Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1373-1383.doi: 10.3724/SP.J.1006.2024.31051

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat

ZHANG Zhi-Yuan1**(), ZHOU Jie-Guang1**(), LIU Jia-Jun1,2, WANG Su-Rong1, WANG Tong-Zhu1, ZHAO Cong-Hao1, YOU Jia-Ning1,3, DING Pu-Yang1,4, TANG Hua-Ping1, LIU Yan-Lin1, JIANG Qian-Tao1, CHEN Guo-Yue1, WEI Yu-Ming1, MA Jian1,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou 635000, Sichuan, China
    3Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, Sichuan, China
    4College of Life Science & Biotechnology, Mianyang Teachers’ College, Mianyang 621000, Sichuan, China
  • Received:2023-09-08 Accepted:2024-01-12 Online:2024-06-12 Published:2024-02-19
  • Contact: * E-mail: jianma@sicau.edu.cn E-mail:1048105542@qq.com;351062153@qq.com;jianma@sicau.edu.cn
  • About author:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31971937);International Cooperation and the Exchanges Program of Sichuan Province(2021YFH0083)

Abstract:

Effective tiller number (ETN) directly affects panicle number and is closely related to wheat grain yield. Mining quantitative trait loci (QTLs) associated with wheat tiller number and analyzing the correlation between tiller number and other important agronomic traits can provide the theoretical basis for molecular breeding. In this study, we first proposed and established a novel genetic analysis framework of “multiple environmental assessments-depth analysis of individual traits-comprehensive evaluation of various traits-friendly marker development-verification in different backgrounds”. Using this approach, low-tillering QTLs were identified and validated base on an F6 recombinant inbred line population (MC population) derived from the low-tillering plant msf and Chuannong 16 (CN16), phenotypic data of effective tillers from multiple environments, and a 16K chip-based constructed genetic linkage map. QTL mapping results showed that there were four QTLs controlling tillering on chromosomes 1A, 5A, and 6D, respectively. Qltn.sau-MC-1A was a stable and major low-tillering QTL explaining 13.39%-60.40% of the phenotypic variation rate, and its positive allele was from msf. Phenotypic analysis showed that ETN of the lines carrying the positive allele of Qltn.sau-MC-1A was significantly less than those with the negative alleles. Correlation analysis showed that ETN had a significantly positive correlation with plant height (PH), and a significantly negative correlation with thousand kernel weight (TKW), kernel number per spike (KNPS), kernel weight per spike (KWPS), and flag leaf width (FLW), but no significantly correlation with flag leaf length (FLL) and anthesis date (AD). Genetic analysis showed that positive allele of Qltn.sau-MC-1A had a significant effect on increasing KNPS, KWPS, and TKW, but delaying AD. Validation results in different backgrounds suggested that the ETN of lines carrying positive alleles from Qltn.sau-MC-1A could be significantly decreased. Collectively, we established a new genetic mapping approach and further used it to identify and validate a major QTL controlling low-tiller number, Qltn.sau-MC-1A, which laid a foundation for further fine mapping and understanding the mechanism of tiller formation.

Key words: wheat, new genetic analysis model, 16K SNP array, QTL, low-tiller number, yield

Fig. 1

Phenotype of parents and selected lines in the MC population"

Table 1

Phenotypic variation of effective tiller number for parents and RIL in MC population"

生态环境
Environment
亲本 Parents 重组自交系 RILs 遗传力H2
msf CN16 平均值 Average 最小值 Min. 最大值 Max. 标准差 SD
2021WJ 3.90 9.00** 7.46 1.00 18.67 3.66 0.63
2021CZ 3.67 7.89** 4.75 1.00 10.75 2.06
2021YA 1.50 7.00N 3.36 1.00 13.00 2.29
2022WJ 2.38 8.00** 3.60 1.00 9.38 2.01
2022CZ 4.13 7.38* 4.31 1.00 13.50 2.85
BLUP 3.52 7.04 4.69 2.08 8.02 1.37

Fig. 2

Quantile-quantile (Q-Q) plots of effective tiller number for MC population in different environments mu: average; sigma: standard deviation. Abbreviations are the same as those given in Table 1."

