Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 432-446.doi: 10.3724/SP.J.1006.2025.44094

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed

QIN Meng-Qian1(), HUANG Wei2, CHEN Min1, NING Ning1, HE De-Zhi3, HU Bing4, XIA Qi-Xin5, JIANG Bo6, CHENG Tai6, CHANG Hai-Bin2, WANG Jing1, ZHAO Jie1, WANG Bo1, KUAI Jie1, XU Zheng-Hua1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Huanggang Academy of Agriculture Science, Huanggang 438000, Hubei, China
    3Dajin Agricultural Extension Services Centre, Wuxue 435408, Hubei, China
    4Dafa Agricultural Extension Services Centre, Wuxue 435404, Hubei, China
    5Wuxue Agriculture and Rural Bureau, Wuxue 435401, Hubei, China
    6Hubei Department of Rape Production Management, Wuhan 430070, Hubei, China
  • Received:2024-06-08 Accepted:2024-10-25 Online:2025-02-12 Published:2024-11-13
  • Contact: E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    Key Research and Development Program of Hubei Province(2023BBB028);Open Competition Program of Hubei Province(HBZY2023B001-01)

Abstract:

The conflict between rice cultivation and rice-rapeseed rotation stubble is a significant issue in the Yangtze River Basin, with delayed sowing of rapeseed often resulting in slow growth, poor development, and reduced yields. Therefore, optimizing nitrogen management is critical for promoting pre-winter growth and improving the yield of late-sown rapeseed. In this study, we used the variety “Huayouza 137” and conducted large-scale split-plot experiments in Wuhan and Huanggang, Hubei province. Four nitrogen application rates were tested: N0 (0 kg hm-2), N1 (150 kg hm-2), N2 (225 kg hm-2), and N3 (300 kg hm-2). Additionally, three fertilization methods were employed: S1 (basal application), S2 (basal application: topdressing at the 3-leaf stage in a 5:5 ratio), and S3 (basal application: topdressing at the 3-leaf stage in a 5:5 ratio). The study investigated the effects of different nitrogen rates and fertilization methods on growth, lodging resistance, and yield of late-sown rapeseed. The results showed that as nitrogen application increased, rapeseed yields in both Wuhan and Huanggang followed a pattern of initial increase and then stabilization. The difference in seed yield between N2 and N3 treatments was not significant, with N2 treatment increasing yields by 20.76% in Wuhan and 15.02% in Huanggang compared to N1. Root neck thickness, number of green leaves, dry matter weight, and yield components followed a similar trend of initial increase and then stabilization. However, Basal and upper stem strengths increased initially and decreased later, while the basal and upper lodging indices increased with higher nitrogen application rates, indicating a greater risk of lodging and reduced resistance to lodging at higher nitrogen levels. Nitrogen use efficiency also followed a pattern of initial increase and then decrease, with the N2 treatment achieving 24.60% and 42.20% increases in nitrogen utilization efficiency compared to N1, and 11.58% and 9.04% increases compared to N3 in Wuhan and Huanggang, respectively. With changes in fertilization methods, rapeseed yield exhibited a trend of increasing and then decreasing. Under S2, yields in Wuhan and Huanggang increased by 11.72% and 11.92% compared to S1, and by 6.16% and 6.66% compared to S3. Root neck thickness, number of green leaves, dry matter weight, and yield components all reached their maximum under the S2 treatment. The basal and upper stem bending forces in both Wuhan and Huanggang first increased and then decreased, reaching their maximum under the N2S2 treatment. Conversely, the basal and upper lodging indices were highest under the N3S3 treatment, indicating poor lodging resistance and a higher risk of lodging under these conditions. Nitrogen partial productivity, nitrogen contribution rate, agronomic nitrogen use efficiency, and overall nitrogen use efficiency were all highest in the S2 treatment. There were no significantly different yield effects between N fertiliser rate and application method in this experiment, and the interaction effect between N fertiliser rate and application method was not significant. In conclusion, the N2S2 treatment (112.5 kg hm-2 applied at the base and 112.5 kg hm-2 applied at the 3-leaf stage) was the optimal nitrogen application strategy for late-sown rapeseed, balancing yield and lodging resistance. The findings from this study provide a theoretical basis and technical support for nitrogen management in late-sown rapeseed cultivation in the Yangtze River Basin.

