Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1363-1377.doi: 10.3724/SP.J.1006.2025.42043

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Study on yield formation characteristics, energy and economic benefits of unmanned dry direct-seeding rice

WENG Wen-An1(), XING Zhi-Peng1, HU Qun1, WEI Hai-Yan1, LIAO Ping1, ZHU Hai-Bin1, QU Ji-Wei2, LI Xiu-Li3, LIU Gui-Yun3, GAO Hui1, ZHANG Hong-Cheng1,*()   

  1. 1Research institute of Rice Industrial Engineering Technology, Yangzhou University / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
    2Collage of Mechanical Engineering / Jiangsu Engineering Center for Modern Agricultural Machinery and Agronomy Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3Agricultural Science and Technology Research Institute of Jiangsu Dazhong Farm Group Co., Ltd., Yancheng 224135, Jiangsu, China
  • Received:2024-09-20 Accepted:2025-01-23 Online:2025-05-12 Published:2025-02-11
  • Contact: *E-mail: hczhang@yzu.edu.cn
  • Supported by:
    Key Research and Development Program of Jiangsu Province(BE2022338);Jiangsu Technical System of Rice Industry(JATS [2023] 443);Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX23_3574)

Abstract:

This study investigated the yield formation characteristics of unmanned dry direct-seeding rice (UDS), analyzed key cultivation techniques for stable yield production, and provided theoretical foundations and technical support for the large-scale application of this technology. From 2021 to 2023, a high-yield cultivation experiment was conducted in representative rice-wheat double-cropping areas of Jiangsu Province, using Nanjing 5718 as the test material and unmanned carpet seedling machine transplanting (UMT) as the control. The study assessed growth period characteristics, tillering dynamics, photosynthetic matter production, yield performance, energy input, and economic benefits. The results showed that the full growth period of UDS in different ecological regions was shortened by 12-19 days compared to UMT, with the effective accumulated temperature in whole growth period decreasing by 226.1-329.3°C. Compared to UMT, UDS increased the proportion of main stem spikes, leveraging the growth advantage of the main stem to enhance the leaf area index during the jointing and heading stages. This improvement boosted the population growth rate and net assimilation rate from sowing to jointing, as well as the photosynthetic potential from jointing to heading. However, UDS exhibited a lower productive tiller percentage and total spikelet number, along with reduced dry matter accumulation, which were significant factors contributing to yield loss, resulting in a 5.4%-5.9% average yield reduction. From the perspective of energy input and economic benefits, UDS demonstrated higher mechanization efficiency. Mechanical energy input during the tillage and sowing phase was reduced by 43.8%, energy resource input decreased by 27.8%, and overall energy input was reduced by 5.8%. Additionally, UDS lowered rice production costs by 11.8% and increased economic benefits by 3.4%. To further enhance UDS yields, production practices should focus on optimizing cultivation quality by regulating the emergence of advantageous tillers and ensuring their final heading to achieve robust main stems and sufficient panicles. Moreover, efforts should be directed toward increasing growth during the mid-growth stages to promote dry matter accumulation during later stages, enhancing spike biomass, and ensuring adequate grain-filling materials under a large population capacity. These improvements are critical for achieving higher yields in UDS systems.

Key words: rice, unmanned dry direct-seeding, growth characteristics, grain yield, energy input, economic benefit

Table 1

Working parameter of unmanned rice planter"

项目Item 参数Parameter
动力 Power (hp) ≥ 220
作业宽幅 Work breadth (cm) 350
旋耕深度 Depth of rotary tillage (cm) ≥ 18
播种行数 Number of rows planted 14
播种量 Seeding rate (kg hm-2)
播种方式Seeding method
22.5-450.0
条播 Drill seeding
排种轮型式 Type of seeding wheel 外槽轮式 Outer groove-wheel
排种器数量 Number of seeding apparatus 14
施肥行数 Number of rows fertilized 14
排肥器数量 Number of fertilizer apparatus 14
施肥量 Fertilizing amount (kg hm-2) 75-750
种沟深度 Depth of seed groove (cm) 1-3
覆土厚度 Thickness of soil cover (cm) 1-3
种带宽 Seed bandwidth (cm) 5
排水沟数量 Number of drainage ditch 1
排水沟宽度 Width of drainage ditch (cm) 25
排水沟深度 Depth of drainage ditch (cm) ≥ 20

Fig. 1

Schematic diagram of automatic operation path planning based on high-precision positioning of BeiDou satellite ABCD is the longitude and latitude coordinate points obtained by the handheld dot locator, which are input into the navigation system for path planning."

