Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 174-188.doi: 10.3724/SP.J.1006.2025.32055

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of alternate wetting and drying irrigation and plant growth regulators on photosynthetic characteristics and endogenous hormones of rice

ZHAO Li-Ming1,*(), DUAN Shao-Biao1, XIANG Hong-Tao2, ZHENG Dian-Feng1,*(), FENG Nai-Jie1, SHEN Xue-Feng1   

  1. 1College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
    2Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua 152054, Heilongjiang, China
  • Received:2023-12-14 Accepted:2024-08-15 Online:2025-01-12 Published:2024-09-02
  • Contact: *E-mail: nkzlm@126.com; E-mail: gdouzdffnj@163.com
  • Supported by:
    Program for Scientific Research Start-Upfunds of Guangdong Ocean University(060302052010);National 12th Five-Year Science and Technology Support Plan Project(2012BAD20B0402)

Abstract:

The purpose of this study was to investigate the effects of alternate wetting and drying irrigation and plant growth regulators (PGRs) on photosynthetic characteristics, endogenous hormones, and yield of rice. Pot and field experiments were conducted using Longjing 31 as the experimental material. Two irrigation treatments were set up: moderate alternative wetting and drying irrigation (MI) and heavy alternating wetting and drying irrigation (HI). The effects of these irrigation treatments on yield formation and photosynthetic characteristics of rice were examined. Additionally, three PGRs—diethyl aminoethyl hexanoate (DA), 6-benzylaminoadenine (BA), and BA + DA—were sprayed at the full tillering stage and sword leaf expansion stage to analyze their effects on photosynthetic characteristics and endogenous hormones of rice post-heading. Differences in dry matter accumulation, photosynthetic characteristics, endogenous hormones, and yield under alternate wetting and drying irrigation, PGRs, and their interactions were studied. The results showed that MI significantly increased leaf area, leaf area index, SPAD value, and net photosynthetic rate. It also increased the contents of IAA, GA3, and ZR in flag leaves and grains, decreased ABA content, and enhanced dry matter accumulation and stem-sheath matter transport capacity. Consequently, MI improved internode characteristics, seed setting rate, grain number, and weight per panicle, resulting in an actual yield increase of 5.30% (Pot) and 5.11% (Field) compared to HI. In terms of plant growth regulators, BA+DA significantly increased the net photosynthetic rate, stomatal conductance, and intercellular carbon dioxide concentration of flag leaves post-heading. It also increased dry matter accumulation, stem-sheath matter transport capacity, and the contents of IAA, GA3, and ZR in flag leaves and grains. This led to increases in 1000-grain weight, seed setting rate, harvest index, grain number per panicle, and grain weight per panicle, boosting yield by 6.60% (Pot) and 6.05% (Field), followed by BA, compared to CK. The interaction of alternate wetting and drying irrigation and PGRs had significant effects on leaf area index, endogenous hormone content, grains per panicle, and 1000-grain weight. Notably, the MI×(BA+DA) treatment was more effective in maintaining the functional duration of green leaves post-heading, increasing leaf SPAD value, leaf area, leaf area index, and net photosynthetic rate. It also enhanced dry matter accumulation, stem-sheath matter transport, and the contents of IAA, GA3, and ZR in leaves and grains, promoting the export of assimilates to grains. This treatment, on the basis of stable panicle number, improved 1000-grain weight, grain number and grain weight per panicle, seed setting rate, and harvest index. Compared to other treatments and CK, it achieved a yield increase of 3.17%-12.57% (Pot) and 3.14%-11.55% (Field). However, HI×(BA+DA) could achieve the yield effect of MI×CK. These results indicate that alternate wetting and drying irrigation combined with spraying BA+DA can be used as a water-saving chemical control cultivation measure for high-yield and high-efficiency rice production in this region.

Key words: rice, alternate wetting and drying irrigation, plant growth regulators, photosynthetic characteristics, endogenous hormones, yield

Table 1

Effects of alternate wetting and drying irrigation and PGRs on yield and its components of rice"