Key words: rapeseed, late-seeded, yield, nitrogen management mode, lodging resistance

Table 1

Initial soil conditions at the two experimental sites"

试验点
Site
有机质
Organic matter
(g kg-1)
碱解氮
Alkaline nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
pH
武汉Wuhan 20.61 112.82 16.12 153.00 7.33
黄冈Huanggang 22.88 120.23 18.55 151.00 6.98

Fig. 1

Key meteorological factors during the two growing seasons"

Fig. 2

Effect of nitrogen management on the yield of late-sown oilseed rape N0: 0 kg hm-2; N1: 150 kg hm-2; N2: 225 kg hm-2; N3: 300 kg hm-2; S1: basal application; S2: base application∶3-leaf topdressing (5∶5); S3: base application∶5-leaf topdressing (5∶5). Different lowercase letters indicate significant differences among the ten treatments in the same experimental site at P < 0.05. * indicates significant difference at the 0.05 level, ** indicates significant difference at the 0.01 level, and NS indicates non-significant difference."

Table 2

Effect of nitrogen management on yield and yield component of late-sown oilseed rape"

试点
Site
施氮量
Nitrogen application
施肥方式Fertilization method 单株角果数Pod number 每角粒数
Number of seeds per silique
千粒重
1000-seed weight (g)
成株率Survival rate (%) 单株产量
Seed weight
(g plant-1)
武汉(W) Wuhan N0 78.33 d 16.31 b 3.28 b 48.00 c 4.18 d
N1 S1 91.93 c 18.76 a 3.55 a 60.67 ab 6.10 c
S2 94.33 c 18.68 a 3.54 a 64.33 a 6.22 ab
S3 94.20 c 18.69 a 3.55 a 60.67 ab 6.24 a
N2 S1 104.20 b 18.99 a 3.62 a 56.33 b 7.12 bc
S2 114.60 a 18.66 a 3.58 a 59.33 ab 7.64 a
S3 110.00 ab 18.98 a 3.63 a 61.67 ab 7.57 a
N3 S1 107.40 ab 18.68 a 3.65 a 57.33 b 7.31 bc
S2 112.80 ab 18.72 a 3.67 a 59.00 ab 7.75 a
S3 111.93 ab 18.62 a 3.66 a 62.00 ab 7.62 a
方差分析
Analysis of variance
N ** NS NS NS NS
S NS NS NS NS **
N×S NS NS NS NS NS
黄冈(H) Huanggang N0 80.80 d 16.51 b 3.42 b 50.33 a 4.58 e
N1 S1 93.87 c 18.11 a 3.69 a 48.00 a 6.27 d
S2 98.93 bc 18.07 a 3.64 a 52.00 a 6.47 cd
S3 97.80 bc 18.52 a 3.66 a 49.00 a 6.56 bcd
N2 S1 106.27 abc 18.62 a 3.62 a 50.00 a 7.12 abcd
S2 119.53 a 18.02 a 3.62 a 50.67 a 7.77 a
S3 114.87 a 18.14 a 3.63 a 49.00 a 7.56 ab
N3 S1 111.93 ab 18.20 a 3.62 a 51.67 a 7.36 abc
S2 120.93 a 18.04 a 3.63 a 51.00 a 7.87 a
S3 118.90 a 18.01 a 3.64 a 50.67 a 7.79 a
方差分析
Analysis of variance
N ** NS NS NS **
S NS NS NS NS NS
N×S NS NS NS NS NS
W×H * NS NS ** NS

Table 3

Effect of nitrogen management on agronomic traits at maturity of late-sown oilseed rape"