Table 2

Correlation analysis of effective tiller number in different environments in MC population"

生态环境
Environment
2021WJ 2021CZ 2021YA 2022WJ 2022CZ
2021WJ 1
2021CZ 0.50** 1
2021YA 0.31** 0.10 1
2022WJ 0.38** 0.42** 0.35** 1
2022 CZ 0.32** 0.27** 0.42** 0.75** 1

Table 3

QTL related to low-tiller number in MC population"

数量性状位点
QTL
生态环境
Environment
遗传位置
Position
标记范围
Marker interval
阈值
LOD
表型变异
PVE (%)
Qltn.sau-MC-1A 2021WJ 1 1A_3911208-1A_10060497 8.74 17.96
2021CZ 1 1A_3911208-1A_10060497 7.97 17.05
2021YA 1 1A_3911208-1A_10060497 4.78 13.39
2022WJ 1 1A_3911208-1A_10060497 42.10 60.40
2022CZ 1 1A_3911208-1A_10060497 26.70 45.86
BLUP 1 1A_3911208-1A_10060497 39.86 54.36
Qltn.sau-MC-5A.1 2022WJ 97 5A_556727472-5A_558969437 4.37 3.81
Qltn.sau-MC-5A.2 BLUP 108 5A_572980290-5A_575428307 5.92 5.07
Qltn.sau-MC-6D 2022CZ 60 6D_455134794-6D_463743339 3.92 5.02

Table 4

Multi-environment QTL related to the effective tiller number in MC population"

遗传位置
Position
标记范围
Marker interval
阈值
LOD
LOD
(A)
LOD
(AbyE)
表型变异
PVE
PVE
(A)
PVE
(AbyE)
1 1A_3911208-1A_10060497 90.21 58.65 31.56 35.01 31.23 3.78
30 1A_23131668-1A_39616563 3.10 1.67 1.43 1.91 0.67 1.24
100 2A_717144670-2A_720056407 3.52 3.26 0.27 2.29 1.30 1.00
177 3A_730807251-3A_732757911 3.22 1.59 1.63 1.91 0.65 1.27
18 4A_618529916-4A_623834197 3.30 0.75 2.55 1.90 0.30 1.60
97 5A_556727472-5A_558969437 8.54 5.30 3.24 2.28 2.17 0.11
108 5A_572980290-5A_575428307 5.65 5.24 0.41 2.85 2.13 0.72
0 1B_489269981-1B_510813813 3.23 1.47 1.76 2.80 0.61 2.19
36 1B_619666190-1B_624217667 3.04 1.11 1.94 1.22 0.45 0.77
27 2B_18638491-2B_26062934 3.48 0.90 2.58 1.85 0.33 1.52
103 4B_648178224-4B_649491388 3.12 1.52 1.60 1.17 0.58 0.58
56 6B_687067128-6B_692736644 4.31 0.93 3.38 1.94 0.38 1.55
0 1D_304194-1D_12332065 3.32 0.01 3.31 0.93 0.00 0.93
84 1D_408180035-1D_431188242 3.07 2.14 0.93 2.13 0.81 1.33
57 3D_16429915-3D_39118733 3.75 0.15 3.60 0.73 0.06 0.67
0 3D_588334228-3D_594062466 3.71 3.29 0.42 1.71 1.35 0.36
53 4D_481390193-4D_484488681 3.07 1.66 1.42 1.31 0.65 0.66
88 5D_394108741-5D_403477419 3.23 0.97 2.25 1.56 0.40 1.16
60 6D_455134794-6D_463743339 4.95 2.28 2.67 1.74 0.93 0.82

Fig. 3

Genetic map of Qltn.sau-MC-1A and genetic effect of Qltn.sau-MC-1A in MC population A: genetic map; B: LOD values; C: genetic effect of Qltn.sau-MC-1A in MC population. Markers’ genetic positions are shown on the left of the map, and their names are shown on the right (cM). + and -: the number of lines carrying and not carrying the positive allele of corresponding QTL; n: the number of lines. **, P<0.01."

Fig. 4

Effect of the major QTL for the effective tiller number on yield related traits **, P<0.01."

Fig. 5

Validation of Qltn.sau-MC-1A in different genetic backgrounds **, P<0.01."

