Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (04): 662-668.doi: 10.3724/SP.J.1006.2008.00662

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Heterosis of Root Growth in Maize (Zea mays L.) Seedling under Water Stress

LI Bo,TIAN Xiao-Li*,WANG Gang-Wei,PAN Fei,LI Zhao-Hu   

  1. Center of Crop Chemical Control / Key Laboratory of Crop Cultivation and Farming System / State Key Laboratory of National Plant Physiology and
    Biochemical, China Agricultural University, Beijing 100094, China
  • Received:2007-09-03 Revised:1900-01-01 Online:2008-04-12 Published:2008-04-12
  • Contact: TIAN Xiao-Li

Abstract: Maize (Zea mays L.), the earliest crop for heterosis application, is highly sensitive to water stress. The root system is one of the important organs contributing to drought tolerance. However, few reports have provided quantitative data on the hybrid vigor in root development of maize, especially on that under water stress. The objective of this study was to investigate the hete- rosis of maize root growth at seedling stage and the effects of water availability on it. Hybrid maize Gaoyou 115 (220 × 1145) and its parents were subjected to three water treatments: 75%, 55%, and 35% of field water-holding capacity, considered as well watered (WW), moderate water stress (MWS), and severe water stress (SWS) respectively. The desired soil water regimes were well prepared at the beginning of the experiment, and kept by weighing. Under WW treatment, substantial midparent heterosis (MPH) and overparent hereosis (OPH) were observed for root dry weight (RDW), root length (RL), and root surface area (SA). MPH for these traits was in the range between 100% and 203%, and OPH between 99% and 189%. MWS clearly reduced the degree of heterosis compared with WW; MPH was in the range between 73% and 108%, and OPH between 55% and 59%. However, SWS arrested hybrid vigor in root growth almost completely. These results indicate that heterosis of root growth in maize seedlings varies with water availability. The maximum heterosis for root growth was obtained in RL with average 155.5% MPH and aver-age 124.2% OPH over WW and MWS. Compared with middle (0.25 mm < root diameter (DA)≤0.45 mm) and coarse (0.45 mm < DA) roots, fine (0.05 mm < DA≤0.20 mm) roots displayed the highest degree of MPH and OPH in absolute RL and SA under WW, MPH for its RL and SA was 265% and 246%, respectively, and OPH 218% and 208%, respectively. For the ratios of RL and SA to the total RL and SA respectively, they only displayed significant and slight MPH, but compared with middle and coarse roots, fine roots (with 21% and 44% of MPH for RL% and SA%, respectively) still had the highest degree of heterosis. Although we still detected significant MPH and OPH for absolute RL and SA regardless of root diameter classes (except for OPH for coarse roots) and significant MPH for the ratios of RL and SA concerning fine roots under MWS, it was obvious that MWS reduced het-erosis of RL and SA, especially for fine roots. MPH values for absolute RL and SA showed about one-fold decreases, and OPH showed more than two-fold decreases. Additionally, absolute RL and SA for fine roots do not reveal heterosis under SWS, but the ratios of RL and SA for them significantly displayed 9% and 16% of MPH, respectively. This suggests that the seedlings of hybrid maize develop more and greater proportion of fine roots than its parents (especially under water stress), which enable them to resist moderate drought better.

Key words: Maize (Zea mays L.), Seedlings, Heterosis, Root growth, Water availability