试点
Site
施氮量
Nitrogen application
施肥方式
Fertilization
method
株高
Plant height
(cm)
根颈粗
Root crown
Diameter (mm)
角果层厚度
Silique thickness (cm)
有效分枝数
Effective
number of branches
武汉(W)
Wuhan
N0 112.73 e 7.37 e 29.73 e 2.89 e
N1 S1 123.40 d 7.75 d 34.93 d 3.05 d
S2 127.00 bcd 7.95 cd 36.10 cd 3.42 cd
S3 126.73 bcd 7.91 cd 36.07 cd 3.35 cd
N2 S1 125.67 cd 8.02 bcd 36.33 bcd 3.35 cd
S2 133.67 a 8.36 ab 40.33 a 4.15 a
S3 131.33 ab 8.31 abc 39.90 abc 4.07 ab
N3 S1 129.27 abc 8.25 abc 37.73 abcd 3.68 bc
S2 134.07 a 8.46 a 40.93 a 4.18 a
S3 133.87 a 8.42 ab 40.07 ab 4.11 ab
方差分析
Analysis of variance
N ** ** ** **
S ** NS * **
N×S NS NS NS NS
黄冈(H)
Huanggang
N0 115.53 e 7.54 c 30.57 d 2.90 d
N1 S1 124.20 d 7.81 b 35.60 c 3.26 c
S2 128.20 bcd 7.98 ab 36.57 bc 3.50 bc
S3 128.13 bcd 7.95 ab 36.50 bc 3.38 bc
N2 S1 126.73 cd 8.03 ab 37.60 abc 3.43 bc
S2 136.80 a 8.45 ab 40.90 ab 4.20 a
S3 134.77 ab 8.33 ab 40.03 abc 4.03 a
N3 S1 132.10 abc 8.35 ab 38.73 abc 3.76 ab
S2 136.43 a 8.50 a 41.43 a 4.16 a
S3 135.50 ab 8.45 ab 40.83 ab 4.06 a
方差分析
Analysis of variance
N ** * ** **
S * NS NS **
N×S NS NS NS NS
W×H * NS NS NS

Fig. 3

Effect of nitrogen management on dry matter weight of late-sown oilseed rape Treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among the 10 treatments in the same experimental site at P < 0.05. * indicates significant difference at the 0.05 level, ** indicates significant difference at the 0.01 level, and NS indicates non-significant difference."

Fig. 4

Effects of nitrogen management on key agronomic traits during overwintering of late-sown rapeseed Treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among the 10 treatments in the same experimental site at P < 0.05. * indicates significant difference at the 0.05 level, ** indicates significant difference at the 0.01 level, and NS indicates non-significant difference."

Fig. 5

Effect of nitrogen management on flexural strength and collapse index of late-sown oilseed rape Treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among the 10 treatments in the same experimental site at P < 0.05. * indicates significant difference at the 0.05 level, ** indicates significant difference at the 0.01 level, and NS indicates non-significant difference."

Table 4

Effect of nitrogen management on nitrogen use in late-sown oilseed rape"

试点
Site
施氮量
Nitrogen application
施肥方式
Fertilization method
氮肥贡献率
Nitrogen
contribution rate
(%)
氮肥偏生产力
Nitrogen partial
factor productivity
(kg kg-1)
氮肥农学利用率
Nitrogen agronomic
efficiency
(kg kg-1)
氮肥利用率
Nitrogen fertilizer utilization rate
(%)
武汉(W) N1 S1 38.78 d 13.23 b 5.14 bc 24.27 d
Wuhan S2 43.11 c 14.22 a 6.14 a 27.59 cd
S3 41.93 cd 13.93 ab 5.85 ab 27.86 cd
N2 S1 47.52 b 10.27 d 4.88 cd 25.22 d
S2 52.61 a 11.40 c 6.01 a 39.48 a
S3 51.68 a 11.15 c 5.76 ab 34.63 ab
N3 S1 49.34 ab 7.99 e 3.95 d 24.88 d
S2 53.06 a 8.61 e 4.57 cd 33.03 bc
S3 52.34 a 8.48 e 4.44 cd 31.11 bc
方差分析
Analysis of variance
N ** ** ** **
S ** ** ** **
N×S NS NS NS NS
黄冈(H) N1 S1 23.68 e 13.32 b 3.15 c 19.53 c
Huanggang S2 33.87 cd 15.38 a 5.21 a 23.11 c
S3 32.27 d 15.01 a 4.84 a 23.40 c
N2 S1 34.71 c 10.39 d 3.61 b 22.78 c
S2 43.04 a 11.90 c 5.13 a 38.18 a
S3 41.49 a 11.59 c 4.81 a 32.94 b
N3 S1 38.11 b 8.22 f 3.14 c 23.53 c
S2 42.29 a 8.81 e 3.73 b 32.32 b
S3 42.01 a 8.77 e 3.68 b 30.26 b
方差分析
Analysis of variance
N ** ** ** **
S ** ** ** **
N×S ** ** ** NS
W×H ** ** ** **

Fig. 6

Correlation analysis of yield with root and neck thickness, number of green leaves, and pre-winter above ground dry matter weight *** indicates significant correlation at P < 0.001."

