu C Y, Ren Y L, Lei C L, Zhai H Q, Wan J M. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnol J, 2019, 17: 1679-1693.
doi: 10.1111/pbi.13093 pmid: 30771255
[22] Hu H T, Ren D Y, Hu J, Jiang H Z, Chen P, Zeng D L, Qian Q, Guo L B. WHITE AND LESION-MIMIC LEAF1, encoding a lumazine synthase, affects reactive oxygen species balance and chloroplast development in rice. Plant J, 2021, 108: 1690-1703.
doi: 10.1111/tpj.v108.6
[23] Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense- related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939-949.
doi: 10.1007/s11032-011-9677-4
[24] 刘林, 张迎信, 李枝, 刘群恩, 余宁, 孙滨, 杨正福, 周全, 程式华, 曹立勇. 水稻类病变突变体g303的鉴定和基因定位. 中国水稻科学, 2014, 28: 465-472.
Liu L, Zhang Y X, Li Z, Liu Q E, Yu N, Sun B, Yang Z F, Zhou Q, Cheng S H, Cao L Y. Characterization and gene mapping of a lesion mimic mutant g303 in rice. Chin J Rice Sci, 2014, 28: 465-472. (in Chinese with English abstract)
[25] Kumar D, Yusuf M A, Singh P, Sardar M, Sarin N B. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protocol, 2014, 4: e11108.
[26] Christensen T H, Zhang Z G, Wei Y D, Collonge D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187-1194.
doi: 10.1046/j.1365-313X.1997.11061187.x
[27] Kauffman H E, Reddy A, Hsieh S, Merca S D. Improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Disease Rep, 1973, 57: 537-541.
[28] 陈析丰, 刘亚萍, 马伯军. 图位克隆技术新型遗传学实验教学项目的设计与实践. 植物学报, 2019, 54: 797-803.
doi: 10.11983/CBB19107
Chen X F, Liu Y P, Ma B J. Design and practice of a new teaching project of the map-based cloning. Acta Bot Sin, 2019, 54: 797-803. (in Chinese with English abstract)
[29] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[30] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 200, 436: 793-800.
doi: 10.1038/nature03895
[31] Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054
[32] Smith P K, Krohn R I, Hermanson G T, Mallia A K, Gartner F H, Provenzano M D, Fujimoto E K, Goeke N M, Olson B J, Klenk D C. Measurement of protein using bicinchoninic acid. Anal Biochem, 1985, 150: 76-85.
doi: 10.1016/0003-2697(85)90442-7 pmid: 3843705
[33] Urrutia M, Blein-Nicolas M, Prigent S, Deborde C, Balliau T, Maucourt M, Jacob D, Ballias P, Benard C, Sellier H, Gibon Y, Giauffret C, Zivy M, Moing A. Maize metabolome and proteome responses to controlled cold stress partly mimic early sowing effects in the field and differ from those of Arabidopsis. Plant Cell Environ, 2021, 44: 1504-1521.
doi: 10.1111/pce.v44.5
[34] Sun J, Song W, Chang Y, Wang Y, Lu T, Zhang Z. OsLMP1, encoding a deubiquitinate, regulates the immune response in rice. Front Plant Sci, 2022, 12: 814465.
doi: 10.3389/fpls.2021.814465
[35] 张长波, 孙红霞, 巩中军, 祝增荣. 植物萜类化合物的天然合成途径及其相关合酶. 植物生理学通讯, 2007, 43: 779-786.