处理
Treatment
有效穗数
Effective panicle number
每穗粒数
Grain number per panicle
每穗粒重
Grain weight per panicle (g)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
收获指数
Harvest index
产量
Yield
盆栽 Pot
(pot−1)
大田 Field
(m−2)
盆栽
Pot
大田
Field
盆栽
Pot
大田
Field
盆栽
Pot
大田
Field
盆栽
Pot
大田
Field
盆栽
Pot
大田
Field
盆栽 Pot
(g pot−1)
大田 Field
(kg hm−2)
MI DA 49.3 a 542.3 a 69.03 c 78.41 c 1.64 ab 1.91 b 91.25 ab 94.15 b 26.01 a 25.80 a 0.582 a 0.591 ab 80.50 b 10,340.94 b
BA 50.3 a 551.7 a 70.41 a 80.83 a 1.61 b 1.87 c 89.35 c 82.34 c 25.61 b 25.11 b 0.571 a 0.586 b 81.15 b 10,298.45 b
BA+DA 49.5 a 547.9 a 69.47 bc 79.47 b 1.69 a 1.95 a 92.55 a 95.69 a 26.26 a 25.70 a 0.582 a 0.598 a 83.72 a 10,665.84 a
CK 49.3 a 545.6 a 69.73 b 78.72 bc 1.60 b 1.85 c 90.24 bc 93.17 bc 25.44 b 25.29 b 0.580 a 0.585 b 78.89 b 10,111.80 c
HI DA 49.1 a 543.0 a 67.01 b 75.69 bc 1.57 ab 1.82 b 88.65 a 92.69 a 26.40 a 26.04 b 0.570 ab 0.583 a 76.65 b 9882.65 b
BA 50.0 a 545.3 a 67.93 a 76.37 ab 1.55 b 1.79 bc 86.58 b 89.62 c 26.23 a 26.12 b 0.567 b 0.577 ab 77.23 ab 9760.92 b
BA+DA 49.2 a 542.4 a 68.50 a 76.80 a 1.62 a 1.88 a 89.09 a 92.26 a 26.57 a 26.67 a 0.575 a 0.586 a 79.67 a 10,197.17 a
CK 49.0 a 539.2 a 67.12 b 75.27 c 1.53 b 1.77 c 87.39 ab 90.97 a 26.54 a 25.86 b 0.571 ab 0.569 b 74.37 b 9561.86 c
MI 49.6 a 546.9 a 69.17 a 79.34 a 1.64 a 1.89 a 90.85 a 93.84 a 25.83 b 25.48 b 0.579 a 0.590 a 81.06 a 10,354.27 a
HI 49.3 a 542.5 a 67.64 b 76.03 b 1.57 b 1.82 b 87.93 b 91.38 b 26.46 a 26.17 a 0.571 a 0.579 b 76.98 b 9850.65 b
DA 49.2 a 542.7 a 68.02 b 77.05 b 1.60 b 1.86 b 89.95 ab 93.42 a 26.20 ab 25.92 b 0.576 a 0.587 ab 78.58 b 10,111.79 b
BA 50.1 a 548.5 a 69.17 a 78.60 a 1.58 b 1.83 c 87.92 c 90.98 c 25.97 b 25.62 c 0.569 a 0.582 b 79.19 ab 10,029.68 b
BA+DA 49.3 a 545.2 a 68.98 a 78.13 a 1.65 a 1.91 a 90.82 a 93.98 a 26.42 a 26.18 a 0.579 a 0.592 a 81.69 a 10,431.50 a
CK 49.1 a 542.4 a 68.42 b 76.98 b 1.57 b 1.81 c 87.96 c 90.07 b 25.99 b 25.58 c 0.576 a 0.577 b 76.63 b 9836.85 c
AWI 0.82ns 2.25ns 40.77* 103.47** 26.53** 50.45** 33.69** 681.47** 26.27** 56.93** 2.15ns 7.82* 35.07** 71.63*
PGRs 1.97ns 0.57ns 1.92ns 9.19** 4.90** 26.07** 6.37** 19.32** 3.34* 12.70** 1.39ns 9.17* 6.81* 27.40**
AWI×PGRs 0.03ns 0.17ns 6.03* 4.55* 1.02ns 0.24ns 0.14ns 1.82ns 3.29* 5.18* 1.02ns 0.59ns 2.04ns 0.24ns

Table 2

Effects of alternate wetting and drying irrigation and PGRs on agronomic characters of rice"

处理
Treatment
株高Plant height (cm) 穗长Spike length (cm) 节间长Internode length (cm)
盆栽
Pot
大田
Field
盆栽
Pot
大田
Field
盆栽
Pot
大田
Field
MI DA 86.1 b 92.4 a 15.3 a 15.3 a 68.8 a 73.5 ab
BA 86.7 b 94.3 a 15.5 a 15.8 a 69.4 a 74.5 a
BA+DA 89.0 a 93.5 a 15.8 a 15.4 a 71.0 a 74.2 ab
CK 86.5 b 92.3 a 15.3 a 15.2 a 68.5 a 73.1 b
HI DA 82.2 a 89.3 b 15.4 a 15.2 a 64.3 a 70.6 bc
BA 83.2 a 91.9 a 15.5 a 15.3 a 66.1 a 72.8 a
BA+DA 83.9 a 91.7 a 16.0 a 15.2 a 65.8 a 71.6 ab
CK 81.9 a 88.2 b 15.4 a 15.1 a 64.5 a 69.8 c
MI 87.1 a 93.1 a 15.6 a 15.4 a 69.4 a 73.8 a
HI 82.8 b 90.3 b 15.4 a 15.2 a 65.2 b 71.2 b
DA 84.2 a 90.8 bc 15.3 a 15.2 a 66.6 a 72.1 bc
BA 85.0 a 93.1 a 15.5 a 15.6 a 67.8 a 73.6 a
BA+DA 86.4 a 92.5 ab 15.8 a 15.3 a 68.4 a 72.9 ab
CK 84.2 a 90.3 c 15.3 a 15.2 a 66.5 a 71.4 c
AWI 40.61** 129.96** 0.71ns 3.99ns 19.43* 19.88*
PGRs 2.44ns 4.46* 0.74ns 0.79ns 0.76ns 6.85*
AWI×PGRs 0.28ns 0.71ns 0.04ns 0.12ns 0.14ns 0.86ns