[1] Kuai J, Sun Y Y, Zhou M, Zhang P P, Zuo Q S, Wu J S, Zhou G S. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199: 89-98.
[2] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489 (in Chinese with English abstract).
[3] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响. 作物学报, 2024, 50: 1554-1567.
Ning N, Yu X Y, Qin M Q, Lou H X, Wang Z K, Wang C Y, Jia C H, Xu Z H, Wang J, Kuai J, Wang B, Zhao J, Zhou G S. Effect of key cultivated measures on rapeseed oil comprehensive quality. Acta Agron Sin, 2024, 50: 1554-1567 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.34135
[4] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[5] Wang Y, Liu T, Li X K, Ren T, Cong R H, Lu J W. Nutrient deficiency limits population development, yield formation, and nutrient uptake of direct sown winter oilseed rape. J Integr Agric, 2015, 14: 670-680.
doi: 10.1016/S2095-3119(14)60798-X
[6] Sun X C, Chen F J, Yuan L X, Mi G H. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta, 2020, 251: 84.
doi: 10.1007/s00425-020-03376-4 pmid: 32189077
[7] 鲁剑巍, 任涛, 李小坤, 丛日环, 陆志峰, 张洋洋, 刘诗诗, 廖世鹏, 朱俊. 我国冬油菜养分精准调控策略与高效施肥技术体系. 华中农业大学学报, 2023, 42(6): 18-25.
Lu J W, Ren T, Li X K, Cong R H, Lu Z F, Zhang Y Y, Liu S S, Liao S P, Zhu J. Strategy of precisely controlling nutrient and system of efficient fertilization technology for winter rapeseed in China. J Huazhong Agric Univ, 2023, 42(6): 18-25 (in Chinese with English abstract).
[8] Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecosyst Environ, 2006, 117: 80-108.
[9] Khan S, Anwar S, Kuai J, Ullah S, Fahad S, Zhou G S. Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Front Plant Sci, 2017, 8: 532.
doi: 10.3389/fpls.2017.00532 pmid: 28536581
[10] Tauseef M, Iqbal S, Saleem M, Farooq U, Rehman K, MZ N. Evaluation of canola genotypes to different nitrogen regimes for yield and yield components. Int J Agric Environ Res, 2017, 3: 182-187.
[11] 鲁剑巍, 任涛, 丛日环, 李小坤, 张洋洋. 我国油菜施肥状况及施肥技术研究展望. 中国油料作物学报, 2018, 40: 712-720.
doi: 10.7505/j.issn.1007-9084.2018.05.014
Lu J W, Ren T, Cong R H, Li X K, Zhang Y Y. Prospects of research on fertilization status and technology of rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 712-720 (in Chinese with English abstract).
[12] Li P F, Lu J W, Wang Y, Wang S, Hussain S, Ren T, Cong R H, Li X K. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric Ecosyst Environ, 2018, 251: 78-87.
[13] Sieling K, Böttcher U, Kage H N. Effect of sowing method and N application on seed yield and N use efficiency of winter oilseed rape. Agronomy, 2017, 7: 21.
[14] 张翯, 施佳炜, 王蓉, 金成兵. 金华地区油菜越优1203的迟播适宜施氮量和播种量研究. 安徽农业科学, 2023, 51(24): 35-37.
Zhang H, Shi J W, Wang R, Jin C B. Suitable sowing amount and nitrogen application of Yueyou 1203 for late sowing in Jinhua area. J Anhui Agric Sci, 2023, 51(24): 35-37 (in Chinese with English abstract).
[15] Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97-105.
[16] 刘宝林, 邹小云, 宋来强, 官春云. 氮肥用量对迟直播早熟油菜产量及氮素利用效率的影响. 中国油料作物学报, 2015, 37: 852-861.
Liu B L, Zou X Y, Song L Q, Guan C Y. Effects of nitrogen application rate on yield and nitrogen use efficiency of early- mature rapeseed under delayed sowing condition. Chin J Oil Crop Sci, 2015, 37: 852-861 (in Chinese with English abstract).
[17] 李小勇, 顾炽明, 刘康, 廖星, 黄威, 杨志远, 秦璐. 施氮量对迟播油菜氮素利用和产量品质的影响. 中国农业科学, 2021, 54: 3726-3736.
doi: 10.3864/j.issn.0578-1752.2021.17.014
Li X Y, Gu C M, Liu K, Liao X, Huang W, Yang Z Y, Qin L. Effects of nitrogen application rate on nitrogen use efficiency, yield and quality of late sowing rapeseed. Sci Agric Sin, 2021, 54: 3726-3736 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.17.014
[18] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Roland Buresh, Christian Witt. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095-1103 (in Chinese with English abstract).
