[1]Campos H, Cooper M, Habben J E, Edmeades G O, Schussler J R. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004, 90: 19–34
[2]Zhang R-H(张仁和), Xue J-Q(薛吉全), Pu J(浦军), Zhao B(赵兵), Zhang X-H(张兴华), Zhang Y-J(郑友军), Bu L-D(卜令铎). Influence of drought stress on plant growth and photosynthetic traits in maize seedlings. Acta Agron Sin (作物学报), 2011, 37(3): 521−528 (in Chinese with English abstract)
[3]Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Publishers, 2002. pp 821–834 (in Chinese)
[4]Erice G, Louahlia S, Irigoyen J J, Díaz M S, Alami I T, Avice J C. Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environ Exp Bot, 2011, 72: 123−130
[5]Pinheiro C, Chaves M M. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot, 2011, 62: 869–882
[6]Nielsen D C, Vigil M F, Benjamin J G. The variable response of dry land corn yield to soil water content at planting. Agr Water Manage, 2009, 96: 330–336
[7]Li R H, Guo P G, Baum M, Grando S, Ceccarelli S. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China, 2006, 5: 751−757
[8]Jiang G-M(蒋高明). Plant Physioecology (植物生理生态学). Beijing: Higher Education Press, 2004. pp 24–28 (in Chinese)
[9]Ding L, Wang K J, Jiang G M, Li Y G, Jiang C D, Liu M Z, Niu S L, Peng Y. Diurnal variation of gas exchange, chlorophyll fluorescence and xanthophylls cycle components of maize hybrids released in different years. Photosynthetica, 2006, 44: 26–31
[10]Levitt J. Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses, 2nd edn. New York: Academic Press, 1980. pp 25–280
[11]Lin Y-C(林叶春), Zeng Z-H(曾昭海), Ren C-Z(任长忠), Li Z-J(李志坚), Guo L-C(郭来春), Yang X-C(杨学超), Wang C-L(王春龙), Qian X(钱欣), Hu Y-G(胡跃高). Effects of partial root zone irrigation on leaf photosynthetic curves and chlorophyll fluorescence parameters in naked oat. Acta Agron Sin (作物学报), 2012, 38(6): 1062–1072 (in Chinese with English abstract)
[12]Shao H B, Liang Z S, Shao M A. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids and Surfaces B: Biointerfaces, 2006, 47: 132–139
[13]Babita M, Maheswari M, Rao L M, Shanker A K, Rao D G. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot, 2010, 69: 243–249
[14]Aroca R, Irigoyen J J, Sánchez-díaz M. Drought enhances maize chilling tolerance: II. photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant, 2003, 117: 540–549
[15]Ephrath J E. The effects of drought stress on leaf elongation, photosynthesis and transpiration rate in maize leaves. Photosynthetica, 1991, 25: 607–619
[16]Yousifi N, Slama I, Ghnaya T, Savoure A., Abdelly C. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. Comptes Rendus Biologies, 2010, 333: 205–213
[17]Baker N R, Rosenqvist E. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621
[18]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res, 1986, 10: 51–62
[19]Zhang R-H(张仁和), Ma G-S(马国胜), Bu L-D(卜令铎), Shi J-T(史俊通) Xue J-Q(薛吉全). Appraisement and comprehensive evaluation of different genotype maize cultivars for drought resistance. Seed (种子), 2009, 28(10): 91–93 (in Chinese with English abstract)
[20]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982, 33: 317–345
[21]Herrick J D, Thomas R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweet gum (Liquidambar styraciflua) in a forest ecosystem. Tree Physiol, 1999, 19: 779–786
[22]Ethier G J, Livingston N J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ, 2004, 27: 137–153
[23]Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264
[24]Gao J-F(高俊凤). Plants Physiology Experimentation Guidance (植物生理学实验技术). Xi’an: The World Press, 2000. pp 101–103 (in Chinese)
[25]Zhang S-R(张守仁). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot (植物学通报), 1999, 16(4): 444–448 (in Chinese with English abstract).
[26]Li G(李耕), Gao H-Y(高辉远), Zhao B(赵斌), Dong S-T(董树亭), Zhang J-W(张吉旺), Yang J-S(杨吉顺), Wang J-F(王敬锋), Liu P(刘鹏). Effects of drought stress on activity of photosynthesis in leaves of maize at grain filling stage. Acta Agron Sin (作物学报), 2009, 35(10): 1916–1922 (in Chinese with English abstract)
[27]Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. South Afr J Bot, 2009, 75: 34–42
[28]Massacci A, Nabiv S M, Pietrosanti L, Nematov S K, Chernikova T N, Thor K, Leipner J. Response of photosynthesis apparatus of cotton to the onset of drought stress under field conditions by gas change analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 2008, 46: 189–195
[29]Mishra K B, Iannacone R, Petrozza A, Mishra A, Armentano N, Vecchia G L, Trtílek M, Cellini F, Nedbal L. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci, 2012, 182: 79−86
[30]Bai L P, Sui F G, Ge T D, Sun Z H, Lu Y Y, Zhou G S. Effect of Soil drought Stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 2006, 16: 326–332
[31]Campos K F, Carvalho K, Souza F S, Marur C J, Pereira L F, Vieira L G. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot, 2011, 72: 242−250 |