Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (11): 2042-2051.doi: 10.3724/SP.J.1006.2012.02042

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Ectopic Expression of TaYAB2, a Member of YABBY Gene Family in Wheat, Causes Partial Abaxialization of Adaxial Epidermises of Leaves in Arabidopsis

ZHAO Xiang-Yu**,XIE Hong-Tao**,CHEN Xiang-Bin,WANG Shuai-Shuai,ZHANG Xian-Sheng*   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
  • Received:2012-01-10 Revised:2012-06-10 Online:2012-11-12 Published:2012-07-27
  • Contact: 张宪省, E-mail: zhangxs@sdau.edu.cn, Tel: 0538-8249418 ** 同等贡献(Contributed equally to this work)

Abstract:

Adaxial-abaxial polarity is an important feature of lateral organs. To study the molecular mechanism of polarity establishment, we isolated a YABBY gene, designated TaYAB2, from the young leaves of wheat. TaYAB2 has a zinc finger-like domain in the N terminus and a YABBY domain in the C terminus. Sequence comparison showed that TaYAB2 is a putative member of the YABBY gene family in wheat. Further expression analysis indicated that TaYAB2 was widely expressed in the lateral organs of wheat. Ectopic expression of TaYAB2 inArabidopsis caused the partial abaxialization of the adaxial epidermises of leaves with the promotion of the transcript levels of abaxial identity genes, for example, FIL/YAB1, YAB3, and KAN1. These results indicate that TaYAB2 affects the establishment of adaxial-abaxial polarity when ectopically expressed in Arabidopsis.

Key words: Adaxial-abaxial polarity, Leaf development, TaYAB2, Wheat, Transgene

[1]Cui X-F(崔晓峰), Huang H(黄海). Recent progress in genetic control of leaf development. Plant Physiol J (植物生理学报), 2011, 47(7): 631-640 (in Chinese with English abstract)



[2]Hudson A. Axioms and axes in leaf formation? Curr Opin Plant Biol, 1999, 2: 56-60



[3]Bowman J L. Axial patterning in leaves and other lateral organs. Curr Opin Genet Dev, 2000, 10: 399-404



[4]Bowman J L, Eshed Y, Baum S F. Establishment of polarity in angiosperm lateral organs. Trends Genet, 2002, 18: 134-141



[5]Sussex I M. Experiments on the cause of dorsaiventrality in leaves. Nature 1954, 174: 351-352



[6]Sussex I M. Morphogenesis in Solanum tuberosum L.: experimental investigation of leaf dorsoventrality and orientation in the juvenile shoot. Phytomorphology 1955, 5: 286-300



[7]Reinhardt D, Frenz M, Mandel T, Kuhlemeier C. Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development, 2005, 132: 15-26



[8]McConnell J R, Barton M K. Leaf polarity and meristem formation in Arabidopsis. Development, 1998, 125: 2935-2942



[9]Emery J F, Floyd S K, Alvarez J, Eshed Y, Hawker N P, Izhaki A, Baum S F, Bowman J L. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol, 2003, 13: 1768-1774



[10]Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J, 2007, 51: 173-184



[11]Siegfried K R, Eshed Y, Baum S F, Otsuga D, Drews G N, Bowman J L. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 1999, 126: 4117-4128



[12]Eshed Y, Baum S F, Perea J V, Bowman J L. Establishment of polarity in lateral organs of plants. Curr Biol, 2001, 11: 1251-1260



[13]Kerstetter R A, Bollman K, Taylor R A, Bomblies K, Poethig R S. KANADI regulates organ polarity in Arabidopsis. Nature, 2001, 411: 706-709



[14]McConnell J R, Emery J, Eshed Y, Bao N, Bowman J, Barton M K. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411: 709-713



[15]Pekker I, Alvarez J P, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell, 2005, 17: 2899-2910



[16]Bowman J L, Smyth D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 1999, 126: 2387-2396



[17]Sawa S, Watanabe K, Goto K, Kanaya E, Morita E H, Okada K. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev, 1999, 13: 1079-1088