Table 2

Soil types and basic physicochemical properties at the test sites"

地点
Area
土壤类型
Soil type
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
有效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
pH
大丰Dafeng 沙壤土Sandy loam soil 23.5 1.2 45.5 196.2 7.8
泗洪Sihong 黏壤土Clay loam soil 27.3 1.9 38.8 92.5 6.6

Table 3

Experimental treatment operation modes on the field"

处理Treatment 种植方式Planting mode
无人化旱直播
UDS
小麦秸秆全量粉碎, 使用WR240型水稻无人化种植机一次性完成秸秆还田、耕整地、施肥、旱直播播种、覆土、镇压和开沟, 行距25 cm, 播种量150 kg hm-2
Wheat straw was completely crushed, and the WR240 rice unmanned planting machine was used to complete the straw returning, tillage, fertilization, dry direct seeding, soil covering, suppression and ditching at one time. The row spacing was 25 cm and seeding rate was 150 kg hm-2.
无人化毯苗机插
UMT
小麦秸秆全量粉碎还田, 施肥后进行翻耕并耙田, 上水泡田24 h后水平整, 待土壤沉实后使用久富2ZG-6D (G61)智能插秧机栽插, 行株距30 cm×10 cm, 秧龄20 d, 每穴3-5苗。
Wheat straw was completely crushed, fertilization first and then plowing and harrowing the field. Mechanical leveling was carried out after 24 hours of soaking in water, and Jofae 2ZG-6D (G61) intelligent transplanter was used for planting after the soil was solidified. The row spacing was 30 cm×10 cm, the seedling age was 20 days, and 3-5 seedlings per hole.

Table 4

High yield cultivation conditions and target yield in different ecological zones"

地区
Area
处理
Treatment
控混肥配比
Fertilizer allocated
proportion
(N-P2O5-K2O)
施氮量
N fertilizer rate
(kg hm-2)
播种日期
Seeding date
(month/day)
目标产量
Target yield
(t hm-2)
大丰Dafeng UDS 30-7-13 300 06/10 10.5
UMT 30-7-13 300 05/18 10.5
泗洪Sihong UDS 26-10-15 270 06/18 9.8
UMT 26-10-15 270 05/28 9.8

Fig. 2

Visualization of unmanned rice planting process and growth performance at key growth stages Treatments are the same as those given in Table 3."

Fig. 3

Effect of planting methods on whole growth period and effective accumulate temperature in whole growth period of rice Date of Dafeng in 2021 and 2022 were cited from reference [18]."

Fig. 4

Effect of planting methods on tillering dynamics and tillering ability per plant of rice Treatments are the same as those given in Table 3. Error bars represent standard errors. Different lowercase letters indicate significant differences among treatments within the same year at the P < 0.05 level."

Table 5

Effect of planting methods on tiller number at main growth stages, productive tiller percentage and proportion of main stem spike of rice"

地点
Area
年份
Year
处理
Treatment
茎蘖数Tiller number (×104 hm-2) 成穗率
Productive tiller percentage (%)
主茎成穗比例Proportion of main stem spike
拔节期EL 抽穗期HE 成熟期MA
大丰Dafeng 2021 UDS 607.0 a 386.5 a 360.2 a 59.3 b 76.3 a
UMT 488.0 b 352.5 b 337.9 b 69.2 a 45.7 b
2022 UDS 632.5 a 412.5 a 380.0 a 60.1 b 72.1 a
UMT 511.5 b 384.5 b 356.6 b 69.7 a 42.4 b
泗洪Sihong 2021 UDS 547.8 a 398.4 a 390.9 a 71.4 a 63.5 a
UMT 486.4 b 369.1 a 353.4 b 72.7 a 37.4 b
2022 UDS 541.5 a 383.5 a 331.5 a 61.2 b 68.0 a
UMT 462.0 b 338.8 a 296.0 b 64.1 a 44.8 b

Fig. 5

Effect of planting methods on leaf area index at main growth stages of rice Treatments are the same as those given in Table 3. Abbreviations are the same as those given in Table 5. Different lowercase letters indicate significant diferences among treatments within the same year at the P < 0.05 lever."