[1] XIANG Li-Yuan,XU Kai,SU Jing,WU Chao,YUAN Xiong,ZHENG Xing-Fei,DIAO Ying,HU Zhong-Li,LI Lan-Zhi. Genetic dissection of combining ability and heterosis of rice agronomic traits based on pathway analysis [J]. Acta Agronomica Sinica, 2019, 45(9): 1319-1326.
[2] Xiao-Han MA,Jie ZHANG,Huan-Wei ZHANG,Biao CHEN,Xin-Yi WEN,Zi-Cheng XU. Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation [J]. Acta Agronomica Sinica, 2019, 45(3): 411-418.
[3] Qing-Hua YANG,Bo-Yuan ZHENG,Lei-Lei LI,Shuang-Jie JIA,Xin-Pei HAN,Jia-Meng GUO,Yong-Chao WANG,Rui-Xin SHAO. Effect of Exogenous Nitric Oxide Donor on Carbon Assimilation and Antioxidant System in Leaves of Maize Seedlings under PEG-induced Water Deficit Stress [J]. Acta Agronomica Sinica, 2018, 44(9): 1393-1399.
[4] Ying-Bin ZOU,Min HUANG. Opportunities and Challenges for Crop Production in China during the Transition Period [J]. Acta Agronomica Sinica, 2018, 44(6): 791-795.
[5] Qi-Yue WANG, Shu-Jun MENG, Ke ZHANG, Zhan-Hui ZHANG, Ji-Hua TANG, Dong DING. Investigation of Maize miRNA Involved in Developing-ear Heterosis [J]. Acta Agronomica Sinica, 2018, 44(6): 796-813.
[6] Jing DONG,Xiao-Ping LU,Kun-Ming ZHANG,Chun-Lei XUE,Rui-Xia ZHANG. Analysis of SNP and Allele-specific Expression in Transcriptome of Sorghum bicolor × Sorghum sudanense and Their Parents [J]. Acta Agronomica Sinica, 2018, 44(12): 1809-1817.
[7] ZHANG Zheng,ZHANG Xue-Li,MO Bo-Cheng,Dai Zhi-Jun,HU Zhong-Li,LI Lan-Zhi,ZHENG Xing-Fei. Combining Ability Analysis ofAgronomic Trait in Indica × IndicaHybrid Rice [J]. Acta Agron Sin, 2017, 43(10): 1448-1457.
[8] YANG Hui-Li,LIN Ya-Nan,ZHANG Huai-Sheng,WEI Xiao-Yi,DING Dong,XUE Ya-Dong. Mapping of QTLs and Heterotic Loci for Flowering Time-related Traits in Maize [J]. Acta Agron Sin, 2017, 43(05): 678-690.
[9] YU Ya-Hui,LIU Yu,LI Zhen-Yu,CHEN Guang-Hong,XU Zheng-Jin,TANG Liang,MAO Ting,XU Hai. Relationship between Indica-Japonica Index of Parents and Heterosis of Hybrid and Its Genetic Basis in Japonica Two Line Hybrid Rice [J]. Acta Agron Sin, 2016, 42(05): 648-657.
[10] HAN Ping-An,LU Xiao-Ping,MI Fu-Gui,ZHANG Rui-Xia,LI Mei-Na,XUE Chun-Lei,DONG Jing,CONG Meng-Lu. Analysis of Heterosis in Sorghum-Sudangrass Hybrids Seedlings Based on Proteomics [J]. Acta Agron Sin, 2016, 42(05): 696-705.
[11] PENG Qian,XUE Ya-Dong,ZHANG Xiang-Ge,LI Hui-Min,SUN Gao-Yang,LI Wei-Hua,XIE Hui-Ling,TANG Ji-Hua. Identification of Heterotic Loci for Yield and Ear Traits Using CSSL Test Population in Maize [J]. Acta Agron Sin, 2016, 42(04): 482-491.
[12] LI Cong-Feng,ZHAO Ming,LIU Peng,ZHANG Ji-Wang,YANG Jin-Sheng,DONG Shu-Ting. Characteristics of Grain Filling and Nitrogen Translocation of Maize Parent Lines Released in Different Eras in China [J]. Acta Agron Sin, 2014, 40(11): 1990-1998.
[13] XU Na,WANG Jia-Yu,LI Qing,YANG Xian-Li,LIU Zun-Qi,JING Yan-Hui,XU Zheng-Jin. Effects of Seedlings per Hole on Matter Production Characteristics and Lodging Resistance in Japonica Rice with Different Panicle Types [J]. Acta Agron Sin, 2014, 40(08): 1506-1512.
[14] LU Xiao-Ping,LIU Dan-Dan,WANG Shu-Yan,MI Fu-Gui,HAN Ping-An,Lü Er-Suo. Genetic Effects and Heterosis Prediction Model of Sorghum  bicolor × S.sudanense Grass [J]. Acta Agron Sin, 2014, 40(03): 466-475.
[15] MA Hai-Zhen,ZHU Wei-Wei,WANG Qi-Bai,WANG Guo-Liang,LI Xin-Zhen,QI Bao-Xiu. Regeneration Capacity and Some Affecting Factors of Different Parts of Young Seedlings of Maize (Zea mays L.) [J]. Acta Agron Sin, 2014, 40(02): 313-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!