Fig. 6

Genetic analysis model of a major QTL"

[1] 居辉, 熊伟, 许吟隆, 林而达. 气候变化对我国小麦产量的影响. 作物学报, 2005, 31: 1340-1343.
Ju H, Xiong W, Xu Y L, Lin E D. Impacts of climate change on wheat yield in China. Acta Agron Sin, 2005, 31: 1340-1343. (in Chinese with English abstract)
[2] An D, Su J, Liu Q, Zhu Y, Tong Y, Li J, Jing R, Li B, Li Z. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006, 284: 73-84.
[3] Tshikunde N M, Mashilo J, Shimelis H, Odindo A. Agronomic and physiological traits, and associated quantitative trait loci (QTL) affecting yield response in wheat (Triticum aestivum L.): a review. Front Plant Sci, 2019, 10: 1428.
[4] Naruoka Y, Talbert L E, Lanning S P, Blake N K, Martin J M, Sherman J D. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet, 2011, 123: 1043-1053.
doi: 10.1007/s00122-011-1646-0 pmid: 21751014
[5] 杨林, 邵慧, 吴青霞, 余静, 冉从福, 李立群, 李学军. 小麦分蘖数和单株穗数QTL定位及上位性分析. 麦类作物学报, 2013, 33: 875-882.
Yang L, Shao H, Wu Q X, Yu J, Ran C F, Li L Q, Li X J. QTLs mapping and epistasis analysis for the number of tillers and spike number per plant in wheat. J Triticeae Crops, 2013, 33: 875-882. (in Chinese with English abstract)
[6] 陈悦, 王同著, 郑跃婷, 杨雨露, 王盈, 张香粉, 陈锋, 赵磊. 小麦分蘖性状分子遗传研究进展. 麦类作物学报, 2022. 42: 564-571.
Chen Y, Wang T Z, Zheng Y T, Yang Y L, Wang Y, Zhang X F, Chen F, Zhao L. Advances in molecular genetics of tillering characters in wheat. J Triticeae Crops, 2022, 42: 564-571. (in Chinese with English abstract)
[7] 申雪懿, 李东升, 陈琛, 曲朝喜, 郭瑞, 姚维成, 刘家俊, 邓垚, 温明星. 小麦分蘖数目遗传研究进展与展望. 麦类作物学报, 2023, 43: 1344-1350.
Shen X Y, Li D S, Chen C, Qu C X, Guo R, Yao W C, Liu J J, Deng Y, Wen M X. Progress and prospect of genetic research on tiller number wheat. J Triticeae Crops, 2023, 43: 1344-1350. (in Chinese with English abstract)
[8] Spielmeyer W, Richards R A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet, 2004, 109: 1303-1310.
doi: 10.1007/s00122-004-1745-2 pmid: 15448895
[9] Peng Z S, Yen C, Yang J L. Genetic control of oligo-culms in common wheat. Wheat Inf Serv, 1998, 86: 19-24.
[10] Kuraparthy V, Sood S, Dhaliwal H S, Chhuneja P, Gill B S. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet, 2007, 114: 285-294.
doi: 10.1007/s00122-006-0431-y pmid: 17115129
[11] Si Y Q, Lu Q, Tian S Q, Niu J Q, Cui M, Liu X L, Gao Q, Shi X L, Ling H Q, Zheng S S. Fine mapping of the tiller inhibition gene TIN5 in Triticum urartu. Theor Appl Genet, 2022, 135: 2665-2673.
[12] Schoen A, Yadav I, Wu S Y, Poland J, Rawat N, Tiwari V. Identification and high-resolution mapping of a novel tiller number gene (tin6) by combining forward genetics screen and MutMap approach in bread wheat. Funct Integr Genom, 2023, 23: 157.
[13] Zhang J P, Wu J, Liu W H, Lu X, Yang X M, Gao A N, Li X Q, Lu Y Q, Li L H. Genetic mapping of a fertile tiller inhibition gene, ftin, in wheat. Mol Breed, 2013, 31: 441-449.
[14] Wang Z Q, Liu Y X, Shi H R, Mo H J, Wu F K, Lin Y, Gao S, Wang J R, Wei Y M, Liu C J, Zheng Y L. Identification and validation of novel low-tiller number QTL in common wheat. Theor Appl Genet, 2016, 129: 603-612.
doi: 10.1007/s00122-015-2652-4 pmid: 26804619
[15] Wang Z Q, Wu F K, Chen X D, Zhou W L, Shi H R, Lin Y, Hou S, Yu S F, Zhou H, Li C X, Liu Y X. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet, 2022, 135: 527-535.
[16] Liu J J, Luo W, Qin N N, Ding P Y, Zhang H, Yang C C, Mu Y, Tang H P, Liu Y X, Li W, Jiang Q T, Chen G Y, Wei Y M, Zheng Y L, Liu C J, Lan X J, Ma J. A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet, 2018, 131: 2439-2450.
[17] Liu J J, Tang H P, Qu X R, Liu H, Li C, Tu Y, Li S Q, Habib A, Mu Y, Dai S F, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Chen G D, Li W, Jiang Y F, Wei Y M, Lan X J, Zheng Y L, Ma J. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Mol Biol, 2020, 104: 173-185.
doi: 10.1007/s11103-020-01035-6 pmid: 32734417
[18] Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796.
doi: 10.1007/s00122-005-0159-0 pmid: 16463062