Table 3

Effects of alternate wetting and drying irrigation and PGRs on dry matter accumulation and stem-sheath matter transformation"

处理
Treatment
盆栽 Pot 大田 Field
抽穗期生物量
Heading stage
biomass
(g pot-1)
蜡熟期生物量
Waxy stage
biomass
(g pot-1)
抽穗期
Heading stage (t hm-2)
蜡熟期
Waxy stage (t hm-2)
输出量
Exportation
(t hm-2)
输出率
Export
rate (%)
转化率
Translocation
rate (%)
茎鞘干物质
Dry matter of
stem and sheath
生物量
Biomass
茎鞘干物质
Dry matter of
stem and sheath
生物量
Biomass
MI DA 69.64 c 108.35 b 5.88 b 14.90 b 4.32 bc 16.95 bc 1.57 b 26.97 bc 19.35 bc
BA 76.94 a 118.65 a 6.46 a 15.86 a 4.62 a 17.52 ab 1.84 a 28.53 ab 20.17 b
BA+DA 75.11 b 115.90 a 6.38 a 15.45 a 4.47 ab 17.86 a 1.92 a 29.95 a 21.80 a
CK 68.55 c 107.59 b 5.64 b 14.76 b 4.19 c 16.57 c 1.46 b 26.49 c 18.52 c
HI DA 64.83 b 96.77 b 5.01 b 13.55 b 3.62 b 14.47 b 1.39 b 26.68 ab 18.60 ab
BA 68.90 a 106.74 a 5.31 a 14.42 a 3.90 a 15.76 a 1.42 b 27.16 ab 18.22 ab
BA+DA 69.23 a 108.53 a 5.44 b 14.24 a 3.88 a 15.86 a 1.56 a 28.26 a 19.22 a
CK 63.83 b 94.23 b 5.94 b 13.55 b 3.61 b 14.33 b 1.33 b 25.55 b 17.71 b
MI 72.56 a 112.62 a 6.09 a 15.25 a 4.40 a 17.22 a 1.69 a 27.99 a 19.96 a
HI 66.70 b 101.57 b 5.18 b 13.94 b 3.75 b 15.11 b 1.42 b 26.91 a 18.44 b
DA 67.23 b 102.56 b 5.44 b 14.23 b 3.97 b 15.71 b 1.48 c 26.83 bc 18.98 bc
BA 72.92 a 112.70 a 5.89 a 15.14 a 4.26 a 16.64 a 1.63 b 27.84 ab 19.20 b
BA+DA 72.17 a 112.22 a 5.91 a 14.85 a 4.18 a 16.86 a 1.74 a 29.10 a 20.51 a
CK 66.19 b 100.91 b 5.29 b 14.15 b 3.90 b 15.45 b 1.39 c 26.02 c 18.12 c
AWI 171.42** 30.97* 55.93* 60.44* 27.66* 134.83** 415.37** 2.63ns 26.98*
PGRs 54.03** 8.88** 17.28** 9.42* 12.75* 11.27* 21.85** 8.08** 11.51**
AWI×PGRs 2.77ns 0.38ns 1.48ns 0.13ns 0.60ns 0.56ns 4.60* 0.42ns 2.37ns

Table 4

Effects of alternate wetting and drying irrigation and PGRs on SPAD value of leaves of potted rice"

处理
Treatment
剑叶展开后天数 Days after the sword leaf unfolds (d)
5 10 15 20 25 30 35 40 45 50
MI DA 43.31 b 44.97 c 44.03 b 42.00 b 36.10 c 32.30 b 29.37 c 27.20 c 17.83 b 13.10 b
BA 45.87 a 46.76 a 46.53 a 45.33 a 42.07 a 38.93 a 33.97 a 29.50 a 22.13 a 16.77 a
BA+DA 45.27 a 45.81 b 46.07 a 44.77 a 41.03 b 38.10 a 32.13 b 28.33 b 21.67 a 16.34 a
CK 43.18 b 43.57 d 43.78 b 40.27 c 36.12 c 31.37 b 26.80 d 25.32 d 16.70 c 11.90 c
HI DA 42.31 b 43.64 b 43.40 c 40.33 c 35.30 c 31.32 c 26.73 b 19.43 b 11.97 c 9.67 c
BA 44.80 a 45.70 a 45.43 a 44.57 a 41.46 a 36.78 a 30.60 a 25.30 a 19.47 a 14.83 a
BA+DA 43.97 a 45.64 a 44.77 b 43.67 b 39.97 b 34.70 b 29.71 a 25.23 a 17.50 b 12.13 b
CK 41.71 b 42.89 c 42.67 d 39.63 d 34.70 c 30.21 c 25.60 c 19.27 b 11.40 c 8.93 c
MI 44.41 a 45.27 a 45.11 a 43.09 a 38.83 a 35.18 a 30.57 a 27.59 a 19.58 a 14.53 a
HI 43.21 a 44.48 a 44.07 a 42.05 a 37.86 a 33.24 b 28.16 b 22.31 b 15.08 b 11.39 b
DA 42.82 b 44.32 c 43.72 c 41.17 c 35.71 c 31.80 c 28.05 c 23.32 c 14.90 b 11.38 c
BA 45.33 a 46.23 a 45.98 a 44.95 a 41.77 a 37.85 a 32.28 a 27.40 a 20.80 a 15.80 a
BA+DA 44.62 a 45.72 b 45.42 b 44.22 b 40.50 b 36.40 b 30.92 b 26.78 b 19.58 a 14.23 b
CK 42.47 b 43.23 d 43.23 c 39.95 d 35.42 c 30.78 c 26.20 d 22.30 d 14.05 b 10.42 d
AWI 3.02ns 1.78ns 3.56* 3.39* 3.77* 57.74* 46.08* 167.48** 191.72** 52.05*
PGRs 30.39** 87.60** 56.74** 205.52** 269.03** 352.76** 100.61** 203.72** 108.25** 116.72**
AWI×PGRs 0.20ns 2.91ns 0.67ns 1.90ns 0.82ns 9.08** 3.95* 34.01** 4.79* 0.03ns

Table 5

Effects of alternate wetting and drying irrigation and PGRs on photosynthetic indexes of rice leaves"

处理
Treatment
盆栽 Pot 大田 Field
叶面积Leaf area (m2 pot-1) 叶面积指数Leaf area index SPAD值SPAD value
抽穗期
Heading stage
蜡熟期
Waxy stage
抽穗期
Heading stage
蜡熟期
Waxy stage
抽穗期
Heading stage
蜡熟期
Waxy stage
MI DA 0.318 b 0.218 b 4.92 b 2.67 c 50.27 b 44.52 b
BA 0.340 a 0.238 a 5.01 a 2.93 a 51.28 ab 46.50 a
BA+DA 0.336 a 0.230 a 5.00 a 2.88 b 52.10 a 45.57 ab
CK 0.311 b 0.214 b 4.81 c 2.66 c 49.87 b 43.81 b
HI DA 0.303 a 0.199 c 4.74 c 2.53 b 48.70 b 40.23 a
BA 0.312 a 0.211 b 4.83 b 2.70 a 50.73 a 41.37 a
BA+DA 0.312 a 0.224 a 4.91 a 2.75 a 50.17 ab 41.27 a
CK 0.292 b 0.190 c 4.70 c 2.51 b 48.43 b 39.90 a
MI 0.326 a 0.225 a 4.94 a 2.78 a 50.88 a 45.10 a
HI 0.304 b 0.206 b 4.79 b 2.62 b 49.51 b 40.69 b
DA 0.311 b 0.209 b 4.83 b 2.60 b 49.48 b 42.38 ab
BA 0.326 a 0.225 a 4.92 a 2.81 a 51.01 a 43.93 a
BA+DA 0.324 a 0.227 a 4.95 a 2.81 a 51.13 a 43.42 ab
CK 0.301 c 0.202 b 4.76 c 2.58 b 49.15 b 41.86 b
AWI 60.61* 222.70** 7.33* 10.12* 9.98* 97.92*
PGRs 26.67** 19.75** 66.08** 9.32** 5.03* 3.09ns
AWI×PGRs 1.82ns 2.71ns 3.72* 13.19** 0.41ns 0.23ns

Fig. 1

Effects of alternate wetting and drying irrigation and PGRs on photosynthetic parameters of sword leaf in rice Treatments are the same as those given in Table 1. FT: filling stage; MT: milk stage; WT: waxy stage. * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively."

Fig. 2

Effects of alternate wetting and drying irrigation and PGRs on endogenous hormone contents in rice Treatments are the same as those given in Table 1. FT: filling stage; MT: milk stage; WT: waxy stage. * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively."