Zhang C B, Sun H X, Gong Z J, Zhu Z R. Plant terpenoid natural metabolism pathways and their synthases. Plant Physiol Commun, 2007, 43: 779-786. (in Chinese with English abstract)
[36] Umate P. Genome-wide analysis of thioredoxin fold superfamily peroxiredoxins in Arabidopsis and rice. Plant Signal Behav, 2010, 5: 1543-1546.
doi: 10.4161/psb.5.12.13494
[37] Addlesee H A, Hunter C N. Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranyl-bacteriopheophytin reductase. J Bacteriol, 2002, 184: 1578-1586.
doi: 10.1128/JB.184.6.1578-1586.2002 pmid: 11872709
[38] Zhang C, Zhang W, Ren G, Li D, Cahoon R E, Chen M, Zhou Y, Yu B, Cahoon E B. Chlorophyll synthase under epigenetic surveillance is critical for vitamin E synthesis, and altered expression affects tocopherol levels in Arabidopsis. Plant Physiol, 2015, 168: 1503-1511.
doi: 10.1104/pp.15.00594
[39] Marla S S, Singh V K. LOX genes in blast fungus (Magnaporthe grisea) resistance in rice. Funct Integr Genomics, 2012, 12: 265-275.
doi: 10.1007/s10142-012-0268-1
[40] 何晓玲, 刘鹏程, 马伯军, 陈析丰. 基于CRISPR/Cas9的基因编辑技术研究进展及其在植物中的应用. 植物学报, 2022, 57: 208-531.
He X L, Liu P C, Ma B J, Chen X F. Advance in gene-editing technology based on CRISPR/Cas9 and its application in plants. Acta Bot Sin, 2022, 57: 508-531 (in Chinese with English abstract).
[41] Li Z, Ding B, Zhou X, Wang G L. The rice dynamin-related protein osdrp1e negatively regulates programmed cell death by controlling the release of cytochrome C from mitochondria. PLoS Pathog, 2017, 13: e1006157.
doi: 10.1371/journal.ppat.1006157
[42] Zheng Y, Zhu Y, Mao X, Jiang M, Wei Y, Lian L, Xu H, Chen L, Xie H, Lu G, Zhang J. SDR7-6, a short-chain alcohol dehydrogenase/reductase family protein, regulates light-dependent cell death and defence responses in rice. Mol Plant Pathol, 2022, 23: 78-91.
doi: 10.1111/mpp.13144
[43] Rao Y C, Jiao R, Wang S, Wu X M, Ye H F, Pan C Y, Li S F, Xin D D, Zhou W Y, Dai G X, Hu J, Ren D Y, Wang Y X. SPL36 encodes a receptor-like protein kinase that regulates programmed cell death and defense responses in rice. Rice, 2021, 14: 34.
doi: 10.1186/s12284-021-00475-y pmid: 33825994
[44] Lee D, Lee G, Kim B, Jang S, Lee Y, Yu Y, Seo J, Kim S, Lee Y H, Lee J, Kim S, Koh H J. Identification of a Spotted Leaf Sheath gene involved in early senescence and defense response in rice. Front Plant Sci, 2018, 9: 1274.
doi: 10.3389/fpls.2018.01274
[45] Huang K, Wang D, Duan P, Zhang B, Xu R, Li N, Li Y. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J, 2017, 91: 849-860.
doi: 10.1111/tpj.2017.91.issue-5
[46] Shi C, Ren Y, Liu L, Wang F, Zhang H, Tian P, Pan T, Wang Y, Jing R, Liu T, Wu F, Lin Q, Lei C, Zhang X, Zhu S, Guo X, Wang J, Zhao Z, Wang J, Zhai H, Cheng Z, Wan J. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 2019, 180: 381-391.
doi: 10.1104/pp.19.00065 pmid: 30796160
[47] Chen Y, Yan Y, Wu T T, Zhang G L, Yin H, Chen W, Wang S, Chang F, Gou J Y. Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nat Commun, 2020, 11: 6266.
doi: 10.1038/s41467-020-20133-z pmid: 33293512
[1] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[2] SU Shuai, LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju. Identification and gene cloning of leafy dwarf mutant lyd1 in maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1124-1135.
[3] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, and MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[4] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[5] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
[6] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Annual yield gap and the causes assessment for rice-rapeseed cropping system: an example from Wuxue city, Hubei province [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[7] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[8] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[9] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[10] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[11] WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424.
[12] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[13] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[14] LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75.
[15] XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .