Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (02): 360-367.doi: 10.3724/SP.J.1006.2013.00360

• RESEARCH NOTES • Previous Articles     Next Articles

Identification of CBL Genes from Foxtail Millet (Setaria italica [L.] Beauv. ) and Its Expression under Drought and Salt Stresses

ZHAO Jin-Feng1,**,YU Ai-Li1,**,TIAN Gang1,DU Yan-Wei1,GUO Er-Hu1,*,DIAO Xian-Min2,*   

  1. 1 Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi 046011, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-06-18 Revised:2012-10-09 Online:2013-02-12 Published:2012-12-11
  • Contact: 郭二虎, E-mail: guoerhu2003@yahoo.com.cn; 刁现民, E-mail: xmdiao@yahoo.com.cn

Abstract:

CBL/CIPK signal network system plays an important role in plant stress response. In this study, we identified seven candidate CBL genes designated as SiCBL1–7 from foxtail millet (Setaria italica [L.] Beauv.) genome using bioinformatics methods. The distributions of the predicted foxtail millet CBL genes were uneven in the nine chromosomes. Sequence analysis showed that the protein sequences and structure of foxtail millet CBL genes were very conservative. All the putative CBL genes contained 7–8 introns. Most exons of those SiCBL genes contained the same base number and shared highly similar sequence identity. All foxtail millet CBL genes consisted of four EF-Hand functional domains and the distance between the EF-hand motifs was conservative. Evolutionary analysis revealed that the CBL genes existed in the early evolutionary stage of terrestrial plants and all CBL genes were divided into four subgroups. The expression patterns of those SiCBL genes under drought and salt stresses, were displayed by RT-PCR and the results showed that four SiCBL genes (SiCBL1, SiCBL2, SiCBL3,and SiCBL5) were strongly induced by drought and three SiCBL genes (SiCBL1, SiCBL3,and SiCBL7) were induced by salt stress. SiCBL3 maybe takes an important role in foxtail millet under drought because of its constitutive high level expression. Foxtail millet CBL genes reported in this study would enrich CBL members in plant kingdom and lay a foundation for studying the function and mechanisms of the CBL/CIPK network system response to stresses.

Key words: Foxtail millet, Calcineurin B-Like proteins gene, Drought, Salt

[1]Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperature: towards genetic engineering for stress tolerance. Planta, 2003, 218: 1–14



[2]Zhi H(智慧), Niu Z-G(牛振刚), Jia G-Q(贾冠清), Chai Y(柴杨), Li W(李伟), Wang Y-F(王永芳), Li H-Q(李海权), Lu P(陆平), Bai S-L(白素兰), Diao X-M(刁现民). Variation and correlation analysis of hay forage quality traits of foxtail millet [Setaria italica (L.) Beauv.]. Acta Agron Sin (作物学报), 2012, 38: 800−807 (in Chinese with English abstract)



[3]Devos K M, Wang Z M, Beales J, Sasaki T, Gale M D. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet, 1998, 96: 63–68



[4]Jayaraman A, Puranik S, Rai N K, Vidapu S, Sahu P P, Lata C, Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol, 2008, 40: 241–251



[5]Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549–554



[6]Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro-Herrera M, Wang L, Li P H, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant setaria. Nat Biotechnol, 2012, 30: 555–561



[7]Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14(suppl): S389–S400



[8]Kudla J, Batistic O. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta, 2004, 219: 915–924



[9]Batisti? O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1793: 985–992



[10]Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophy, 2005, 444: 139–158



[11]Liu J P, Ishitani M, Halfter U, Kim C S, Zhu J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 2000, 97: 3730–3734



[12]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273



[13]Martinez A J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M,Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143: 1001–1012



[14]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347–1360



[15]Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J, 2003, 36:457–470



[16]Cheong Y H, Kim K N, Pandey G K, Gupta R, Grant J J, Luan S. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 2003, 15: 1833–1845



[17]Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell, 2004, 16: 1912–1924



[18]Wang M Y, Gu D, Liu T S, Wang Z Q, Guo X Y, HOU W, Bai Y F, Chen X P, Wang G Y. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol, 2007, 65: 733–746



