Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (04): 632-638.doi: 10.3724/SP.J.1006.2012.00632
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
WANG Jian1,2, ZHAO Kai-Jun2,*, QIAO Feng2,3,YANG Sheng-Long1
[1]Li R-T(李荣田), Jiang T-B(姜廷波), Qiu T-Q(秋太权), Cui C-H(催成焕), Gong Z-P(龚振平). Study on effect of lodging to yield and relationship between lodging and plant height in rice. Heilongjiang Agric Sci (黑龙江农业科学), 1996, (1): 13–17 (in Chinese)[2]Wang X(王熹), Yao F-D(姚福得), Gao C-W(高成伟), Tao L-X(陶龙兴). Effect of MET on lodging of rice plant. Plant Physiol Commun (植物生理学通讯), 1987, (5): 30–32 (in Chinese)[3]Hannon G J. RNA interference. Nature, 2002, 418: 244–251[4]Shao Y, Chan C Y, Maliyekkel A, Lawrence C L, Roninson L B, Ding Y. Effect of target secondary structure on RNAi efficiency. RNA, 2007, 13: 1631–1640[5]Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), ‘geen revolution’ rice contains a defective gibberellins 20-oxdase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048 [6]Qiao F, Yang Q, Wang C L, Fan Y L, Wu X F, Zhao K J. Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica, 2007, 158: 35–45[7]Hammond S M, Bernstein E, Beach D, Hannon G J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404: 293–296[8]Qiao F, Zhao K J. The influence of RNAi targeting of OsGA20ox2 gene on plant height in rice. Plant Mol Biol Rep, 2011, 29: 952–960[9]Wagner N, Mroczka A, Roberts P D, Schreckengost W, Voelker T. RNAi trigger fragment truncation attenuates soybean FAD2-1 transcript suppression and yields intermediate oil phenotypes. Plant Biotechnol J, 2011, 9: 723–728[10]Zhu J(朱军). Genetics(遗传学). Beijing: China Agriculture Press, 2002. pp 81–82 (in Chinese)[11]Xu Z-J(徐正进), Chen W-F(陈温福), Zhang L-B(张龙步), Dong K(董克), Wang J-M(王进民). Present status and prospect of the research on rice high-yield physiology. J Shenyang Agric Univ (沈阳农业大学学报), 1995, 22(S1): 115–120 (in Chinese)[12]Yang H-J(杨惠杰), Yang R-C(杨仁崔), Li Y-Z(李义珍), Jiang Z-W(姜照伟), Zheng J-S(郑景生). Relationship between culm traits and lodging resistance of rice cultivars. Fujian J Agric Sci (福建农业学报), 2000, 15(2): 1–7 (in Chinese with English abstract)[13]Yuan L-P(袁隆平). Breeding for superior high-yielding in hybrid rice. Hybrid Rice (杂交水稻), 1997, 12(6): 1–6(in Chinese)[14]Cheng S-H(程式华), Zhai H-Q(翟虎渠). Breeding strategies for superior high-yielding in hybrid rice. Res Agric Modern (农业现代化研究), 2001, 21(3): 147–150 (in Chinese with English abstract)[15]Chen W-F(陈温福), Xu Z-J(徐正进), Zhang L-B(张龙步). Rice breeding for super high yield –from theories to practices. J Shenyang Agric Univ (沈阳农业大学学报), 2003, 34(5): 324–327 (in Chinese with English abstract)[16]Sasaki A, Itoh H, Gomi K, Uegchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, AShikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberelin signaling in an F-box mutant. Science, 2003, 299: 1896–1898[17]Kerschen A, Napoli C A, Jorgensen R A, Muller A E. Effectiveness of RNA interference in transgenic plants .FEBS Lett, 2004, 565: 223–228[18]Schweizer P, Pokomy J, Schulze-Lefert P, Dudler R. Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J, 2000, 24: 895–903[19]Takayuki K, Ishimaru K. Identification and Functional Analysis of a locus for improvement of lodging resistance in rice. Plant Physiol, 2004, 134: 676–683[20]Ichii M, Hada K. Application of ratoon to a test of agronomic characters in rice breeding: II. The relationship between ratoon ability and lodging resistance. Jpn J Breed, 1983, 33: 251–258[21]Yagi T. Studies on breeding for culm stiffness in rice 1: varietal differences in culm stiffness and its related traits. Jpn J Breed, 1983, 33: 411–422 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[4] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[5] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[6] | HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196. |
[7] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[8] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[9] | FU Hong-Yu, CUI Guo-Xian, LI Xu-Meng, SHE Wei, CUI Dan-Dan, ZHAO Liang, SU Xiao-Hui, WANG Ji-Long, CAO Xiao-Lan, LIU Jie-Yi, LIU Wan-Hui, WANG Xin-Hui. Estimation of ramie yield based on UAV (Unmanned Aerial Vehicle) remote sensing images [J]. Acta Agronomica Sinica, 2020, 46(9): 1448-1455. |
[10] | JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868. |
[11] | Song-Feng XIE,Wan-Quan JI,Yao-Yuan ZHANG,Jun-Jie ZHANG,Wei-Guo HU,Jun LI,Chang-You WANG,Hong ZHANG,Chun-Huan CHEN. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat [J]. Acta Agronomica Sinica, 2020, 46(3): 365-384. |
[12] | Juan MA, Yan-Yong CAO, Li-Feng WANG, Jing-Jing LI, Hao WANG, Yan-Ping FAN, Hui-Yong LI. Identification of gene co-expression modules of maize plant height and ear height by WGCNA [J]. Acta Agronomica Sinica, 2020, 46(3): 385-394. |
[13] | HUO Qiang,YANG Hong,CHEN Zhi-You,JIAN Hong-Ju,QU Cun-Min,LU Kun,LI Jia-Na. Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 214-227. |
[14] | CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118. |
[15] | Cong HUANG,Xiao-Fang LI,Ding-Guo LI,Zhong-Xu LIN. QTL Mapping for Yield, Growth Period and Plant Height Traits Using MAGIC Population in Upland Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1320-1333. |
|