Table 6

Effect of planting methods on photosynthetic potential, crop growth rate and net assimilation rate of rice"

地区Area 年份
Year
处理Treatment 群体光合势
Photosynthetic potential
(m2 m-2 d-1)
群体生长率
Crop growth rate
(g m-2 d-1)
群体净同化率
Net assimilation rate
(g m-2 d-1)
播种期-拔节期
SE-EL
拔节期-抽穗期
EL-HE
抽穗期-
成熟期
HE-MA
播种期-拔节期
SE-EL
拔节期-抽穗期
EL-HE
抽穗期-
成熟期
HE-MA
播种期-拔节期
SE-EL
拔节期-抽穗期
EL-HE
抽穗期-
成熟期
HE-MA
大丰
Dafeng
2021 UDS 112.3 b 167.9 a 270.5 a 10.1 a 27.3 b 15.0 b 3.3 a 4.4 b 2.6 b
UMT 145.2 a 162.7 b 269.2 a 7.9 b 32.8 a 16.2 a 2.6 b 5.4 a 2.8 a
2022 UDS 97.9 b 183.0 a 269.2 b 10.5 a 22.6 b 14.8 b 3.5 a 3.8 b 2.7 a
UMT 126.2 a 160.5 b 281.2 a 8.8 b 26.7 a 16.3 a 3.0 b 4.5 a 2.8 a
泗洪
Sihong
2021 UDS 136.0 b 182.0 a 325.5 a 8.2 a 27.8 b 12.7 b 2.8 a 5.1 b 2.6 b
UMT 172.9 a 148.2 b 330.2 a 6.3 b 28.7 a 14.2 a 2.2 b 5.4 a 3.0 a
2022 UDS 126.2 b 189.4 a 312.7 b 8.6 a 24.1 b 14.1 a 2.9 a 4.3 b 2.8 b
UMT 154.2 a 162.5 b 326.6 a 6.4 b 26.7 a 14.6 a 2.2 b 5.0 a 2.9 a

Table 7

Effect of planting methods on dry matter accumulation characteristics of rice"

地区
Area
年份Year 处理
Treatment
播种期-拔节期
SE-EL
拔节期-抽穗期
EL-HE
抽穗期-成熟期
HE-MA
积累量Accumulation
(t hm-2)
比例
Ratio
(%)
积累量Accumulation
(t hm-2)
比例
Ratio
(%)
积累量Accumulation
(t hm-2)
比例
Ratio
(%)
大丰Dafeng 2021 UDS 5.73 a 26.20 a 7.92 a 36.21 a 8.23 b 37.59 b
UMT 5.87 a 25.73 a 7.86 a 34.50 b 9.07 a 39.77 a
2022 UDS 5.76 b 27.60 a 7.00 a 33.51 a 8.12 b 38.89 a
UMT 6.10 a 27.70 a 7.22 a 32.77 a 8.69 a 39.48 a
泗洪Sihong 2021 UDS 4.28 a 22.13 a 8.34 b 43.16 a 6.71 b 34.71 b
UMT 4.40 a 21.30 a 8.61 a 41.70 b 7.64 a 37.00 a
2022 UDS 3.95 a 20.94 a 7.72 a 40.89 a 7.21 b 38.17 a
UDS 4.07 a 20.68 a 7.75 a 39.37 a 7.87 a 39.95 a

Fig. 6

Effect of planting methods on rice yield and its components Treatments are the same as those given in Table 3. Different lowercase letters indicate significant differences among treatments within the same year at the P < 0.05 level. Data of Dafeng in 2021 and 2022 were cited from reference [18]."

Table 8

Energy input and output under different planting methods (MJ hm-2)"

种植环节
Planting process
UDS UMT
耕整Tillage 柴油Diesel 4368.1
施肥Fertilizer application 柴油Diesel 283.5
肥料Fertilizer 22,162.3 22,162.3
种植Planting 柴油Diesel 2973.2 709.5
种子Seed 2205.0 992.3
灌溉Irrigation 2371.7 2821.2
植保Plant protection 电力Electricity 59.8 39.9
农药Pesticide 445.9 357.7
收获Harvest 柴油Diesel 3106.8 3106.8
机械投入Mechanical input 662.0 1179.0
劳动力投入Manpower input 324.0 411.6
合计Total 34,310.6 36,431.8
分类Classification 农资投入Agricultural materials input 27,184.8 26,333.5
机械投入Mechanical input 662.0 1179.0
能源投入Diesel and electricity input 6139.7 8507.7
劳动力投入Manpower input 324.0 411.6
产量产出Rice grain output 181,900.0 192,100.0
秸秆产出Straw output 137,375.0 140,250.0

Table 9

Analysis of the production costs of rice under different planting methods (yuan hm-2)"

处理Treatment 农资
Agricultural materials
能源
Energy
耕种
Tillage and plant
管理Management 收获
Harvest
其他
Other
总成本
Total cost
UDS 7310.0 774.8 517.2 2000.0 1125.0 4500.0 16,227.0
UMT 6387.0 1074.5 2257.9 2000.0 1125.0 5550.0 18,394.4