[1] Brar S K, Mahal S S, Brar A S, Vashist K K, Sharma N, Buttar G S. Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India. Agric Water Manag, 2012, 115: 217-222.
[2] 潘晨, 杨宇, 漆栋良. 不同灌溉条件下氮肥配施模式对水稻干物质和产量的影响. 灌溉排水学报, 2023, 42(2): 73-78.
Pan C, Yang Y, Qi D L. The combined effect of irrigation and nitrogen fertilization on dry matter and yield of rice. J Irrig Drain, 2023, 42(2): 73-78 (in Chinese with English abstract).
[3] Lawton L N, Joseph M, Alvaro D M, Aaron S, Ranjan P, Francis T. Comparative economic and environmental assessments of furrow- and flood-irrigated rice production systems. Agric Water Manag, 2022, 274: 107964.
[4] Wang H, Zhang Y, Zhang Y, McDaniel M D, Sun L, Su W, Fan X, Liu S, Xiao X. Water-saving irrigation is a ‘win-win’ management strategy in rice paddies-with both reduced greenhouse gas emissions and enhanced water use efficiency. Agric Water Manag, 2020, 228: 105889.
[5] Das D, Basar N U, Ullah H, Attia A, Salin K R, Datta A. Growth, yield and water productivity of rice as influenced by seed priming under alternate wetting and drying irrigation. Arch Agron Soil Sci, 2022, 68: 1515-1529.
[6] 杨颖. 不同籼稻品种的农艺生理特征对干湿交替灌溉的响应. 扬州大学硕士学位论文, 江苏扬州, 2022.
Yang Y. The Response of Agronomic and Physiological Characteristics in Mid-season Indica Rice Varieties to Alternate Wetting and Drying Irrigation. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).
[7] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响. 作物学报, 2018, 44: 554-568.
Xu Y J, Xu Y D, Li Y Y, Qian X Y, Wang Z Q, Yang J C. Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice. Acta Agron Sin, 2018, 44: 554-568 (in Chinese with English abstract).
[8] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42: 1026-1036.
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016, 42: 1026-1036 (in Chinese with English abstract).
[9] He H, Wang Q, Wang L, Yang K, Yang R, You C, Ke J, Wu L. Photosynthetic physiological response of water-saving and drought-resistant rice to severe drought under wetting-drying alternation irrigation. Physiol Plant, 2021, 173: 2191-2206.
[10] 付景, 刘洁, 曹转勤, 王志琴, 张耗, 杨建昌. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40: 1056-1065.
Fu J, Liu J, Cao Z Q, Wang Z Q, Zhang H, Yang J C. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars. Acta Agron Sin, 2014, 40: 1056-1065 (in Chinese with English abstract).
[11] 吴龙龙, 虞轶俊, 田仓, 张露, 黄晶, 朱练峰, 朱春权, 孔亚丽, 张均华, 曹小闯, 金千瑜. 干湿交替灌溉下施氮模式对水稻光合产物和氮转运的影响. 中国水稻科学, 2022, 36: 295-307.
Wu L L, Yu Y J, Tian C, Zhang L, Huang J, Zhu L F, Zhu C Q, Kong Y L, Zhang J H, Cao X C, Jin Q Y. Effects of different nitrogen application regimes on translocation of rice photosynthetic products and nitrogen under alternate wetting and drying irrigation. Chin J Rice Sci, 2022, 36: 295-307 (in Chinese with English abstract).
[12] 景文疆. 不同籼稻品种产量、米质和根系特征对干湿交替灌溉的响应. 扬州大学硕士学位论文, 江苏扬州, 2023.
Jing W J. Response of Grain Yield, Quality and Root Characteristics to Alternate Wetting and Drying Irrigation in Different Indica Rice Varieties. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[13] 徐国伟, 江孟孟, 陆大克, 赵喜辉, 陈明灿. 干湿交替灌溉与氮肥形态耦合对水稻光合特性及氮素利用的影响. 植物营养与肥料学报, 2020, 26: 1239-1250.
Xu G W, Jiang M M, Lu D K, Zhao X H, Chen M C. Optimum combination of irrigation and nitrogen supply form achieving high photosynthetic and nitrogen utilization efficiency. J Plant Nutr Fert, 2020, 26: 1239-1250 (in Chinese with English abstract).
[14] 徐国伟, 陆大克, 刘聪杰, 王贺正, 陈明灿, 李友军. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响. 农业工程学报, 2018, 34(7): 137-146.