[19]Mahajan S, Sopory S K, Tuteja N. Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum). FEBS J, 2006, 273: 907–925



[20]Zhang H C, Yin W L, Xia X L. Calcineurin B-like family in populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regul, 2008, 56: 129–140



[21]Gao P, Zhao P M, Wang J, Wang H Y, Du X M, Wang G L, Xia G X. Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Plant Physiol Biochem, 2008, 46: 935–940



[22]Hwang Y H, Bethke P C, Cheong Y H, Chang H S, Zhu T, Jones R L. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol, 2005,138: 1347–1358



[23]Zhao J-F(赵晋锋), Yu A-L(余爱丽), Wang G-H(王高鸿), Tian G(田岗), Wang H-Y(王寒玉), Du Y-W(杜艳伟), Chang H-X(常海霞). Progress of CBL/CIPK signal system in response to stresses in plant. J Agricl Sci Technol (中国农业科技导报), 2011, 13: 32–38 (in Chinese with English abstract)



[24]Shinozaki K, Yamaguchi-Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251–264



[25]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software Version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[26]Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 3rd Edn. New York: Cold Spring Harbor Laboratory Press, 2001. pp 581–585



[27]Diao X-M(刁现民). Adance in Foxtial Millet biotechnology and its future directions. J Hebei Agric Sci (河北农业科学), 2005, 9: 61–68 (in Chinese with English abstract)



[28]Tian B-H(田伯红), Wang S-Y(王素英), Li Y-J(李雅静), Wang J-G(王建广), Zhang L-X(张立新), Liang F-Q(梁凤芹), Zhai Y-Z(翟玉柱), Liu J-R(刘金荣). Response to sodium chloride stress at germination and seedling and identification of salinity tolerant genotypes in foxtail millet landraces originated from China. Acta Agron Sin (作物学报), 2008, 34: 2218−2222 (in Chinese with English abstract)



[29]Guo X-Y(郭喜英). Phylogenetic and Expression Analysis of CBL Gene Family in Plants and Functional Analysis of CBL Genes in Zea mays. MS Disseratation of China Agricultural University Press, 2007. pp 19−20 (in Chinese)



[30]Lewit-Bentley A, Rety S. EF-hand calcium-binding proteins. Curr Opin Struct Biol, 2000, 10: 637–643



[31]Kolukisaoglu U, Weinl S, Blazevic D, Bastistic O, Kudla J. Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134: 43–58



[32]Song R, Llaca V, Messing J. Mosaic organization of orthologous sequences in grass genomes. Genome Res, 2002, 13: 1549–1555



[33]Langham R J, Walsh J, Dunn M, Ko C, Goff S A, Freeling M. Genomic duplication, fractionation and the origin of regulatory novelty. Genetics, 2004, 166: 935–945



[34]Brunner S, Keller B, Feuillet C. A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics, 2003, 164: 673–683



[35]Ilic K, SanMiguel P J, Bennetzen J L. A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA, 2003, 100: 12265–12270



[36]Ramakrishna W, Emberton J, SanMiguel P, Ogden M, Llaca V, Messing J, Bennetzen J L. Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex. Plant Physiol, 2002b, 130: 1728–1738



[37]Lai J, Ma J, Swigonova Z, Ramakrishna W, Linton E, Llaca V, Tanyolac B, Park Y J, Jeong O Y, Bennetzen J L, Messing J. Gene loss and movement in the maize genome. Genome Res, 2004, 14: 1924–1931



[38]Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen J L, Messing J. Close split of maize and sorghum genome progenitors. Genome Res, 2004, 14: 1916–1923



[39]Zhang J-W(张俊文), Wei J-H(魏建华), Wang H-Z(王宏芝), Wang Y-Z(王彦珍), Ma R-C(马荣才), Li R-F(李瑞芬). The role and mechanism of CBL/CIPK signaling system response to stress in Plant. Prog Nat Sci (自然科学进展), 2008, 18: 841–846 (in Chinese)

[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[6] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[7] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[8] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[9] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[10] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[11] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[12] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[13] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[14] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[15] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!