Table 10

Analysis of the economic benefits of rice under different planting methods"

处理
Treatment
产量
Yield
(t hm-2)
产值
Production value
(yuan hm-2)
补贴
Subsidy
(yuan hm-2)
经济效益
Economic benefits (yuan hm-2)
投入产出比
Return on
investment
UDS 10.7 29,960.0 900.0 14,633.0 90.2
UMT 11.3 31,640.0 900.0 14,145.6 76.9

Fig. 7

Correlation analysis of key factors in the formation of rice yield Yield: 产量; Panicle number: 穗数; Spikelet number per panicle: 每穗粒数; Total spikelet number: 总颖花数; Filled-grain percentage: 结实率; 1000-grain weight: 千粒重; Effective accumulated temperature: 有效积温; Leaf area index: 叶面积指数; Productive tiller percentage: 成穗率; Proportion of main stem spike: 主茎成穗比例; Photosynthetic potential: 群体光合势; Crop growth rate: 群体生长率; Net assimilation rate: 群体净同化率; Dry matter accumulation: 干物质积累量。*: P < 0.05; **: P < 0.01。"

[1] Yang Z Y, Zhu Y M, Zhang J Y, Li X Y, Ma P, Sun J W, Sun Y J, Ma J, Li N. Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China. Energy, 2022, 245: 123270.
[2] 国家统计局. 中国统计年鉴2023. https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm.
National Bureau of Statistics. China Statistical Yearbook 2023. https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm (in Chinese).
[3] 饶静, 欧阳威. 高投入高产出土地利用模式的成因及对策. 中国土地科学, 2011, 25(12): 35-39.
Rao J, Ouyang W. Causes of the short-term oriented farmland use and the countermeasures. China Land Sci, 2011, 25(12): 35-39 (in Chinese with English abstract).
[4] Ren S Y, Song C Q, Ye S J, Cheng C X, Gao P C. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: a meta-analysis. Sci Total Environ, 2022, 806: 150322.
[5] Liu G S, Wang H M, Cheng Y X, Zheng B, Lu Z L. The impact of rural out-migration on arable land use intensity: evidence from mountain areas in Guangdong, China. Land Use Policy, 2016, 59: 569-579.
[6] 张耗, 余超, 陈可伟, 孔祥胜, 刘海浪, 陈俊义, 顾骏飞, 刘立军, 王志琴, 杨建昌. 直播方式对水稻生理性状和产量的影响及其成本分析. 农业工程学报, 2017, 33(13): 58-64.
Zhang H, Yu C, Chen K W, Kong X S, Liu H L, Chen J Y, Gu J F, Liu L J, Wang Z Q, Yang J C. Effect of direct-seeding methods on physiological characteristics and grain yield of rice and its cost analysis. Trans CSAE, 2017, 33(13): 58-64 (in Chinese with English abstract).
[7] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47: 1273-1289.
doi: 10.3864/j.issn.0578-1752.2014.07.004
Zhang H C, Gong J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Sci Agric Sin, 2014, 47: 1273-1289 (in Chinese with English abstract).
[8] 罗锡文, 王在满, 曾山, 臧英, 杨文武, 张明华. 水稻机械化直播技术研究进展. 华南农业大学学报, 2019, 40(5): 1-13.
Luo X W, Wang Z M, Zeng S, Zang Y, Yang W W, Zhang M H. Recent advances in mechanized direct seeding technology for rice. J South China Agric Univ, 2019, 40(5): 1-13 (in Chinese with English abstract).
[9] 孙永健, 郑洪帧, 徐徽, 杨志远, 贾现文, 程洪彪, 马均. 机械旱直播方式促进水稻生长发育提高产量. 农业工程学报, 2014, 30(20): 10-18.
Sun Y J, Zheng H Z, Xu H, Yang Z Y, Jia X W, Cheng H B, Ma J. Mechanical dry direct-sowing modes improving growth, development and yield of rice. Trans CSAE, 2014, 30(20): 10-18 (in Chinese with English abstract).
[10] 罗锡文, 胡炼, 何杰, 张智刚, 周志艳, 张闻宇, 廖娟, 黄培奎. 中国大田无人农场关键技术研究与建设实践. 农业工程学报, 2024, 40(1): 1-16.
Luo X W, Hu L, He J, Zhang Z G, Zhou Z Y, Zhang W Y, Liao J, Huang P K. Key technologies and practice of unmanned farm in China. Trans CSAE, 2024, 40(1): 1-16 (in Chinese with English abstract).
[11] Hashim N, Ali M M, Mahadi M R, Abdullah A F, Wayayok A, Mohd Kassim M S, Jamaluddin A. Smart farming for sustainable rice production: an insight into application, challenge, and future prospect. Rice Sci, 2024, 31: 47-61.