Xu G W, Lu D K, Liu C J, Wang H Z, Chen M C, Li Y J. Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization. Trans CSAE, 2018, 34(7): 137-146 (in Chinese with English abstract).
[15] Dehghan M, Balouchi H, Yadavi A, Zare E. Improve wheat (Triticum aestivum) performance by brassinolide application under different irrigation regimes. South Afr J Bot, 2020, 130: 259-267.
[16] Huang G M, Liu Y G, Guo Y L, Peng C X, Tan W M, Zhang M C, Li Z H, Zhou Y Y, Duan L S. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crops Res, 2021, 260: 107982.
[17] 赵黎明, 郑殿峰, 冯乃杰, 沈雪峰, 黄安琪, 王亚新, 蒋文鑫. 耕作与植物生长调节剂对优质粳稻产量及光合特性的影响. 农业工程学报, 2022, 38(15): 93-103.
Zhao L M, Zheng D F, Feng N J, Shen X F, Huang A Q, Wang Y X, Jiang W X. Effects of tillage and plant growth regulators on the yield and photosynthetic characteristics of high-quality japonica rice. Trans CSAE, 2022, 38(15): 93-103 (in Chinese with English abstract).
[18] 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响. 作物学报, 2021, 47: 752-760.
Luo K, Xie C, Wang J, Wang T, He S, Yong T W, Yang W Y. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean. Acta Agron Sin, 2021, 47: 752-760 (in Chinese with English abstract).
[19] Gong L S, Qu S J, Huang G M, Guo Y L, Zhang M C, Li Z H, Zhou Y Y, Duan L S. Improving maize grain yield by formulating plant growth regulator strategies in North China. J Integr Agric, 2021, 20: 622-632.
[20] 丁凯鑫, 冯乃杰, 郑殿峰, 单莹, 王立春, 田国奎, 王海艳, 李凤云. 植物生长调节剂对赤豆鼓粒期光合特性及氮代谢的影响. 核农学报, 2022, 36: 2510-2518.
Ding K X, Feng N J, Zheng D F, Shan Y, Wang L C, Tian G K, Wang H Y, Li F Y. Effects of plant growth regulators on photosynthetic characteristics and nitrogen metabolism of adzuki bean during seed filling stage. J Nucl Agric Sci, 2022, 36: 2510-2518 (in Chinese with English abstract).
[21] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征. 作物学报, 2022, 48: 1005-1016.
Ke J, Chen T T, Wu Z, Zhu T Z, Sun J, He H B, You C C, Zhu D Q, Wu L Q. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River. Acta Agron Sin, 2022, 48: 1005-1016 (in Chinese with English abstract).
[22] 王娜, 杨思敏, 刘蓓蓓, 林瑞嫦, 杨璞, 高金锋, 高小丽. 植物生长调节剂对绿豆干物质积累动态与产量的影响. 中国农业大学学报, 2021, 26(3): 10-17.
Wang N, Yang S M, Liu B B, Lin R C, Yang P, Gao J F, Gao X L. Regulation of plant growth regulator on dry matter accumulation and yield of mung bean. J China Agric Univ, 2021, 26(3): 10-17 (in Chinese with English abstract).
[23] Rasheed R, Yasmeen H, Hussain I, Iqbal M, Ashraf M A, Parveen A. Exogenously applied 5-aminolevulinic acid modulates growth, secondary metabolism and oxidative defense in sunflower under water deficit stress. Physiol Mol Biol Plants, 2020, 26: 489-499.
[24] 魏永霞, 曹晓强, 冀俊超, 张学文, 刘慧, 吴昱. 不同灌溉方式下旱直播水稻光合特性与干物质积累动态. 农业机械学报, 2021, 52: 358-368.
Wei Y X, Cao X Q, Ji J C, Zhang X W, Liu H, Wu Y. Effects of different irrigation methods on photosynthetic characteristics and dry matter accumulation dynamics of dry direct seeding rice. Trans CSAM, 2021, 52: 358-368 (in Chinese with English abstract).
[25] Lahijani A D, Mosavi A, Moballeghi M. The influence of micronutrients foliar application on rice (Oryza sativa L.) yield and yield components. J Plant Nutr Fert, 2021, 27: 909-918.
[26] Qi M, Liu X D, Li Y B, Song H, Yin Z T, Zhang F, He Q J, Xu Z Z, Zhou G S. Photosynthetic resistance and resilience under drought, flooding and re-watering in maize plants. Photosynth Res, 2021, 148: 1-15.
[27] 张伟杨, 任维晨, 于吉祥, 张耗, 顾骏飞, 王志琴, 刘立军, 赵步洪, 杨建昌. 轻干湿交替灌溉促进水稻茎中碳同化物积累与转运的机制. 扬州大学学报(农业与生命科学版), 2021, 42(6): 9-16.