[18]Meister R J, Kotow L M, Gasser C S. SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development, 2002, 129: 4281-4289



[19]Jang S, Hur J, Kim S J, Han M J, Kim S R, An G. Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Mol Biol, 2004, 56: 133-143



[20]Villanneva J M, Broadhvest J, Hauser B A, Meister R J, Schneitz K, Gasser C S. INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes Dev, 1999, 13: 3160-3169



[21]Lee J Y, Baum S F, Oh S H, Jiang C Z, Chen J C, Bowman J L. Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development, 2005, 132: 5021-5032



[22]Sarojam R, Sappl P G, Goldshmidt A, Efroni I, Floyd S K, Eshed Y, Bowman J L. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell, 2010, 22: 2113-2130



[23]Juarez M T, Twigg R W, Timmermans M C P. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544



[24]Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano H Y. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genomics, 2007, 277: 457-468



[25]Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H Y. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16: 500-509



[26]Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H Y. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. Plant J, 2011, 65: 77-86



[27]Zhao W(赵伟), Su H-Y(宿红艳), Wang L(王磊), Zhang X-S(张宪省). Cloning and expression analysis of TaCRC in Triticum aestivum. Acta Bot Boreal-Occident Sin (西北植物学报), 2009, 29(7): 1298-1302 (in Chinese with English abstract)



[28]Zhao W, Su H Y, Song J, Zhao X Y, Zhang X S. Ectopic expression of TaYAB1, a member of YABBY gene family in wheat, causes the partial abaxialization of the adaxial epidermises of leaves and arrests the development of shoot apical meristem in Arabidopsis. Plant Sci, 2006, 170: 364-371



[29]Zhao X Y, Liu M S, Li J R, Guan C M, Zhang X S. The Wheat TaGI1, involved in photoperoidic flowering, encodes an Arabidopsis GI ortholog. Plant Mol Biol, 2005, 58: 53-64



[30]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743



[31]Bowman J L. The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol, 2000, 3: 17-22



[32]Eshed Y, Izhaki A, Baum S F, Floyd S K, Bowman J L. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development, 2004, 131: 2997-3006



[33]Liu H L, Xu Y-Y, Xu Z-H, Chong K. A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol, 2007, 217: 629-637



[34]Wang A J, Tang J F, Li D Y, Chen C Y, Zhao X Y, Zhu L H. Isolation and functional analysis of LiYAB1, a YABBY family gene, from lily (Lilium longiflorum). J Plant Physiol, 2009, 166: 988-995



[35]Yamada T, Yokota S, Hirayama Y, Imaichi R, Kato M, Gasser C S. Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. Plant J, 2011, 67: 26-36



[36]Bartholmes C, Hidalgo O, Gleissberg S. Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae). Plant Biol (Stuttg), 2012, 14: 11-23



[37]Theodoris G, Inada N, Freeling M. Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proc Natl Acad Sci USA, 2003, 100: 6837-6842



[38]Timmermans M C P, Hudson A, Becraft P W, Nelson T. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordial. Science, 1999, 284: 151-153



[39]Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science, 1999, 284: 154-156



[40]Byrne M E, Barley R, Curtis M, Arroyo J M, Dunham M, Hudson A, Martienssen R A. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000, 408: 967-971



[41]Sun Y, Zhou Q W, Zhang W, Fu Y L, Huang H. ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves. Planta, 2002, 214: 694-702



[42]Stahle M I, Kuehlich J, Staron L, von Arnim A G, Golz J F. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell, 2009, 21: 3105-3118



[43]Husbands A Y, Chitwood D H, Plavskin Y, Timmermans M C P. Signals and prepatterns: new insights into organ polarity in plants. Genes Dev, 2009, 23: 1986-1997



[44]Higuchi M, Pischke M S, Mähönen A P, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman M R, Kakimoto T. In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA, 2004, 101: 8821-8826



[45]Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell, 2004, 16: 1365-1377



[46]Riefler M, Novak O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 2006, 18: 40-54

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[4] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[5] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[6] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[7] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[8] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[9] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[10] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[11] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[12] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[13] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[14] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[15] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!