doi: 10.1016//j.rsci.2023.08.004
[12] Yang Z Y, Zhu Y M, Zhang X L, Liao Q, Fu H, Cheng Q Y, Chen Z K, Sun Y J, Ma J, Zhang J Y, et al. Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —a comparison based on energy use efficiency and economic benefits. Energy, 2023, 273: 127223.
[13] Kim J, Kim S, Ju C, Son H I. Unmanned aerial vehicles in agriculture: a review of perspective of platform, control, and applications. IEEE Access, 2019, 7: 105100-105115.
[14] Oliveira L F P, Moreira A P, Silva M F. Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics, 2021, 10: 52.
[15] 张智刚. 插秧机的DGPS自动导航控制系统研究. 华南农业大学博士论文, 广东广州, 2006.
Zhang Z G. Research on DGPS Automatic Navigation Control System of Rice Transplanter. PhD Dissertation of South China Agricultural University, Guangzhou, Guangdong, China, 2006 (in Chinese with English abstract).
[16] 罗锡文, 廖娟, 胡炼, 周志艳, 张智刚, 臧英, 汪沛, 何杰. 我国智能农机的研究进展与无人农场的实践. 华南农业大学学报, 2021, 42(6): 8-17.
Luo X W, Liao J, Hu L, Zhou Z Y, Zhang Z G, Zang Y, Wang P, He J. Research progress of intelligent agricultural machinery and practice of unmanned farm in China. J South China Agric Univ, 2021, 42(6): 8-17 (in Chinese with English abstract).
[17] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 等. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301-1321.
doi: 10.3864/j.issn.0578-1752.2021.07.001
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, et al. Development and prospect of rice cultivation in China. Sci Agric Sin, 2021, 54: 1301-1321 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.001
[18] 翁文安, 邢志鹏, 胡群, 魏海燕, 史扬杰, 奚小波, 李秀丽, 刘桂云, 陈娟, 袁风萍, 等. 无人化旱直播模式对水稻产量、品质和经济效益的影响. 中国农业科学, 2024, 57: 3350-3365.
doi: 10.3864/j.issn.0578-1752.2024.17.004
Weng W A, Xing Z P, Hu Q, Wei H Y, Shi Y J, Xi X B, Li X L, Liu G Y, Chen J, Yuan F P, et al. Effects of unmanned dry direct-seeded mode on yield, grain quality of rice and its economic benefits. Sci Agric Sin, 2024, 57: 3350-3365 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.17.004
[19] 张洪程, 胡雅杰, 戴其根, 邢志鹏, 魏海燕, 孙成明, 高辉, 胡群. 中国大田作物栽培学前沿与创新方向探讨. 中国农业科学, 2022, 55: 4373-4382.
doi: 10.3864/j.issn.0578-1752.2022.22.004
Zhang H C, Hu Y J, Dai Q G, Xing Z P, Wei H Y, Sun C M, Gao H, Hu Q. Discussions on frontiers and directions of scientific and technological innovation in China’s field crop cultivation. Sci Agric Sin, 2022, 55: 4373-4382 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.22.004
[20] 张洪程, 邢志鹏, 翁文安, 田晋钰, 陶钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕. 生育约束型直播水稻生育特征与稳产关键技术. 中国农业科学, 2021, 54: 1322-1337.
doi: 10.3864/j.issn.0578-1752.2021.07.002
Zhang H C, Xing Z P, Weng W A, Tian J Y, Tao Y, Cheng S, Hu Q, Hu Y J, Guo B W, Wei H Y. Growth characteristics and key techniques for stable yield of growth constrained direct seeding rice. Sci Agric Sin, 2021, 54: 1322-1337 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.002
[21] Xing Z P, Hu Y J, Qian H J, Cao W W, Guo B W, Wei H Y, Xu K, Huo Z Y, Zhou G S, Dai Q G, et al. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system. J Integr Agric, 2017, 16: 1451-1466.
doi: 10.1016/S2095-3119(16)61562-9
[22] Namikawa M, Matsunami T, Yabiku T, Takahashi T, Matsunami M, Hasegawa T. Analysis of yield constraints and seasonal solar radiation and temperature limits for stable cultivation of dry direct-seeded rice in northeastern Japan. Field Crops Res, 2023, 295: 108896.