[19] Wang R, Liu Y X, Isham K, Zhao W, Wheeler J, Klassen N, Hu Y G, Bonman J M, Chen J L. QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars. Mol Breed, 2018, 38: 135.
[20] Hyles J, Vautrin S, Pettolino F, MacMillan C, Stachurski Z, Breen J, Berges H, Wicker T, Spielmeyer W. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J Exp Bot, 2017, 68: 1519-1529.
doi: 10.1093/jxb/erx051 pmid: 28369427
[21] Dong C H, Zhang L C, Zhang Q, Yang Y X, Li D P, Xie Z C, Cui G Q, Chen Y Y, Wu L F, Li Z, Liu G X, Zhang X Y, Liu C M, Chu J F, Zhao G Y, Xia C, Jia J Z, Sun J Q, Kong X Y, Liu X. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun, 2023, 14: 836.
[22] Souissi A, Bahri H, M’hamed H C, Chakroun M, Benyoussef S, Frija A, Annabi M. Effect of tillage, previous crop, and N fertilization on agronomic and economic performances of durum wheat (Triticum durum Desf.) under rainfed semi-arid environment. Agronomy, 2020, 10: 1161.
[23] Zhang J M, Zhang S Q, Cheng M, Jiang H, Zhang X Y, Peng C H, Lu X H, Zhang M X, Jin J X. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health, 2018, 15: 839.
[24] Lu K, Wu B W, Wang J, Zhu W, Nie H P, Qian J J, Huang W T, Fang Z M. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J, 2018, 16: 1710-1722.
[25] Ajmal S U, Zakir N, Mujahid M Y. Estimation of genetic parameters and character association in wheat. J Agric Biol Sci, 2009, 1: 15-18.
[26] Jung W J, Lee Y J, Kang C S, Seo Y W. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. BMC Plant Biol, 2021, 21: 418.
doi: 10.1186/s12870-021-03180-6 pmid: 34517837
[27] Zhou J G, Li W, Yang Y Y, Xie X L, Liu J J, Liu Y L, Tang H P, Deng M, Xu Q, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Chen G D, He Y J, Ren Y, Tang L W, Gou L L, Zheng Y L, Wei Y M, Ma J. A promising QTL QSns.sau-MC-3D.1 likely superior to WAPO1 for the number of spikelets per spike of wheat shows no adverse effects on yield-related traits. Theor Appl Genet, 2023, 136: 181.
[28] Ma J, Qin N N, Cai B, Chen G Y, Ding P Y, Zhang H, Yang C C, Huang L, Mu Y, Tang H P, Liu Y X, Wang J R, Qi P F, Jiang Q T, Zheng Y L, Liu C J, Lan X J, Wei Y M. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theor Appl Genet, 2019, 132: 1363-1373.
doi: 10.1007/s00122-019-03283-7 pmid: 30680420
[29] Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S Q, Liu J J, Ding P Y, Habib A, Mu Y, Tang H P, Liu Y X, Jiang Q T, Chen G Y, Wang J R, Li W, Pu Z E, Zheng Y L, Wei Y M, Kang H Y, Chen G D, Lan X J. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet, 2020, 133: 297-315.
doi: 10.1007/s00122-019-03458-2 pmid: 31628527
[30] 陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 2022, 42: 799-807.
Chen H X, Li C, Wu K Y, Wang Y, Mu Y, Tang H P, Tang L W, Lan X J, Ma J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. J Triticeae Crops, 2022, 42: 799-807. (in Chinese with English abstract)
[31] 唐华苹, 陈黄鑫, 李聪, 苟璐璐, 谭翠, 牟杨, 唐力为, 兰秀锦, 魏育明, 马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析. 中国农业科学, 2022, 55: 1492-1502.
doi: 10.3864/j.issn.0578-1752.2022.08.002
Tang H P, Chen H X, Li C, Gou L L, Tan C, Mu Y, Tang L W, Lan X J, Wei Y M, Ma J. Unconditional and conditional QTL analysis of wheat spike length in common wheat based on 55K SNP array. Sci Agric Sin, 2022, 55: 1492-1502 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.08.002
[32] McIntosh R, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R. Catalogue of Gene Symbols for Wheat. In:Proceedings of the 12th International Wheat Genetics Symposium. Yokohama Japan, 2013. pp 8-13.
[33] Wang S R, Wang T Y, Xuan Q J, Qu X R, Xu Q, Jiang Q T, Pu Z E, Li Y, Jiang Y F, Chen G Y, Deng M, Liu Y L, Tang H P, Chen G D, He Y J, Gou L L, Wei Y M, Zheng Y L, Ma J. Major and stably expressed QTL for traits related to the mature wheat embryo independent of kernel size. Theor Appl Genet, 2023, 136: 90.
doi: 10.1007/s00122-023-04346-6 pmid: 37000252
[34] Qu X R, Li C, Liu H, Liu J J, Luo W, Xu Q, Tang H P, Mu Y, Deng M, Pu Z E, Ma J, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Wei Y M, Zheng Y L, Lan X J, Ma J. Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theor Appl Genet, 2022, 135: 2849-2860.