[19] Butkevičienė L M, Kriaučiūnienė Z, Pupalienė R, Velička R, Kosteckienė S, Kosteckas R, Klimas E. Influence of sowing time on yield and yield components of spring rapeseed in Lithuania. Agronomy, 2021, 11: 2170.
[20] 王杰, 周雨, 黄晓芳, 唐斌林, 杨锐, 罗志勇, 寻杰. 不同播期、 密度与施氮水平对直播油菜生长及产量的影响. 作物研究, 2021, 35: 330-335.
Wang J, Zhou Y, Huang X F, Tang B L, Yang R, Luo Z Y, Xun J. Effects of different seeding date, density and nitrogen application level on growth and yield of direct-seeding rape. Crop Res, 2021, 35: 330-335 (in Chinese with English abstract).
[21] Wang Z K, Song L J, Wang C Y, Guo M C, El-Badri A M, Batool M, Kuai J, Wang J, Wang B, Zhou G S. Rapeseed-maize double-cropping with high biomass and high economic benefits is a soil environment-friendly forage production mode in the Yangtze River Basin. Eur J Agron, 2023, 142: 126675.
[22] Ozer H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Eur J Agron, 2003, 19: 453-463.
[23] Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005, 94: 103-113.
[24] 刘秋霞. 氮肥施用调控直播冬油菜产量构成因子的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2020.
Liu Q X. Study on the Mechanism of Nitrogen Fertilizer Application Regulating Yield Components of Direct Seeded Winter Rape. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract).
[25] Zheng M, Zhang L, Tang M, Liu J L, Liu H F, Yang H L, Fan S H, Terzaghi W, Wang H Z, Hua W. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol J, 2020, 18: 644-654.
doi: 10.1111/pbi.13228 pmid: 31373135
[26] 王玉浩. 氮肥运筹对不同品种和播期油菜生长发育及产量的影响. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Wang Y H. Effects of Nitrogen Application on the Growth and Yield of Different Varieties and Sowing Dates of Rape. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[27] 田效琴, 李卓, 刘永红. 密度和施氮量对油菜生长发育及产量的影响. 中国土壤与肥料, 2018, (3): 26-35.
Tian X Q, Li Z, Liu Y H. Effects of densities and nitrogen fertilizer rates on growth and yield of rapeseed. Soil Fert Sci China, 2018, (3): 26-35 (in Chinese with English abstract).
[28] 何俊平, 张书芬, 朱家成, 曹金华, 文雁成, 蔡东芳, 赵磊, 王东国, 王建平. 氮肥运筹方式对不同肥力土壤油菜产量与经济性状的影响. 湖北农业科学, 2017, 56: 4489-4492.
He J P, Zhang S F, Zhu J C, Cao J H, Wen Y C, Cai D F, Zhao L, Wang D G, Wang J P. Effects of nitrogen fertilizer application modes on seed yield and economical characters of oilseed rape (Brassica napus L.) planted in different fertility soil. Hubei Agric Sci, 2017, 56: 4489-4492 (in Chinese with English abstract).
[29] 杨旭燕, 何文寿, 何玲. 油菜基追氮肥比例研究. 广东农业科学, 2019, 46(3): 64-70.
Yang X Y, He W S, He L. Study on the basal/topdressing ratio of nitrogen fertilizer for rapeseed. Guangdong Agric Sci, 2019, 46(3): 64-70 (in Chinese with English abstract).
[30] 蒯婕, 杜雪竹, 胡曼, 曾讲学, 左青松, 吴江生, 周广生. 共生期与种植密度对棉田套播油菜生长及产量的影响. 作物学报, 2016, 42: 591-599.
doi: 10.3724/SP.J.1006.2016.00591
Kuai J, Du X Z, Hu M, Zeng J X, Zuo Q S, Wu J S, Zhou G S. Effect of symbiotic periods and plant densities on growth and yield of rapeseed intercropping cotton. Acta Agron Sin, 2016, 42: 591-599 (in Chinese with English abstract).
[31] 巩若琳, 宋波, 杨志叶, 路丽静, 董军刚. 迟播和密度对不同油菜品种抗倒伏及产量的影响. 作物学报, 2023, 49: 2777-2792.
Gong R L, Song B, Yang Z Y, Lu L J, Dong J G. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars. Acta Agron Sin, 2023, 49: 2777-2792 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24248
[32] 吴莲蓉. 油菜茎秆生化成分和倒伏相关性研究. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Wu L R. Study on the Correlation Between Biochemical Components and Lodging of Rape Stalk. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[33] Zhang J, Li G H, Song Y P, Liu Z H, Yang C D, Tang S, Zheng C Y, Wang S H, Ding Y F. Lodging resistance characteristics of high-yielding rice populations. Field Crops Res, 2014, 161: 64-74.
[34] 蒯婕, 左青松, 陈爱武, 程雨贵, 梅少华, 吴江生, 周广生. 不同栽培模式对油菜产量和倒伏相关性状的影响. 作物学报, 2017, 43: 875-884.