Zhang W Y, Ren W C, Yu J X, Zhang H, Gu J F, Wang Z Q, Liu L J, Zhao B H, Yang J C. The mechanism underlying alternate wetting and moderate soil drying irrigation enhancing carbon assimilates accumulation and remobilization of rice stems. J Yangzhou Univ (Agric Life Sci Edn), 2021, 42(6): 9-16 (in Chinese with English abstract).
[28] 王泳超, 燕博文, 曹红章, 王山聪, 马梦金, 张俊杰, 郭家萌, 王浩, 邵瑞鑫, 杨青华. DA-6与CCC复配对密植下玉米叶片光合及抗早衰能力的影响. 华北农学报, 2022, 37(4): 90-102.
Wang Y C, Yan B W, Cao H Z, Wang S C, Ma M J, Zhang J J, Guo J M, Wang H, Shao R X, Yang Q H. Effects of the mixture of DA-6 and CCC on the photosynthesis and anti-premature senescence of maize leaves under dense planting. Acta Agric Boreali-Sin, 2022, 37(4): 90-102 (in Chinese with English abstract).
[29] 王英杰, 唐才宝, 潘素君, 朱丽菲, 汪莹, 李恩宇, 陈光辉. 外源6-BA和BR对不同灌溉方式下水稻光合特性及产量的影响. 分子植物育种, 2022, 20: 6930-6938.
Wang Y J, Tang C B, Pan S J, Zhu L F, Wang Y, Li E Y, Chen G H. Effects of 6-BA and BR on photosynthetic characteristics and yield of rice under different irrigation methods. Mol Plant Breed, 2022, 20: 6930-6938 (in Chinese with English abstract).
[30] Basunia M A, Nonhebel H M. Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa L.). Funct Plant Biol, 2019, 46: 493-506.
[31] Zhang X F, Tong J H, Bai A N, Liu C M, Xiao L T, Xue H W. Phytohormone dynamics in developing endosperm influence rice grain shape and quality. J Integr Plant Biol, 2020, 62: 1625-1637.
[32] Kato T, Sakurai N, Kuraishi S. The changes of endogenous ABA in developing grain of two rice cultivars with different grain size. Jpn J Crop Sci, 1993, 62: 456-461.
[33] 梁喜龙, 邱凯华, 何瑞, 金喜军, 李建英, 方淑梅. 植物籽粒建成的调控与细胞分裂素. 植物生理学报, 2020, 56: 635-642.
Liang X L, Qiu K H, He R, Jin X J, Li J Y, Fang S M. Regulation of plant seed formation and cytokinin. Plant Physiol J, 2020, 56: 635-642 (in Chinese with English abstract).
[34] 郑小龙, 周菁清, 滕颖, 章林平, 邵雅芳, 胡培松, 魏祥进. 粳稻穗部不同部位籽粒产量相关性状差异及其与内源激素的相关性. 中国水稻科学, 2022, 36: 43-54.
Zheng X L, Zhou J Q, Teng Y, Zhang L P, Shao Y F, Hu P S, Wei X J. Difference in yield related traits of grains in various parts of panicle in japonica rice and its correlation with endogenous hormones. Chin J Rice Sci, 2022, 36: 43-54 (in Chinese with English abstract).
[35] 李中海, 郭永峰, 任国栋, 张可伟, 缪颖, 郭红卫. 叶片衰老研究进展. 植物生理学报, 2023, 59: 1627-1656.
Li Z H, Guo Y F, Ren G D, Zhang K W, Miao Y, Guo H W. Research progress of leaf senescence. Plant Physiol J, 2023, 59: 1627-1656 (in Chinese with English abstract).
[36] Shi H T, Chen L, Ye T T, Liu X D, Ding K J, Chan Z L. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem, 2014, 82: 209-217.
[37] Luo K, Xie C, Wang J, Du Q, Cheng P, Wang T, Wu Y C, Yang W Y, Yong T W. Uniconazole, 6-benzyladenine, and diethyl aminoethyl hexanoate increase the yield of soybean by improving the photosynthetic efficiency and increasing grain filling in maize-soybean relay strip intercropping system. J Plant Growth Regul, 2021, 40: 1869-1880.
[38] 王鑫, 刘丹, 陈婧婷, 刘新宇, 张贺, 王玉波, 李彩凤. 外源BR对盐碱胁迫下甜菜内源激素含量及保护酶活性的影响. 西北农林科技大学学报(自然科学版), 2021, 49(7): 20-30.
Wang X, Liu D, Chen J T, Liu X Y, Zhang H, Wang Y B, Li C F. Effects of exogenous BR on endogenous hormone and protective enzyme activities in sugar beet under saline-alkali stress. J Northwest A&F Univ (Nat Sci Edn), 2021, 49(7): 20-30 (in Chinese with English abstract).
[39] 魏晓琼, 贾文飞, 李林宇, 裴彤, 王颖, 李金英, 吴林. 不同时期喷施6-BA对越橘叶片生理特性及内源激素质量分数的影响. 东北林业大学学报, 2023, 51(3): 31-35.
Wei X Q, Jia W F, Li L Y, Pei T, Wang Y, Li J Y, Wu L. Effects of spraying 6-BA at different stages on physiological indices of leaves and endogenous hormones of blue-berry. J Northeast For Univ, 2023, 51(3): 31-35 (in Chinese with English abstract).
[40] 赵黎明, 李明, 郑殿峰, 顾春梅, 那永光, 解保胜. 灌溉方式对寒地水稻产量及籽粒灌浆的影响. 中国农业科学, 2015, 48: 4493-4506.