doi: 10.1007/s00122-022-04154-4 pmid: 35804167
[35] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155-3167.
doi: 10.1007/s00122-019-03415-z pmid: 31435704
[36] Liu J J, Zhou J G, Tang H P, Tu Y, Mu Y, Gou L L, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Qi P F, Li W, Jiang Y F, Yan Z H, Kang H Y, Wei Y M, Lan X J, Zheng Y L, Ma J. A major vernalization-independent QTL for tiller angle on chromosome arm 2BL in bread wheat. Crop J, 2022, 10: 185-193.
doi: 10.1016/j.cj.2021.02.013
[37] Tu Y, Liu H, Liu J J, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Qi P F, Pu Z E, Chen G D, Peng Y Y, Jiang Y F, Xu Q, Kang H Y, Lan X J, Wei Y M, Zheng Y L, Ma J. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. Theor Appl Genet, 2021, 134: 261-278.
doi: 10.1007/s00122-020-03695-w pmid: 33026461
[38] Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393
[39] Richards R. A tiller inhibitor gene in wheat and its effect on plant growth. Aust J Agric Res, 1988, 39: 749-757.
[40] Yu M, Liu Z H, Yang B, Chen H, Zhang H, Hou D B. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci Rep, 2020, 10: 12261.
doi: 10.1038/s41598-020-69138-0 pmid: 32703989
[41] 姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 2237-2248.
doi: 10.3864/j.issn.0578-1752.2023.12.001
Yao Q F, Chen H X, Zhou J G, Ma R Y, Deng L, Tan C X Y, Song J H, Lyu J J, Ma J. QTL Identification and genetic analysis of plant height in wheat based on 16K SNP array. Sci Agric Sin, 2023, 56: 2237-2248. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2023.12.001
[42] Yao F Q, Li X H, Wang H, Song Y N, Li Z Q, Li X G, Gao X Q, Zhang X S, Bie X M. Down-expression of TaPIN1s increases the tiller number and grain yield in wheat. BMC Plant Biol, 2021, 21: 443.
[43] 张晶, 张定一, 王姣爱, 党建友. 小麦单株有效分蘖数与农艺性状的相关性研究. 山西农业科学, 2009, 37(6): 17-19.
Zhang J, Zhang D Y, Wang J A, Dang J Y. The dependence study of the effective tillers per plant and agronomic characters in wheat. J Shanxi Agric Sci, 2009, 37(6): 17-19. (in Chinese with English abstract)
[44] 倪永静, 姜晓君, 卢祖权, 朱培培, 胡新, 韩同进. 30份国内外小麦种质资源主要农艺性状的分析与评价. 中国农学通报, 2020, 36(3): 16-22.
doi: 10.11924/j.issn.1000-6850.casb20190700380
Ni Y J, Jiang X J, Lu Z Q, Zhu P P, Hu X, Han T J. 30 worldwide wheat germplasm resources: analysis and evaluation of main agronomic traits. Chin Agric Sci Bull, 2020, 36(3): 16-22. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb20190700380
[45] Kebrom T H, Chandler P M, Swain S M, King R W, Richards R A, Spielmeyer W. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol, 2012, 160: 308-318.
[1] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil#br#
#br#
[J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[2] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[3] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with C4-type ZmPEPC+ZmPPDK gene#br# [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[4] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[5] QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations. This study was supported by the Major Science and Technology of Henan Province Project “The Wheat Nutrigenomics Analysis and Functional Food Creation and Industrialization Fund Project” (231100110300), and the Shennong Laboratory “first-class subject” project (SN01-2022-01). [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[6] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[7] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[8] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[9] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[10] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[11] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[12] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[13] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[14] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
[15] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .