Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (03): 381-388.doi: 10.3724/SP.J.1006.2011.00381
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
LIU Xiu-Lin1,2,CHANG Xiao-Ping2,LI Run-Zhi1,JING Rui-Lian2,*
[1]Ma Y-X(马元喜). The Root of Wheat (小麦的根). Beijing: China Agriculture Press, 1999. pp 1–20 (in Chinese) [2]Manschadi A M, Hammer G L, Christopher J T, deVoil P. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil, 2008, 303: 115–129 [3]Manschadi A M, Christopher J, de Voil P, Hammer G L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol, 2006, 33: 823–837 [4]Hurd E A. Growth of roots of seven varieties of spring wheat at high and low moisture levels. Agron J, 1968, 60: 201–205 [5]Miao G-Y(苗果园), Zhang Y-T(张云亭), Yin J(尹钧), Hou Y-S(侯跃生), Pan X-L(潘幸来). A study on the development of root system in winter wheat under unirrigated conditions in semi-arid loess plateau. Acta Agron Sin (作物学报), 1989, 19(2): 104–115 (in Chinese with English abstract) [6]Liang Y-L(梁银丽), Chan P-Y(陈培元). Characteristic of Wheat Varieties in Arid Region (旱地小麦品种的特征特性). In: Shan L. Fundamentals of Physiology and Ecology in Arid Agriculture. Beijing: Science Press, 1998. pp 259–266 (in Chinese) [7]Li L-H(李鲁华), Li S-Q(李世清), Zhai J-H(翟军海), Shi J-H(史俊海). Review of the relationship between wheat roots and water stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(1): 1–7 (in Chinese with English abstract) [8]Chang X-P(昌小平), Wang H(王嬛), Yang L(杨莉). Changes of root activity and water state at seedling stage of winter wheat varieties with different drought-resistance under different water conditions. Plant Physio Commun (植物生理学通讯), 1996, 32(3): 178–182 (in Chinese with English abstract) [9]Duan S-S(段舜山), Gu W-X(谷文祥), Zhang D-Y(张大勇), Li F-M(李凤民). Relationship between root system characteristics and drought resistance of wheat populations in semiarid region. Chin J Appl Ecol (应用生态学报), 1997, 8(2): 134–138 (in Chinese with English abstract) [10]Dhanda S S, Sethi G S, Behl R K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci, 2004, 190: 6–12 [11]Champoux M C, Wang G, Sarkarung S, Mackill D J, Toole T C O, Huang N, McCouch S R. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90: 969–981 [12]Ray J D, Yu L X, Mccouch S R, Mackill D J, Toole T C O, Huang N, MeCouch S R. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627–636 [13]Mu P(穆平), Li Z-C(李自超), Li C-P(李春平), Zhang H-L(张洪亮), Wu C-M(吴长明), Li C(李晨), Wang X-K(王象坤). QTL mapping and G×E interaction for root traits in a DH population from japonica upland and lowland rice cross under three ecosystems. Chin Sci Bull (科学通报), 2003, 48(20): 2162–2169 (in Chinese) [14]Zhang Z-B(张正斌), Xu P(徐萍). Reviewed on wheat genome. Heredity (遗传), 2002, 24(3): 389–394 (in Chinese with English abstract) [15]Zhou X-G(周晓果), Jing R-L(景蕊莲), Hao Z-F(郝转芳), Chang X-P(昌小平), Zhang Z-B(张正斌). Mapping QTL for seedling root traits in common wheat. Sci Agric Sin (中国农业科学), 2005, 38(10): 1951–1957 (in Chinese with English abstract) [16]Li Z-K(李卓坤), Peng T(彭涛), Zhang W-D(张卫东), Xie Q-G(谢全刚), Tian J-C(田纪春). Analysis of QTLs for root traits at seedling stage using an “Immortalized F2” population of wheat. Acta Agron Sin (作物学报), 2010, 36(3): 442–448 (in Chinese with English abstract) [17]Bengough A G, Gordon D C, Al-Menaie H, Ellis R P, Allan D, Keith R, Thomas W T B, Forster B P. Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant & Soil, 2004, 262: 63–70 [18]Sanguineti M C, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol, 2007, 151: 291–305 [19]Jing R-L(景蕊莲), Chang X-P(昌小平), Jia J-Z (贾继增), Hu R-H (胡荣海). Establishing wheat doubled haploid population for genetic mapping by anther culture. Biotechnology (生物技术), 1999, 9(3): 4–8 (in Chinese with English abstract) [20]Hao Z F, Chang X P, Guo X J, Jing R L, Li R Z, Jia J Z. QTL mapping for drought tolerance at stages of germination and seedling in wheat (Triticum aestivum L.) using a DH population. Sci Agric China, 2003, 2: 943–949 [21]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268−1274 [22]McIntosh R A, Hart G E, Devos K M, Rogers W J. Catalogue of gene symbols for wheat. 1999. http://grain.jouy.inra.fr/ggpages/wgc [23]Reyniers F N, Binh T. Screening with Phosphorus32 for rooting depth among varieties of rain-fed rice. Paper Presented in the Conference on Rice in Africa, IITA, lbadan, NIgeria, 1977 [24]Jing R-L(景蕊莲), Hu R-H(胡荣海), Zhu Z-H(朱志华), Chang X-P(昌小平). A study on heritabilities of seedling morphological traits and drought resistance in winter wheat cultivars of different genotype. Act Bot Boreal-Occident Sin (西北植物学报), 1997, 17(2): 152–157 (in Chinese with English abstract) [25]Price A H, Steele K A, Moore B J, Jones R G W. Upland rice grown in soil-?lled chambers and exposed to contrasting water-de?cit regimes: II. Mapping quantitative trait loci for root morphology and distributing. Field Crops Res, 2002, 76: 25–43 [26]An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant & Soil, 2006, 284: 73–84 [27]Xu J-L(徐建龙), Xue Q-Z(薛庆中), Luo L-J(罗利军), Li Z-K(黎志康). QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2001, 28(8): 752–759 (in Chinese with English abstract) [28]Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270−278 (in Chinese with English abstract) [29]Rebetzke G J, Bruce S E, Kirkegaard J A. Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant & Soil, 2005, 272: 87–100 [30]Botwright T L, Rebetzke G J, Condon A G, Richards R A. The effect of rat genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Aust J Plant Physiol, 2001, 15: 417–423 [31]Rebetzke G J, Ellis M H, Bonnett D G., Richards R A. Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1173–1183 [32]Rebetzke G J, Appels R, Morrison A, Richards R A, McDonald G, Ellis M H, Spielmeyer W, Bonnett D G. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res, 2001, 52: 1221–1234 [33]Landjeva S, Neumann K, Lohwasser U, Börner A. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plantarum, 2008, 52: 259–266 [34]Wu X S, Wang Z H, Chang X P, Jing R L. Genetic dissection of the developmental behaviours of plant height in wheat (Triticum aestivum L.) under diverse water regimes. J Exp Bot, 2010, 61: 2923–2937 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[5] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[6] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[7] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[8] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[9] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[10] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[11] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[12] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[13] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
[14] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[15] | MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75. |
|