[23] Li Z W, Huang L F, Huo Z Y, Jiang M. The effect of organ temperature on total yield of transplanted and direct-seeded rice (Oryza sativa L.). Phyton, 2023, 92: 2999-3019.
[24] Dey S, Abbhishek K, Saraswathibatla S, Singh P K, Bommaraboyina P R, Raj A, Kaliki H, Choubey A K, Rongali H B, Upamaka A. Empirical evidence for economic viability of direct seeded rice in peninsular India: an action-based research. Heliyon, 2024, 10: e26754.
[25] Li S, Lu Z, Zhao J, Luo M, Chen F, Chu Q Q. Changes in planting methods will change the potential distribution of rice in South China under climate warming. Agric For Meteor, 2023, 331: 109355.
[26] 霍中洋, 姚义, 张洪程, 夏炎, 倪晓诚, 戴其根, 许轲, 魏海燕. 不同生育期温光条件对直播稻产量的影响. 核农学报, 2012, 26: 1043-1052.
doi: 10.11869/hnxb.2012.07.1043
Huo Z Y, Yao Y, Zhang H C, Xia Y, Ni X C, Dai Q G, Xu K, Wei H Y. Effects of temperature and sunlight conditions on the yield of direct seeding ricein different growth stages. J Nucl Agric Sci, 2012, 26: 1043-1052 (in Chinese with English abstract).
[27] 王端飞. 栽培方式及株行距配置对超级稻宁粳3号产量形成和群体均衡性的影响. 南京农业大学硕士学位论文, 江苏南京, 2011.
Wang D F. Effects of Cultivation Methods and Row Spacing on Yield Formation and Population Balance of Super Rice Ningjing 3. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).
[28] 韩超, 许方甫, 卞金龙, 徐栋, 裘实, 赵晨, 朱盈, 刘国栋, 张洪程, 魏海燕. 淮北地区机械化种植方式对不同生育类型优质食味粳稻产量及品质的影响. 作物学报, 2018, 44: 1681-1693.
doi: 10.3724/SP.J.1006.2018.01681
Han C, Xu F F, Bian J L, Xu D, Qiu S, Zhao C, Zhu Y, Liu G D, Zhang H C, Wei H Y. Effects of mechanical planting methods on yield and quality of Japonica rice with good taste and different growth durations in Huaibei Region. Acta Agron Sin, 2018, 44: 1681-1693 (in Chinese with English abstract).
[29] Zhang R P, Zhou N N, Ashen R G, Zhou L, Feng T Y, Zhang K Y, Liao X H, Aer L S, Shu J C, He X W, et al. Effect of sowing date on the growth characteristics and yield of growth-constrained direct-seeding rice. Plants, 2023, 12: 1899.
[30] Xu L, Yuan S, Wang X Y, Chen Z F, Li X X, Cao J, Wang F, Huang J L, Peng S B. Comparison of yield performance between direct-seeded and transplanted double-season rice using ultrashort-duration varieties in central China. Crop J, 2022, 10: 515-523.
doi: 10.1016/j.cj.2021.07.003
[31] 麦迎晓, 黄慧灵, 程思忍, 孙晓銮, 唐湘如. 不同拌种处理对超级稻机插秧苗素质的影响. 中国稻米, 2018, 24(3): 71-75.
doi: 10.3969/j.issn.1006-8082.2018.03.015
Mai Y X, Huang H L, Cheng S R, Sun X L, Tang X R. Effects of different seed dressing treatments on seedling quality of mechanical transplanting super rice. China Rice, 2018, 24(3): 71-75 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2018.03.015
[32] 宋云生, 张洪程, 戴其根, 杨大柳, 郭保卫, 朱聪聪, 霍中洋, 许轲, 魏海燕, 胡加敏, 等. 水稻机栽钵苗单穴苗数对分蘖成穗及产量的影响. 农业工程学报, 2014, 30(10): 37-47.
Song Y S, Zhang H C, Dai Q G, Yang D L, Guo B W, Zhu C C, Huo Z Y, Xu K, Wei H Y, Hu J M, et al. Effect of rice potted-seedlings per hole by mechanical transplanting on tillers emergence, panicles formation and yield. Trans CSAE, 2014, 30(10): 37-47 (in Chinese with English abstract).
[33] 陈仁天, 唐茂艳, 赵荣德, 江立庚, 王强, 陈雷, 梁天锋. 耕作方式和大田水分管理对水稻氮素吸收利用的影响. 南方农业学报, 2012, 43: 942-946.
Chen R T, Tang M Y, Zhao R D, Jiang L G, Wang Q, Chen L, Liang T F. Influence of field tillage patterns and water management on nitrogen assimilation and utilization in rice. J South Agric, 2012, 43: 942-946 (in Chinese with English abstract).
[34] 陈明, 欧阳玉朋, 王美娥, 钟宗石, 叶高潮, 曹晓利, 孙小明, 赵田芬. 机直播稻不同密度分蘖特性及其与产量构成的关系. 安徽农业科学, 2015, 43(26): 40-42.
Chen M, Ouyang Y P, Wang M E, Zhong Z S, Ye G C, Cao X L, Sun X M, Zhao T F. Tillering characteristics and its relationships with yield components of mechanical direct-seeding rice in different densities. J Anhui Agric Sci, 2015, 43(26): 40-42 (in Chinese with English abstract).
[35] 刘红江, 郑建初, 陈留根, 周炜. 不同播栽方式对水稻生长发育特性的影响. 生态学杂志, 2013, 32: 2326-2331.
Liu H J, Zheng J C, Chen L G, Zhou W. Effects of different planting modes on the growth and development characteristics of rice. Chin J Ecol, 2013, 32: 2326-2331 (in Chinese with English abstract).
[36] 石春林, 朱艳, 曹卫星. 水稻叶片几何参数的模拟分析. 中国农业科学, 2006, 39: 910-915.
Shi C L, Zhu Y, Cao W X. A simulation analysis on geometrical parameters of rice leaf blade. Sci Agric Sin, 2006, 39: 910-915 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.at-2005-5549
[37] 李杰, 张洪程, 董洋阳, 倪晓诚, 杨波, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 等. 不同生态区栽培方式对水稻产量、生育期及温光利用的影响. 中国农业科学, 2011, 44: 2661-2672.
doi: 10.3864/j.issn.0578-1752.2011.13.004
Li J, Zhang H C, Dong Y Y, Ni X C, Yang B, Gong J L, Chang Y, Dai Q G, Huo Z Y, Xu K, et al. Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Sci Agric Sin, 2011, 44: 2661-2672 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.13.004
[38] 朱海滨, 胡群, 陆喜瞻, 翁文安, 邢志鹏, 高辉, 魏海燕, 张洪程. 无人飞播水稻生育特征与丰产关键技术研究进展. 农业工程学报, 2024, 40(11): 1-13.
Zhu H B, Hu Q, Lu X Z, Weng W A, Xing Z P, Gao H, Wei H Y, Zhang H C. Research progress in growth characteristics and key techniques for the high yield of unmanned aerial seeding rice. Trans CSAE, 2024, 40(11): 1-13 (in Chinese with English abstract).
[39] Liao B, Peng Z L, Shu Y H, Zhang B C, Dai Y L, Liu Z Q, Wang F, Hu R G, Luo Y F, Cui Y L. Can optimizing nitrogen management improve net ecosystem economic benefits in rice cultivation. J Clean Prod, 2024, 437: 140756.
[40] Ding Z J, Hu R, Cao Y X, Li J T, Xiao D K, Hou J, Wang X X. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production. J Integr Agric, 2024, 23: 3186-3199.
doi: 10.1016/j.jia.2024.03.038
[41] Zhang Y J, Ren W C, Zhu K Y, Fu J Y, Wang W L, Wang Z Q, Gu J F, Yang J C. Substituting readily available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: a global meta-analysis. Field Crops Res, 2024, 306: 109221.
[42] Lyu Y F, Yang X D, Pan H Y, Zhang X H, Cao H X, Ulgiati S, Wu J, Zhang Y Z, Wang G Y, Xiao Y L. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: a study case from Southwest China. J Clean Prod, 2021, 293: 126198.
[43] 曹兵, 丁紫娟, 侯俊, 马孝卫, 王学霞, 王磊, 王甲辰, 邹国元, 倪小会, 陈延华. 控释掺混肥结合增密对水稻氮肥利用效率和氨挥发的影响. 农业工程学报, 2022, 38(13): 56-63.
Cao B, Ding Z J, Hou J, Ma X W, Wang X X, Wang L, Wang J C, Zou G Y, Ni X H, Chen Y H. Effects of the blends of controlled-release and conventional nitrogen fertilizers combined with dense planting on nitrogen use efficiency and ammonia volatilization in a paddy field. Trans CSAE, 2022, 38(13): 56-63 (in Chinese with English abstract).
[44] Ghosh A, Singh A K, Kumar R V, Singh P D, Misra S, Ahamed S, Ojha D, Chandra A, Bhattacharyya R. Silica and polymer coated controlled release nitrogen-phosphorus fertilizer for improving nutrient and water use efficiency in semi-arid India. J Environ Chem Eng, 2024, 12: 112737.
[45] 孔飞扬, 江立庚, 文娟, 郝向阳. 直播水稻产量、产量构成因子和干物质积累的变化特点及其相互关系. 华中农业大学学报, 2018, 37(5): 11-17.
Kong F Y, Jiang L G, Wen J, Hao X Y. Changes and relationships of yield, yield components and dry matter accumulation of direct-seeded rice. J Huazhong Agric Univ, 2018, 37(5): 11-17 (in Chinese with English abstract).
[46] 晏军, 王伟义, 李斌, 李亚芳, 蒋润枝, 沈明晨, 王春云, 崔必波. 秸秆还田下化肥减施对苏北地区水稻产量与氮素吸收利用的影响. 中国土壤与肥料, 2021, 58(5): 74-82.
Yan J, Wang W Y, Li B, Li Y F, Jiang R Z, Shen M C, Wang C Y, Cui B B. Effects of straw returning and fertilizer reduction on rice yield, nitrogen uptake and utilization in northern Jiangsu. Soil Fert Sci China, 2021, 58(5): 74-82 (in Chinese with English abstract).
[47] 王成, 马杨明, 王春雨, 李志欣, 罗健升, 彭政岚, 刘儒宏基, 黄兴海, 曹云, 彭政菠, 等. 种植方式与施氮量对杂交籼稻养分吸收特性及根系活力的影响. 作物学报, 2024, 50: 3069-3082.
doi: 10.3724/SP.J.1006.2024.42012
Wang C, Ma Y M, Wang C Y, Li Z X, Luo J S, Peng Z L, Liu R H J, Huang X H, Cao Y, et al. Effects of cropping practices and nitrogen application on nutrient uptake characteristics and root vigor of hybrid indica rice. Acta Agron Sin, 2024, 50: 3069-3082 (in Chinese with English abstract).
[48] 王国忠, 彭斌, 陆峥嵘, 王余龙. 直播水稻物质生产特点及其高产调控技术研究. 上海农业学报, 2002, 18(2): 32-37.
Wang G Z, Peng B, Lu Z R, Wang Y L. Study on production characteristics and high-yield control techniques of direct seeding rice. Acta Agric Shanghai, 2002, 18(2): 32-37 (in Chinese with English abstract).
[49] 梁玉刚, 周政, 张利峰, 陶曙华, 荣兴枝, 刘烨, 陈伟, 汪大明, 赵正洪, 许靖波. 湖南省早稻集中育秧发展现状、存在问题及其对策. 中国稻米, 2022, 28(1): 72-77.
doi: 10.3969/j.issn.1006-8082.2022.01.015
Liang Y G, Zhou Z, Zhang L F, Tao S H, Rong X Z, Liu Y, Chen W, Wang D M, Zhao Z H, Xu J B. Development status, existing problems and countermeasures of early rice concentrated seedling cultivation in Hunan province. China Rice, 2022, 28(1): 72-77 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2022.01.015
[50] 唐兴隆, 任桂英, 李英奎, 王虹, 赵平, 张生. 优质水稻工厂化育秧关键技术研究. 中国农机化学报, 2019, 40(6): 35-38.
doi: 10.13733/j.jcam.issn.2095-5553.2019.06.08
Tang X L, Ren G Y, Li Y K, Wang H, Zhao P, Zhang S. Research on key technology of high quality rice factory seedling. J Chin Agric Mech, 2019, 40(6): 35-38 (in Chinese with English abstract).
[1] WANG Meng-Ning, XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui. Effect of high temperature during the panicle initiation and heading stages on grain shape and filling and its relationship with grain weight in rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1347-1362.
[2] WANG Dong, WANG Sen, SHANG Li, FENG Hao-Wei, ZHANG Yong-Qiao, CUI Jia-Ming, LI Shuang, ZHANG Jia-Cong, CHE Huan. Effect of supplementary irrigation on winter wheat yield and water use efficiency in semi humid areas of the Loess Plateau [J]. Acta Agronomica Sinica, 2025, 51(5): 1312-1325.
[3] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[4] MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311.
[5] ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117.
[6] XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109.
[7] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[8] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[9] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[10] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[11] SU Chang, MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui. Response of osalr3 mutant to exogenous organic acids and plant growth regulators under aluminum stress [J]. Acta Agronomica Sinica, 2025, 51(3): 676-686.
[12] LIU Jian-Guo, CHEN Dong-Dong, CHEN Yu-Yu, YI Qin-Qin, LI Qing, XU Zheng-Jin, QIAN Qian, SHEN Lan. Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains [J]. Acta Agronomica Sinica, 2025, 51(3): 598-608.
[13] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
[14] LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357.
[15] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!