Zhao L M, Li M, Zheng D F, Gu C M, Na Y G, Xie B S. Effects of irrigation regimes on yield and grain filling of rice (Oryza sativa L.) in cold region. Sci Agric Sin, 2015, 48: 4493-4506 (in Chinese with English abstract).
[41] Chu G, Chen T T, Chen S, Xu C M, Wang D Y, Zhang X F. Agronomic performance of drought-resistance rice cultivars grown under alternate wetting and drying irrigation management in southeast China. Crop J, 2018, 6: 482-494.
[42] Zhu Y G, Chu J P, Dai X L, He M R. Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. Eur J Agron, 2019, 104: 49-62.
[43] Masaki O, Jun H, Kenji N, Kentaro K, Daisuke S, Yumiko A S, Nobuya K, Motohiko K. Cross-locational experiments to reveal yield potential and yield-determining factors of the rice cultivar ‘Hokuriku 193’ and climatic factors to achieve high brown rice yield over 1.2 kg m-2 at Nagano in central inland of Japan. Plant Prod Sci, 2022, 25: 131-147.
[44] 王文玉, 郑桂萍, 万思宇, 陈立强, 赵海成, 赫臣, 康楷, 李红宇, 吕艳东. 15%调环酸钙对水稻产量与品质的影响. 大麦与谷类科学, 2019, 36(3): 11-17.
Wang W Y, Zheng G P, Wan S Y, Chen L Q, Zhao H C, He C, Kang K, Li H Y, Lyu Y D. Effects of 15% prohexadione calcium on rice yield and quality. Barley Cereal Sci, 2019, 36(3): 11-17 (in Chinese with English abstract).
[45] 赵宏伟, 李晓, 贾琰, 瞿炤珺, 张盛楠, 张妍, 王喆, 韩东. 水杨酸对孕穗期低温胁迫寒地粳稻颖花形成的影响. 东北农业大学学报, 2019, 50(6): 1-9.
Zhao H W, Li X, Jia Y, Qu S J, Zhang S N, Zhang Y, Wang Z, Han D. Effect of salicylic acid on floret formation of cold Japonica rice under low temperature stress at booting stage. J Northeast Agric Univ, 2019, 50(6): 1-9 (in Chinese with English abstract).
[46] 顾俊荣, 董明辉, 杨代凤, 陈培峰, 王文青, 乔中英. 一种新型水稻生长调节剂对超级稻籽粒结实与品质特性的影响. 江西农业学报, 2017, 29(12) : 8-13.
Gu J R, Dong M H, Yang D F, Chen P F, Wang W Q, Qiao Z Y. Effects of a kind of new-type rice growth regulator on grain setting traits and quality of super rice. Acta Agric Jiangxi, 2017, 29(12): 8-13 (in Chinese with English abstract).
[1] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
[2] LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357.
[3] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[4] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[5] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[6] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
[7] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[8] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[9] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
[10] WANG Li-Ping, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Response of senescence characteristics for maize leaves under different plastic mulching and using patterns in oasis irrigation areas of northwestern China [J]. Acta Agronomica Sinica, 2025, 51(1): 233-246.
[11] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[12] XIN Ming-Hua, MI Ya-Di, WANG Guo-Ping, LI Xiao-Fei, LI Ya-Bing, DONG He-Lin, HAN Ying-Chun, FENG Lu. Effect of row spacing configuration and density regulation on dry matter production and yield in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 221-232.
[13] LI Chao, FU Xiao-Qiong. Comprehensive evaluation of regional trial varieties of medium mature hybrid cotton in the Yellow River Basin based on GYT biplot [J]. Acta Agronomica Sinica, 2025, 51(1): 30-43.
[14] DING Shu-Qi, CHENG Tong, WANG Bi-Kun, YU De-Bin, RAO De-Min, MENG Fan-Gang, ZHAO Yin-Kai, WANG Xiao-Hui, ZHANG Wei. Effects of planting density on photosynthetic production and yield formation of soybean varieties from different eras [J]. Acta Agronomica Sinica, 2025, 51(1): 161-173.
[15] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .