Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (4): 636-644.doi: 10.3724/SP.J.1006.2010.00636
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
HU Xiu-Li1,LI Yan-Hui1,YANG Hai-Rong1,LIU Qun-Jun,LI Chao-Hai2,*
[1]Thomson A M, Brown R A, Rosenberg N J, Izaurralde R C, Benson V. Climate change impacts for the conterminous USA: An integrated assessment. Part 3. Dryland production of grain and forage crops. Clim Change, 2005, 69: 43-65 [2]Bray E A, Bailey-Serres J, Weretilnyk E. Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R, eds. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, 2000. pp 1158-249 [3]Pingali P L. CIMMYT 1999-2000 Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. Mexico: CIMMYT, 2001. pp 1-60 [4]Dat J F, Pellinen R, Beeckman T, Cotte B V D, Langebartels C, Kangasja J, Inze R, Breusegem F V. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J, 2003,33: 621-632 [5]Neil S L, Desikan R, Hancock J T. Hydrogen peroxide signling. Curr Opin Plant Biol, 2002, 5: 388-395 [6]Volkov R A, Panchuk I I, Mullineaux P M, Schöffl F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol, 2006, 61: 733-46 [7]Hu X L, Jiang M Y, Zhang J H, Tan M P, Zhang A Y. Cross-talk between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Grow Regul, 2008, 55: 183-198 [8]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399 [9]Basha E, Lee G J, Demeler B, Vierling E. Chaperone activity of cytosolic small heat shock proteins. Eur J Biochem, 2004, 271: 1426-1436 [10]Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K. Monitoring expression profiles of Arabidopsisgene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J, 2003, 34: 868-887 [11] Rizhsky L, Hongjian L, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151 [12] Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol, 2004, 134: 1683-1696 [13] Cho E K, Choi Y J. Anuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol Lett, 2009, 31: 597-606 [14] Dat J, Vandenabeele S, VranováE, Van Montagu M, InzéD, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol Life Sci, 2000, 57: 779-795 [15] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2000, 7: 405-410 [16] Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive and up-regulates the activies of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410 [17] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254 [18] Heath R L, Parker L. Photoperoxidation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation. Arch Biophys, 1968, 25: 189-198 [19] Orozco-Cárdenas M L, Ryan C A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway.Proc Natl Acad Sci USA, 1999, 96-6557: 6553 [20] Liang Y(梁颖), Wang S-G(王三根). The protection function of Ca2+ on the membrane of rice seedlings under low temperature stress. Acta Agron Sin 作物学报), 2001, 27(1): 59-63 (in Chinese with English abstract) [21] Ma S-Y(马淑英), Zhao M(赵明). Regulations of calcium on the salt tolerance in Arabidopsis. Acta Agron Sin (作物学报), 2006, 32(11): 1706-1711 (in Chinese with English abstract) [22] Rizhsky L, Hongjian L, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151 [23] Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings. Plant Physiol, 1998, 118: 1455-1461 [24] Aebi H. Catalase in vitro. Methods Enzymol, 1984, 105: 121-125 [25] Gulli M, Rampino P, Lupotto E, Marmiroli N, Perrotta C. The effect of heat stress and cadmium ions on the expression of a small hsp gene in barley and maize. J Cereal Sci, 2005, 42: 25-31 [26] Guo S H, Wharton W, Moseley P, Shi H L. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress & Chaperones, 2007, 12: 245-254 [27] Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell, 2006, 125: 443-451 [28] Voellmy R, Boellmann F. Chaperone regulation of the heat shock protein response. Adv Exp Med Biol, 2007, 594: 89-99 [29] Wang C R, Wang X R, Tian Y, Xue Y G, Xu X H, Sui Y X, Yu H X. Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination. Ecotoxicol Environ Saf, 2008, 71: 685-691 [30] Wang C R, Wang X R, Tian Y, Yu H X, Gu X Y, Du W C, Zhou H. Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem, 2008, 27: 970-977 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[5] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[6] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[7] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[8] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[9] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[10] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[11] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[12] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[13] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[14] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[15] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
|