Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (12): 2179-2186.doi: 10.3724/SP.J.1006.2011.02179
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SHU Yong-Jun,WU Lei,WANG Dan,GUO Chang-Hong*
[1]Henderson C. Best linear unbiased estimation and prediction under a selection model. Biometrics, 1975, 31: 423–447 [2]Henderson C R. Applications of Linear Models in Animal Breeding. Guelph (ONT): University of Guelph, 1984 [3]Cantet R J C, Smith C. Reduced animal model for marker assisted selection using best linear unbiased prediction. Genet Selection Evol, 1991, 23: 1–13 [4]Panter D M, Allen F L. Using best linear unbiased predictions to enhance breeding for yield in soybean: I. Choosing parents. Crop Sci, 1995, 35: 397–405 [5]Panter D M, Allen F L. Using best linear unbiased predictions to enhance breeding for yield in soybean: II. Selection of superior crosses from a limited number of yield trials. Crop Sci, 1995, 35: 405–410 [6]Bernardo R. Best linear unbiased prediction of maize single-cross performance given erroneous inbred relationships. Crop Sci, 1996, 36: 862–866 [7]Purba A R, Flori A, Baudouin L, Hamon S. Prediction of oil palm (Elaeis guineensis Jacq.) agronomic performances using the best linear unbiased predictor (BLUP). Theor Appl Genet, 2001, 102: 787–792 [8]Bauer A M, Reetz T C, Léon J. Estimation of breeding values of inbred lines using best linear unbiased prediction (BLUP) and genetic similarities. Crop Sci, 2006, 46: 2685–2691 [9]Xie C, Carlson M, Murphy J. Predicting individual breeding values and making forward selections from open-pollinated progeny test trials for seed orchard establishment of interior lodgepole pine (Pinus contorta ssp. latifolia) in British Columbia. New For, 2007, 33: 125–138 [10]Piepho H, Möhring J, Melchinger A, Büchse A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 2008, 161: 209–228 [11]Varshney R K, Graner A, Sorrells M E. Genomics-assisted breeding for crop improvement. Trends Plant Sci, 2005, 10: 621–630 [12]Kearsey M J, Farquhar A G L. QTL analysis in plants; where are we now? Heredity, 1998, 80: 137–142 [13]Wang J K(王建康), Wolfgang H P. Simulation approach and its applications in plant breeding. Sci Agric Sin (中国农业科学), 2007, 40(1): 1–12 (in Chinese with English abstract) [14]Wang J-K(王建康), Li H-H(李慧慧), Zhang X-C(张学才), Yin C-B(尹长斌), Li Y(黎裕), Ma Y-Z(马有志), Li X-H(李新海), Qiu L-J(邱丽娟), Wan J-M(万建民). Molecular design breeding in crops in China. Acta Agron Sin (作物学报), 2011, 37(2): 191–201 (in Chinese with English abstract) [15]Agrama H, Eizenga G, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341–356 [16]Zhu C, Gore M, Buckler E S, Yu J. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5–20 [17]Zhao K, Aranzana M J, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet, 2007, 3: e4 [18]Goddard M E, Hayes B J. Genomic selection. J Anim Breed Genet, 2007, 124: 323–330 [19]De Roos A P W, Schrooten C, Mullaart E, Calus M P L, Veerkamp R F. Breeding value estimation for fat percentage using dense markers on Bos taurus autosome 14. J Dairy Sci, 2007, 90: 4821–4829 [20]Long N, Gianola D, Rosa G J M, Weigel K A, Avendaño S. Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet, 2007, 124: 377–389 [21]Meuwissen T. Genomic selection: marker assisted selection on a genome wide scale. J Anim Breed Genet, 2007, 124: 321–322 [22]Legarra A, Robert-Granié C, Manfredi E, Elsen J M. Performance of genomic selection in mice. Genetics, 2008, 180: 611–618 [23]Luan T, Woolliams J A, Lien S, Kent M, Svendsen M, Meuwissen T H E. The accuracy of genomic selection in norwegian red cattle assessed by cross-validation. Genetics, 2009, 183: 1119–1126 [24]Piyasatian N, Fernando R L, Dekkers J C. Genomic selection for marker-assisted improvement in line crosses. Theor Appl Genet, 2007, 115: 665–674 [25]Li Y(黎裕), Wang J-K(王建康), Qiu L-J(邱丽娟), Ma Y-Z(马有志), Li X-H(李新海), Wan J-M(万建民). Crop molecular breeding in China: current status and perspectives. Acta Agron Sin (作物学报), 2010, 36(9): 1425–1430 (in Chinese with English abstract) [26]Wong C, Bernardo R. Genome wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet, 2008, 116: 815–824 [27]de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes J M. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 2009, 182: 375–385 [28]Crossa J, Campos G D L, Pérez P, Gianola D, Burgueño J, Araus J L, Makumbi D, Singh R P, Dreisigacker S, Yan J, Arief V, Banziger M, Braun H J. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics, 2010, 186: 713–724 [29]Pérez P, de los Campos G, Crossa J, Gianola D. Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome, 2010, 3: 106–116 [30]He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民), Zhuang Q-S(庄巧生). Molecular design breeding in crops in China. Acta Agron Sin (作物学报), 2011, 37(2): 202–215 (in Chinese with English abstract) [31]Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S-Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348–354 [32]Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics, 2010, 9: 166–177 [33]Heffner E L, Sorrells M E, Jannink J-L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 10–12 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[3] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[4] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[5] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[6] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[7] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[8] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[9] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[10] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
[11] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[12] | MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75. |
[13] | WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47. |
[14] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[15] | LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436. |
|