doi: 10.3724/SP.J.1006.2017.00875
Kuai J, Zuo Q S, Chen A W, Cheng Y G, Mei S H, Wu J S, Zhou G S. Effects of different cultivation modes on canola yield and lodging related indices. Acta Agron Sin, 2017, 43: 875-884 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00875
[35] 张培培. 氮磷钾肥互作协调油菜产量与抗倒性机理研究. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Zhang P P. Study on the Mechanism of Coordination Between Nitrogen, Phosphorus and Potassium Fertilizer on Rape Yield and Lodging Resistance. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[36] Wu W, Ma B L. Understanding the trade-off between lodging resistance and seed yield, and developing some non-destructive methods for predicting crop lodging risk in canola production. Field Crops Res, 2022, 288: 108691.
[37] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625-4632 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.004
[38] 朱珊, 李银水, 余常兵, 谢立华, 胡小加, 张树杰, 廖星, 廖祥生, 车志. 密度和氮肥用量对油菜产量及氮肥利用率的影响. 中国油料作物学报, 2013, 35: 179-184.
doi: 10.7505/j.issn.1007-9084.2013.02.011
Zhu S, Li Y S, Yu C B, Xie L H, Hu X J, Zhang S J, Liao X, Liao X S, Che Z. Effects of planting density and nitrogen application rate on rapeseed yield and nitrogen efficiency. Chin J Oil Crop Sci, 2013, 35: 179-184 (in Chinese with English abstract).
[39] 郭子琪, 王慧, 韩上, 李敏, 雷之萌, 张军, 程文龙, 卜容燕, 武际, 朱林. 氮肥用量对直播油菜产量及氮素吸收利用的影响. 中国土壤与肥料, 2020, (5): 40-44.
Guo Z Q, Wang H, Han S, Li M, Lei Z M, Zhang J, Cheng W L, Bu R Y, Wu J, Zhu L. Effect of nitrogen application rate on yield and nitrogen uptake and utilization of direct seeding rape. Soil Fert Sci China, 2020, (5): 40-44 (in Chinese with English abstract).
[40] 苏伟, 鲁剑巍, 李云春, 李小坤, 马常宝, 高祥照. 氮肥运筹方式对油菜产量、氮肥利用率及氮素淋失的影响. 中国油料作物学报, 2010, 32: 558-562.
Su W, Lu J W, Li Y C, Li X K, Ma C B, Gao X Z. Effect of nitrogen management mode on yield, nitrogen using efficiency and nitrogen leaching of rapeseed. Chin J Oil Crop Sci, 2010, 32: 558-562 (in Chinese with English abstract).
[41] Liu B, Zou X, Song L, Chen L, Li S, Guan C. Effects of nitrogen fertilizer reduction and application of nitrogen fertilizer as base fertilizer on rapeseed yield and nitrogen absorption. Agric Sci Technol, 2013, 14: 116-121.
[42] Ma B L, Herath A W. Timing and rates of nitrogen fertilizer application on seed yield, quality and nitrogen-use efficiency of canola. Crop Pasture Sci, 2016, 67: 167.
[1] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[2] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[3] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[4] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[5] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 Japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[6] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[7] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[8] SU Qing-Fang, SUN Xiao-Zhao, LIN Yang, FU Yan-Ping, CHENG Jia-Sen, XIE Jia-Tao, JIANG Dao-Hong, CHEN Tao. Serratia nematodiphila TG10 enhanced salt-alkali tolerance in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 358-369.
[9] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[10] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[11] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
[12] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[13] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[14] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
[15] ZHAO Li-Ming, DUAN Shao-Biao, XIANG Hong-Tao, ZHENG Dian-Feng, FENG Nai-Jie, SHEN Xue-Feng. Effects of alternate wetting and drying irrigation and plant growth regulators on photosynthetic characteristics and endogenous hormones of rice [J]. Acta Agronomica Sinica, 2025, 51(1): 174-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .